
Two-Dimensional Orbifolds

Adam Kaye

August 10, 2007

1 Definitions

An orbifold is a Hausdorff space X0 along with an open cover {Ui} that is
closed under finite intersection with the following properties. For each Ui

there is an open set Ũi ⊆ Rn and a finite group Γi which acts on Ũi. In
addition there is a homeomorphism

ϕi : Ui ≈ Ũi/Γi

and whenever Ui ⊂ Uj there is an injective homomorphism

fij : Γi ↪→ Γj

and Ũi can be embedded in Ũj such that the following diagram commutes.
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Ũi Ũj
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Where gij is the embedding Ũi ↪→ Ũj. This embedding must also be equiv-
ariant with respect to fij, that is for all γ ∈ Γi, gij(γ(x)) = fij(γ)(gij(x)).
We will only consider smooth orbifolds, that is orbifolds where for all i, Γi is
a smooth action.

Definition 1. An orbifold O has the geometric structure of S2 (R2 or H2

respectively) if for every open set Ui ⊂ O, Ũi ⊂ S2, Γi ⊂ Isom(S2) (R2 or
H2 respectively) and when Ui ⊂ Uj, gij ∈ Isom(S2) (R2 or H2 respectively).

Definition 2. An orbifold with boundary is an orbifold O and a boundary
∂O such that ∂O is has an open cover {Vi} where each Vi is homeomorphic
to Ṽi/Γi and Ṽi is an open subset of R2

+, the upper half plane. As before, Γi

is a finite group acting on R2
+. We say O ∪ ∂O is an orbifold with boundary.

An orbifold with boundary can be defined have a geometric structure in
the obvious way.

Example 1. Any manifold M in an orbifold. For all i, Γi is the trivial group,
so it is clear that all the properties above hold.

Example 2. Let O = {(x, y) : y ≥ 0} ⊂ R2. Then O has an orbifold struc-
ture where every point of the form (x, 0) has a neighborhood homeomorphic
to R2/Z2 where Z2 acts on R2 by reflection along the line y = 0.

Example 3. Let O = R2/Z3 where Z3 acts on R2 by rotation by 2π/3. In
this case, the point (0, 0) gets mapped to a “cone point.” R2 induces a metric
on O, but notice that {x ∈ O : d(x, (0, 0)) ≤ 1} (the unit ball around (0,0))
has area 1

3
π, one third the area in R2.

Definition 3. The underlying space XO of an orbifold O is the the topolog-
ical space associated with O.

It is important to note that often in 2 dimensions XO is a manifold or
a manifold with boundary even when O is not. This is possible because O
really consists of a topological space along with the cover {Ui}, the homeo-
morphisms ϕi and the groups Γi acting on Rn. It is possible that a point in
O has a neighborhood homeomorphic to Rn, but it is not a manifold if the
Γi associated with the point is not {1}.

In example 2, XO is the upper half plane, which is a manifold with bound-
ary, while O is an orbifold without boundary. In example 3, XO is an infinite
cone, which is homeomorphic to R2, so it is a manifold while O is not.

For each point x ∈ O, there is associated Ũ ∈ R2 and a group Γ acting
on Ũ . Let Γx be the stabilizer subgroup of the pre-image of x in Γ.
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Definition 4. The singular locus of O is ΣO = {x : Γx 6= {e}} (Where {e}
is the trivial group).

If the singular locus of O, ΣO = φ, then O is a manifold.

Definition 5. An orbifold Õ along with a projection p is a covering of O if
p : XÕ → XO such that ∀x ∈ XO, there is a neighborhood U of x that is
homeomorphic to Ũ/Γ (Ũ ⊂ Rn) and every vi ∈ p−1(U) has a neighborhood
Ui ≈ Ũi/Γi where Ũi ⊂ Rn and Γi ⊂ Γ.

Example 4. Let On = R2/Zn where Zn acts on R2 by rotations of the form
aπ/n, a ∈ Z. If p, q, r ∈ Z and pq = r then Op and Oq can be projected onto
Or as orbifold covers.

