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Abstract

This paper explores the basic ideas of simplicial structures that lead to simplicial homology
theory, and introduces singular homology in order to demonstrate the equivalence of homology
groups of homeomorphic topological spaces. It concludes with a proof of the equivalence of
simplicial and singular homology groups.
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1 Simplices and Simplicial Complexes

Definition 1.1. The n-simplex, ∆n, is the simplest geometric figure determined by a collection of
n+ 1 points in Euclidean space Rn. Geometrically, it can be thought of as the complete graph on
(n+ 1) vertices, which is solid in n dimensions.

Figure 1: Some simplices

Extrapolating from Figure 1, we see that the 3-simplex is a tetrahedron.
Note: The n-simplex is topologically equivalent to Dn, the n-ball.

Definition 1.2. An n-face of a simplex is a subset of the set of vertices of the simplex with order
n+ 1. The faces of an n-simplex with dimension less than n are called its proper faces.
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Two simplices are said to be properly situated if their intersection is either empty or a face of
both simplices (i.e., a simplex itself). By “gluing” (identifying) simplices along entire faces, we get
what are known as simplicial complexes. More formally:

Definition 1.3. A simplicial complex K is a finite set of simplices satisfying the following condi-
tions:

1 For all simplices A ∈ K with α a face of A, we have α ∈ K.

2 A,B ∈ K =⇒ A,B are properly situated.

The dimension of a complex is the maximum dimension of the simplices contained in it.

More abstractly, a complex is a finite set of vertices {v0, . . . , vk} with certain subsets distin-
guished as abstract simplices, and the property that all faces of distinguished simplices are also
distinguished.

We can assign to an abstact complex R a geometric realization which takes v0, v1, . . . , vk to
points in Rn. For example, we get what is known as the natural realization if we take n = k + 1
and v0 = e1, v1 = e2, . . . vk = ek+1, where the ei are the standard basis vectors in Rn. We note that
although R may be n-dimensional, a realization K may not “fit” into Rn.

By assigning v0, . . . , vk to different points, we can achieve geometrically different realizations
of R. Topologically speaking, however, we have a sense that these realizations should not be
fundamentally different, and in fact all realizations of a complex R are homeomorphic.

2 Homology Groups

Given the set S of vertices of a simplex, we define an orientation on the simplex by selecting some
particular ordering of S. Vertex orderings that differ from this by an odd permutation are then
designated as reversed, while even permutations are regarded as unchanged. Any simplex, then,
has only two possible orientations.

Figure 2: An oriented 2-simplex

An orientation on an n-simplex induces orientation on its (n−1)-faces; as illustrated by Figure 2,
if the 2-simplex is given the orientation (v0, v1, v2), then the orientation induced on its 1-faces is
e2 = (v0, v1), e0 = (v1, v2), e1 = (v2, v0).

Formally, if An = (v0, v1, . . . , vn) is an oriented n-simplex, then the orientation of the (n−1)-face
of An with vertex set {v0, . . . , vi−1, vi+1, . . . , vn} is given by: Fi = (−1)i(v0, . . . , vi−1, vi+1, . . . , vn).
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Definition 2.1. Given a set An1, . . . , A
n
k of arbitrarily oriented n-simplices of a complex K and

an abelian group G, we define an n-chain x with coefficients in G as a formal sum:

x = g1A
n

1 + g2A
n

2 + · · ·+ gkA
n
k, (1)

where gi ∈ G.

Henceforth, we will assume that G = Z.
The set of n-chains forms an abelian group over addition: for x =

∑k
i=1 giA

n
i, y =

∑k
i=1 hiA

n
i,

we have x+ y =
∑k

i=1(gi + hi)Ani.
We denote the group of n-chains by Ln.

Definition 2.2. Let An be an oriented n-simplex in a complex K. The boundary of An is defined
as the (n− 1)-chain of K over Z given by

δ(An) = An−1
0 +An−1

1 + · · ·+An−1
n

where An−1
i is an (n− 1)-face of An. If n = 0, we define δ(∆0) = 0.

It is important to note that, since An was oriented, the An−1
i have associated orientations as

well.
We can extend the definition of boundary linearly to all of Ln: for an n-chain x =

∑k
i=1 giA

n
i,

define

δ(x) =
k∑
i=1

giδ(Ani) (2)

where Ani are the n-simplexes of K. Therefore, the boundary operator δ is a homomorphism
δ : Ln → Ln−1.

Example 2.3. Calculate δ(δ(∆2)), where ∆2 is the 2-simplex from Figure 2:

δ(δ(∆2)) = δ(e1 + e2 + e3)
=δe1 + δe2 + δe3

=δ(v0, v1) + δ(v1, v2) + δ(v2, v0)
=[(v1)− (v0)] + [(v2)− (v1)] + [(v0)− (v2)]

But L0 is abelian, and oppositely oriented simplices cancel, so

δ(δ(∆2)) = 0

This result generalizes to higher dimensions. Therefore, since δ is linear and the x is a sum of
n-simplices, we conclude that δ2(x) = 0, for any n-chain x in Ln.

Definition 2.4. We call an n-chain a cycle if its boundary is zero, and denote the set of n-cycles
of K over Z by Zn. Zn is a subgroup of Ln, and can also be written as Zn = Ker(δ).

Example 2.3 shows that the boundary of any simplex is a cycle. Since δ2 = 0, we conclude that
every boundary is a cycle.
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Figure 3: Boundaries?

Definition 2.5. We say that an n-cycle x of a k-complex K is homologous to zero if it is the
boundary of an (n + 1)-chain of K,n = 0, 1, . . . , k − 1. A boundary is then any cycle that is
homologous to zero. This relation is written x ∼ 0, and the subgroup of Zn of boundaries is
denoted Bn. We also write Bn = Im(δ).

Less formally, a cycle is a member of Bn if it “bounds” something contained in the complex
K. For example, the chain b + c + e in Figure 3 is a boundary, but a + d + e is not. The relation
x ∼ 0 gives an equivalence relation: for two chains x, y, (x− y) ∼ 0 =⇒ x ∼ y, and we call x and
y homologous.

Since Bn is a subgroup of Zn, we may form the quotient group Hn = Zn/Bn.

Definition 2.6. The group Hn is the n-dimensional homology group of the complex K over Z.

Hn can also be written as Ker(δ)/Im(δ).

Definition 2.7. A subcomplex is a subset S of the simplices of a complex K such that S is also a
complex.

The set of all simplices in a complex K with dimension less than or equal to n is called the
n-skeleton of K. From Definition 2.7, it is clear that the n-skeleton is a subcomplex.

Definition 2.8. A complex K is connected if it cannot be represented as the disjoint union of two
or more non-empty subcomplexes. A geometric complex is path-connected if there exists a path
made of 1-simplices from any vertex to any other.

Claim 2.9. Path-connected ⇐⇒ connected.

Proof. To prove the forward direction, suppose K is not connected. Then we can select two disjoint
subcomplexes L and M such that L ∪M = K. Assume a path exists between some vertex l0 ∈ L
and m0 ∈ M . But then, if li is the last vertex in the path which is contained in L, the 1-simplex
connecting li to the next vertex in the path cannot be contained in either L or M or they would
have a nonempty intersection, contradicting the assumption that K is not connected.
For the other direction, assume there exist points l0 and m0 in K with no path between them.
Then we define L as the path-connected subcomplex of K which contains l0, and M as the path-
connected subcomplex which contains m0. If v0 ∈ L ∩M 6= ∅, then there exists a path from l0 to
v0 and a path from v0 to m0. Concatenating these paths gives a path from l0 to m0, contradicting
the assumption for l0 and m0. Hence L ∩M = ∅, so K is not connected.

Theorem 2.10. If K1, . . . ,Kp is the set of all connected components of a complex K, and Hn, Hni

are the homology groups of K and Ki, respectively, then Hn is isomorphic to the direct sum Hn1⊕
· · · ⊕Hnp.
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Proof. Let Ln be the group of n-chains of K, and Ki the ith component of K. Denote by Lni the
group of n-chains of Ki. It is clear that Lni is a subgroup of Ln and moreover, that

Ln = Ln1 ⊕ · · · ⊕ Lnp

We wish to show that a similar componentwise decomposition holds for the groups Bn and Zn.
If we let Bni = δ(Ln+1i)be the image of δ restricted to the subgroup Lni, then we can represent
the group Bn by the direct sum of such restrictions:

Bn = Bn1 ⊕ · · · ⊕Bnp,

so given an element x ∈ Ln+1, represented by

x = xi + · · ·+ xp,

δx = δx1 + · · ·+ δxp ∈ Bn,

where xi ∈ Ln+1i.
Now let Zni = Ker(δ) ∩ Lni. Then

Zn = Zn1 ⊕ · · · ⊕ Znp

To verify this, we note that in order for x ∈ Ln to be in Zn, we need δ(x) = 0.
But δ(x) = δ(x1) + · · ·+ δ(xp), so δ(x) = 0 =⇒ δ(xi) = 0, that is, that xi ∈ Zni.