Definition 6. A good orbifold is an orbifold which has a covering that is a
manifold. A bad orbifold cannot be covered by a manifold.

Definition 7. An orbifold O is orientable if the underlying space XO is
orientable and for all x ∈ O the group Γ associated with x has no orientation
reversing elements.

2 Classification

Theorem 1. The singular locus of a 2-dimensional orbifold consists of three
types of points:
(i) mirror points: homeomorphic to R2/Z2, Z2 acts by reflection along a
line.
(ii) cone points: homeomorphic to R2/Zn, Zn is generated by rotation of
2π/n.
(iii) reflector corners: homeomorphic to R2/Dn, Dn is the dihedral group of
order 2n, that is generated by reflection about two lines that meet at an angle
of π/n.

Proof. If Γ is a finite group acting on R2 then it must be a finite subgroup of
O(2). Every element of O(2) consists of a rotation around the origin possibly
composed with a reflection.

(i) If Γ consists of just the identity and one reflection, then we have a
mirror point.

(ii) If Γ has no orientation-revesing elements, then it has only rotations.
Suppose it contains an element γ that is a rotation by α which is not a
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rational multiple of 2π. Then γn 6= e for any n 6= 0 but γn can be arbitrarily
close to e, so Γ is not finite. Let γ be rotation by m

n
2π where m

n
is in lowest

terms. Then there exists q, p ∈ Z s.t. mq− np = 1, so γq is rotation by 1
n
2π,

which generates all rotations of the form a
n
2π. Since Γ is finite, there must

be a maximum n such that Γ contains rotation my 1
n
2π and this element

generates Γ. Then we have a cone point.
(iii) If Γ contains rotations and reflections, then the orientation preserving

elements of Γ are generated by an element γ, which is rotation by 2π
n

. Without
loss of generality, we may assume that Γ contains an element α which is
reflection about the x-axis. The point (cos(π

n
), sin(π

n
)) is fixed by γ ◦ α.

However, (cos(n+1π
n

), sin(n+1π
n

)) is not fixed, so γ ◦ α = β must be reflection
along the line that intersects the origin at angle π

n
. γ = β◦α, so Γ is generated

by α and β and we have the dihedral group Dn.

Any closed 2-dimensional orbifold can then be defined by its underlying
space the cone points and corner reflectors where (n1, . . . , nk; mi, . . . ,mj)
denotes cone points of orders n1, . . . , nk and corner reflectors of orders
2m1, . . . , 2mj.

Theorem 2. There are only four 2-dimensional bad orbifolds without bound-
ary. They are:

(i) XO = S2 : (n; ) (tear drop)
(ii) XO = S2 : (n1, n2; ), n1 > n2 (spindle)
(iii) XO = D2 : (; n1)
(iv) XO = D2 : (; n1, n2), n1 > n2

Proof. Note that (iii) can be covered by (i) and (iv) can be covered by (ii).
Let O be a bad orbifold with no proper orbifold covering. First, consider the
XO = S2 : (n1, n2, n3; ). This orbifold can be generated by a group acting on
S2, R2 or H2 where the group is generated by reflections across the edges of
a triangle with corners of angles π/n1, π/n2, π/n3. (This actually forms the
orbifold with three corner reflectors, but we achieve the orbifold with three
cone points by taking the subgroup of orientation preserving elements). If
1/n1 +1/n2 +1/n3 > 1 we can form a triangle in S2 if 1/n1 +1/n2 +1/n3 = 1
the triangle is in R2 and if 1/n1 + 1/n2 + 1/n3 > 1 the triangle is in H2.
Therefore, if O has at least three cone points, we can take a suborbifold D
that has underlying space of the disc and contains exactly 3 cone points. We
can then find a proper cover Ỹ of Y by finding a proper cover of D̃ of D
using the method above. Then we glue a copy of Y − D to each boundary
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component of D̃. If O contains reflector lines, then there is a proper orbifold
covering which can be achieved by taking two copies of O and gluing them
along the reflector lines. Also, if XO is not simply connected, then it has a
proper covering X̃O which naturally inherits an orbifold structure to become
Õ an orbifold cover of O.