Since Zn and Bn both break down componentwise,

Zn/Bn = Zn1/Bn1 ⊕ · · · ⊕ Znp/Bnp,

and
Hn = Hn1 ⊕ · · · ⊕Hnp

Definition 2.11. The index of a chain x =
∑k

i=1 giAni is defined as I(x) =
∑k

i=1 gi.

Proposition 2.12. If K is a connected complex, then for x a 0-chain, I(x) = 0 is equivalent to
x ∼ 0, and H0(K,Z) is isomorphic to Z.

Proof. We first show that x ∼ 0 =⇒ I(x) = 0: Let A1 = (a0, a1) be a 1-simplex. Then

x = δ(gA1) = ga1 − ga0

but x = δ(gA1) =⇒ x ∼ 0, and we can see that I(x) = I(gA1) = g − g = 0.
Since I(x + y) = I(x) + I(y), I is a homomorphism, and any y ∈ L1 is of the form

∑q
i=0 giA

1
i,

where A1
i = (ai, ai+1), we have

x = δy ∼ 0 =⇒ I(x) = I(δy) = 0

For the forward direction, we take v and w to be two vertices of K. K is connected, so there
exists a path between them consisting of 1-simplices A1

i = (ai, ai+1), i = 0, . . . , q− 1, where a0 = v
and aq = w. We consider the boundary of the chain y =

∑q
i=0 gA

1
i, given by

δy =
q∑
i=0

gδA1
i =

q∑
i=0

g[(ai+1)− (ai)] = gw − gv
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Figure 4: A simplicial structure on the circle

with I(δy) = 0. δy is a boundary, so x = δy ∼ 0 =⇒ (gw − gv) ∼ 0 =⇒ gw ∼ gv, and this
implies that any 0-chain x of K is homologous to the chain gv. As x ∼ 0 =⇒ I(x) = 0, we see
that homologous chains have equal indices. Thus I(x) = I(gv) = g. Then we have x ∼ gv =⇒
x ∼ I(x)v, but this shows that if I(x) = 0, x ∼ 0, so I(x) = 0 ⇐⇒ x ∼ 0.

As noted, I is a homomorphism of L0 = Z0 into Z. For x a 0-simplex and g ∈ Z, gx ∈ L0 is a
cycle with I(gx) = g. Hence I(Z0) = Z. As I(x) = 0 ⇐⇒ x ∼ 0, we have B0 = ker(I), so that
H0 = Z0/B0

∼= Z.

Theorem 2.13. The zero-dimensional homology group of a complex K over Z is isomorphic to
Zp = ⊕pZ where p is the number of connected components of K.

Proof. This follows immediately from Theorem 2.9 and Proposition 2.11.

Example 2.14. This means that the 0th homology group of the circle is isomorphic to Z.
As in Figure 4, take a simplicial rendering of the circle as four 1-simplices. The group Z0

consists of sums over the four 0-simplices a, b, c and d, with coefficients from Z. Let x be a 0-chain
with nonzero coefficients:

x = g1a+ g2b+ g3c+ g4d

In order to reduce to an element of H0, we subtract from this the chain y = g4c− g4d ∼ 0 to get

x− y = g1a+ g2b+ (g3 − g4)c

and by repeating this process, we get a new chain

z = (g1 − g2 + g3 − g4)a

But z ∼ x and so represents an element in H0, and since gi ∈ Z, (g1 − g2 + g3 − g4) ∈ Z we can
write

z = ga,

where g ∈ Z. Therefore, we can choose any such g, and this gives us H0
∼= Z.

We now calculate some more general homology groups:

Example 2.15. Hn(Sn) ∼= Z:
We recall the observation that the n-simplex ∆n is topologically equivalent to the n-ball. Hence

their boundaries, the collection of n + 1 (n− 1)-simplices, and the n-sphere, respectively, are also
topologically equivalent. The logical simplicial structure to put on Sn, then, is that of the boundary
of the (n+ 1)-simplex ∆n+1.
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Let {v0, . . . , vn−1} be the vertex set of ∆n+1. Note that this set is not oriented; orientations
of the (n − 1)-simplices can be determined arbitrarily. We will use their numbering to do so. All
n-chains on this structure, then, have the form:

x =
n+1∑
i=0

gi(v0, . . . , vi−1, vi+1, ..., vn), (3)

where gi ∈ Z. Since ∆n+1 itself is not contained in the structure, there are no boundaries in Zn,
the group of cycles. Therefore Hn = Zn/Bn is the group of cycles.