Definition 8. Given an orbifold O, if K is a CW-complex decomposition of
O s.t. the group associated with each point is constant along each cell, then
the Euler characteristic of O is defined to be

χ(O) =
∑
∆

(−1)dim(∆) 1

|Γ∆|

where the sum is taken over all cells in K and |Γ∆| is the order of the group
associated with the cell ∆.

For a manifold, 1
|Γ∆|

= 1 for all ∆, so this reduces to the usually definition
of Euler characteristic.

Theorem 3. If O is an orbifold that has a degree n covering Õ then χ(O) =
1
n
χ(Õ)

Proof. Let O be an orbifold that is finitely covered by an orbifold Õ such
that O ≈ Õ/G for some finite group G and p is the projection. Then for
a given cell ∆ ∈ K, the CW-complex decomposition of O, there are m pre-
images of ∆ in K̃, the CW-complex decomposition of Õ where n divides|G|.
Then there are |G|

m
elements of G which fix ∆. Thus, the group Γ associated

with ∆ has order |G|
n
|Γ∆̃| where Γ∆̃ is the group associated to each ∆̃ in the

pre-image of ∆. Therefore,

1

|Γ∆|
=

m

|G||Γ∆̃|
=

1

|G|
∑

∆̃∈p−1(∆)

1

|Γ∆̃|

and

χ(O) =
1

|G|
χ(Õ)

We will now develop a formula for the Euler character of a 2-orbifold
based only on the underlying surface, cone points and corner reflectors. We
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will assume that every good, compact 2-orbifold without boundary is finitely
covered by a manifold. Let O be a 2-orbifold with n cone points of order
qi, 1 ≤ i ≤ n and no reflector corners. Let D1, D2, . . . , Dn be disjoint discs in
XO such that the ith cone point is on the interior of the ith disc. Let Y be

the complement of the discs, so that XO = Y ∪
( ⋃

i

Di

)
. Since χ(Di) = 1,

χ(XO) = χ(Y )+n. We know O is d-covered by some manifold Õ. If Ỹ is the
pre-image of Y , then χ(Ỹ ) = dχ(Y ). But for each disc Di, there are only d/qi

pre-images. Therefore, χ(Õ) = dχ(Y ) +
∑

i

d/qi. However, we have shown

that χ(Õ) = dχ(O). Thus χ(O) = χ(Y ) +
∑

i

1/qi, but χ(Y ) = χ(XO) − n

so we have

χ(O) = χ(XO)−
n∑

i=1

(
1− 1

qi

)
Now suppose O has m reflector corners of order 2pj, 1 ≤ j ≤ m in addition

to n cone points of order qi, 1 ≤ i ≤ n. Let DO be the orbifold achieved
from doubling O along its reflector curves. Now each cone point has two
pre-images and the pre-image of each corner reflector is a cone point of order
pj. We have shown

χ(DO) = χ(XDO)− 2
∑

i

(
1− 1

qi

)
−

∑
j

(
1− 1

pj

)
. Since χ(DO) = 2χ(O) and χ(XDO) = χ(XO), we have:

Theorem 4. A 2-orbifold with m reflector corners of order 2pj, 1 ≤ j ≤ m
and to n cone points of order qi, 1 ≤ i ≤ n has Euler characteristic

χ(O) = χ(XO)−
∑

i

(
1− 1

qi

)
− 1

2

∑
j

(
1− 1

pj

)
This is called the Riemann-Hurwitz formula. It makes it especially clear

that the teardrop has no proper covering. The teardrop has Euler character-
istic 1 + 1/n, so any cover would have characteristic greater than 2.

Theorem 5. Every orientable closed 2-dimensional orbifold other than those
mentioned in Theorem 2 have the geometric structure of S2, R2, or H2.
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Lemma 1. The only closed orientable orbifolds with positive Euler charac-
teristic are:

XO = S2 : (), (n, n), (2, 2, n), (2, 3, 3), (2, 3, 4), (2, 3, 5).
and each has the geometric structure of S2.

Proof. Clearly S2 : (), (n, n) are covered by the sphere.
S2 : (2, 2, n), (2, 3, 3), (2, 3, 4), (2, 3, 5) are all covered by tessellating the sphere
with triangles with angles π/ni and then taking the orientation preserving
elements of the group generated by reflections along each of the lines. Since
S2 is the only 2-manifold with positive Euler characteristic, any orbifold with
positive Euler characteristic must have XO = S2. Also, if O has k cone points

then
k∑
1

1− 1

ni

< 2. However,

1− 1

ni

≥ 1

2
⇒

k∑
1

1− 1

ni

≥ k

2

so O can have at most 3 cone points. It is also clear that if O has three cone
points, then it must have at least one of order 2. Assuming neither of the
other two cone points has order 2, then

(1− 1

n2

) + (1− 1

n3

) <
1

2
⇒ n2 = 3 or n3 = 3

Assuming it is n2, then (1− 1/n3) < 5/6 ⇒ n3 = 4 or n3 = 5.

Lemma 2. The only closed orientable orbifolds with Euler characteristic 0
are:

(i) XO = S2 : (2, 3, 6), (2, 4, 4), (3, 3, 3), (2, 2, 2, 2)
(ii) XO = T 2 : ()
and each has the geometric structure of R2.

Proof. XO = S2 : (2, 3, 6), (2, 4, 4), (3, 3, 3) are covered by tessellating the
plane with Euclidean triangles. S2 : (2, 2, 2, 2) covered by laying out a grid
in the plane and taking the group generated by rotations of π around the
vertices. T 2 is covered by taking the group generated by two linearly in-
dependent translations. The torus and the sphere are the only 2-manifolds
with non-zero Euler characteristic, so any orbifold with non-zero Euler char-
acteristic must have XO = S2 or T 2. Since χ(T 2) = 0, the orbifold cannot
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have any cone points if the underlying space is the torus. If XO = S2 then O
cannot have more than four coin points and can only have four cone points
if they all have order 2. If O has three cone points, they must all have order
3 if none has order 2. If one has order 2, then

1− 1

n2

+ 1− 1

n3

=
3

2
⇒ n2 = 3, n3 = 6 or n2 = 4, n3 = 4

If n2 = 5 then 1 − 1
n3

= 7/10 which is not possible for n3 ∈ N. If n2 > 6,

then 1/2 < 1− 1
n3

< 2/3 which is also not possible for n3 ∈ N. If O has two,
one or zero cone points, then its Euler characteristic will be positive.

Theorem 6. Let O be a closed orientable 2-orbifold with χ(O) < 0. Then
O has a hyperbolic structure.

The proof will only be outlined. The method is similar to the pants de-
composition used for 2-manifolds. However, instead of using just pants (P ),
we will also use A(n) (the annulus with one cone point) and D2

(n1,n2) (the

disk with two cone points where n1 6= 2 or n3 6= 2). Each of these “gener-
alized pants”, which are orbifolds with boundary are covered by generalized
triangles in H2.

Lemma 3. Each of the generalized pants P , A(n), and D2
(n1,n2) (n1 6= 2 or

n3 6= 2) have a hyperbolic structure.

Proof. A pair of pants can be decomposed into two right hexagons by cutting
along geodesics from one boundary to the next that meet at right angles.
Since pants are paramaterized by the length of their boundaries, we need to
show that for any a, b, c ∈ R there is a hexagon in H2 with geodesic edges and
edge lengths l1, l2, l3 (on disjoint edges). This hexagon can be constructed
in the upper half plane model as shown in Fig 1. We first fix z1 on the
imaginary axis and draw a line of length l1 along the perpendicular geodesic.
Then draw side C along the geodesic perpendicular to side a at the point
z2. A side of length l2 can be drawn perpendicular to side C at the point z3.
As z3 moves along its geodesic, the other endpoint of b, z4, will trace out a
Euclidean circle d in the plane. Side A can be constructed perpendicular to
b and tangent to d. For sufficiently small C, the geodesic along which A is
drawn will lie entirely right half of the plane and it will be possible to draw c
perpendicular to A and B. As |C| increases, the Euclidean circle on which c
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is drawn will increase in radius, which means |B| will shrink. The hexagonal
law of sines ([3], page 82) says

sinh|a|
sinh|A|

=
sinh|b|
sinh|B|

=
sinh|c|
sinh|C|

but

lim
|C|→∞

sinh|b|
|B|

= ∞⇒ lim
|C|→∞

sinh|c|
|C|

= ∞

so
lim
|C|→∞

|c| = ∞

Which means that as |C| varies from the smallest value for which c exists
to ∞, |c| ranges over all positive values and there exists right hexagon with
edge lengths l1, l2, l3.

The annulus with one cone point can be constructed in a similar way.
Instead of allowing |C| to be large enough for c to exist, we instead shrink
|C| until A and B meet at infinity. We can then shrink C further so that the
angle between A and B is the angle of the cone point.

To get the disc with two cone points we shorten B from the bottom
(keeping z1 fixed). Eventually b will disappear when C and A meet at infinity.
We can then continue shrinking B until the correct angle is achieved between
A and C. This will not work if both angles are π

2
because then the proper

angle will not be reached until A = a, so it is necessary for one of the angles
to be strictly less that π

2
.

First, if XO = S2 : (n1, n2, n3) with (1−1/n1)+(1−1/n2)+(1−1/n3) >
2 then O can be covered by tessellating hyperbolic plane with hyperbolic
triangles. If O has pairs of cone points with order 2, then we can cut along
a line between the cone points, which will replace them with a geodesic
boundary. Therefore we will assume that O has at least 3 cone points with
at most one cone point of order 2. We can then remove D2

(n1,n2) by cutting
along simple closed curves that separate two cone points from the rest of
the orbifold. Each time we do this, the Euler characteristic increases by
1− 1

n1
− 1

n2
< 1. If there is a lone cone point remaining, we may cut off A(n)

by cutting along a simple closed curve that separates the cone point and a
boundary from the rest of the orbifold.

After performing these surgeries, we are left with an orientable 2-manifold
with at least 2 boundaries. If it is the annulus, then we did one surgery
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too many and by undoing the last surgery, we have either D2
(n1,n2) or A(n).

Otherwise, our remaining surface must have negative Euler characteristic.
This means we can cut off pairs of pants by pairing off boundaries until
there are only three boundaries left. This will give us a generalized pants
decomposition of the orbifold.

If O has only one or two cone points, then the underlying surface must be
T 2 or have negative Euler characteristic. If XO = T 2 with two cone points
then we have two copies of A(n) glued together. If XO = T 2 with one cone
point, then we have one copy of A(n) with its boundaries glued together. If
the underlying surface has negative Euler characteristic, then we can cut off
one or two copies of A(n) and still be left with a surface with negative Euler
characteristic, which can be decomposed into pants.

This decomposition into generalized pants gives O a hyperbolic geometry.

3 Relations to Groups

This demonstrates one of the main reasons that orbifolds are studied. Not
only does each orbifold have a universal cover by S2, R2 or H2 where the
deck transformations are isometries of the covering space, but any group Γ
of isometries that acts properly discontinuously on S2, R2 or H2 will define
an orbifold. The group associated with a point x ∈ O will be the stabilizer
subgroup of a pre-image of x in S2, R2 or H2. If the group also acts freely, then
the orbifold will be a manifold. For example, take the subgroup of Isom(H2)
generated by reflecting across the geodesics that form the the triangle as
shown in Fig 2. The resulting orbifold is achieved by taking a fundamental
region of the group action and associating the group {1} with every point on
the interior, D2, D3, D7 to each of the vertices and Z2 with the edges.

This also allows us to use the classification above to classify certain sub-
groups of Isom(R2) and Isom(S2). Since we have a list of all closed orientable
orbifolds with positive or zero Euler characteristic, we have also made a list
of all subgroups of Isom(R2) and Isom(S2) that act proper discontinuously,
consist of only orientation preserving elements and have a compact funda-
mental region.
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