If x ∈ Zn, then δx = 0. Equation (3) gives:

δx = δ(
n+1∑
i=0

gi(v0, . . . , vi−1, vi+1, . . . , vn))

=
n+1∑
i=0

gi(
n+1∑
j<i

(−1)j(v0, . . . , vj−1, vj+1, . . . , vi−1, vi+1, . . . , vn)

+
n+1∑
j>i

(−1)j(v0, . . . , vi−1, vi+1, . . . , vj−1, vj+1, . . . , vn))

Algebraically, it is perhaps difficult to see that an expansion and redistribution of this sum gives
us terms of the form

(gk − gl)(v0, . . . , vj−1, vj+1, . . . , vi−1, vi+1, . . . , vn) (4)

for all i, j. This is more intuitive geometrically (Figure 2 provides a low-dimensional example):
Any two n-simplices of ∆n+1 intersect along an (n − 1)-face. Hence we get terms of the form (4)
for each such face.

From this we can see that if δx = 0, we must have gk = gl for all k, l. That is, g0 = g1 = · · · =
gn+1. Hence our original n-chain can be rewritten:

x =
n+1∑
i=0

g0(v0, . . . , vi−1, vi+1, ..., vn) (5)

so we can choose g0 freely from Z. Hence Hn(Sn) ∼= Z.

Example 2.16. Hn(Dn) = 0:
We give Dn the easiest simplicial structure, that of the the n-simplex ∆n. Then all n-chains

are of the form:
x = g∆n,

where g ∈ Z. This is never a boundary, so Hn = Zn. But δx = 0 only when g = 0. Hence
Hn(Dn) ∼= 0.
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3 Singular Homology

Particularly in the lower dimensions, we have an intuitive idea of when two topological spaces are
fundamentally “the same”. We have some ways of generalizing and making rigorous this intuition,
including the idea of homeomorphism. It would be nice to have some sort of relation between the
homology groups of homeomorphic spaces, and, in fact, it turns out that if two topological spaces
are homeomorphic, they have isomorphic homology groups.

We would like to verify this fact. To do so, we need some way of comparing homology groups. It
is not immediately clear how we might do this at this point, and in fact this turns out to be rather
a difficult problem using the machinery we have so far developed. To get around this difficulty, we
introduce the idea of singular homology. The basic ideas are analogous to those already developed:

Definition 3.1. Given a topological space X, a singular n-simplex in X is a map σ : ∆n → X,
such that σ is continuous.

Definition 3.2. Let Cn(X) be the free abelian group with basis the set of singular n-simplices
of X. Elements of Cn(X) are called singular n-chains and are finite formal sums:

∑
i giσi, where

gi ∈ Z.

We define a boundary map δn in the same manner as before:

Definition 3.3. The boundary map δn : Cn(X)→ Cn−1(X) is given by:

δn(σ) =
∑
i

(−1)iσ|[ν0,...,νi−1,νi+1,...,νn],

where νi are the 0-simplices of σ, that is, the maps of the vertices of ∆n: νi : ∆0 → X.

As before, given an n-chain x, δ2x = 0. This suggests that we can define the singular homology
groups in a similiar manner to the simplicial homology groups:

Definition 3.4. The singular homology group Hn(X) is defined to be the quotient Hn(X) =
Ker(δn)/Im(δn+1).

Note: We will now denote the simplicial homology group by H∆
n in order to distinguish it from

the singular homology group Hn.
We shall see in the following section that with this definition of homology it is a simple matter

that homeomorphic spaces have isomorphic homology groups, and indeed this fact is apparent
already. This raises one item of concern. The definitions of Hn and H∆

n are analogous, and we
have an intuitive sense these two groups should be the same. However, this is far from apparent:
for one thing, H∆

n is finitely generated, while the chain group Cn(X) from which we derived Hn

is uncountable.
In fact, for spaces on which both simplicial and singular homology groups can be calculated,

the two are equivalent, and we will prove this later.
We present first some facts about singular homology that support the intuition Hn

∼= H∆
n :

Proposition 3.5. Given a topological space X, Hn(X) is isomorphic to the direct sum Hn(X1)⊕
Hn(X2) ⊕ · · · ⊕Hn(Xp), where Xi are the path-connected components of X. This is the analogue
of Theorem 2.10.
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Proof. Since the maps σ are continuous, a singular simplex always has a path-connected image in X.
Hence Cn(X) can be written as the direct sum of subgroups Cn(X1)⊕· · ·⊕Cn(Xp). The boundary
map δ is a homomorphism, so it preserves this decomposition. Hence Ker(δn) and Im(δn+1) also
split, and we have Hn(X) ∼= Hn(X1)⊕Hn(X2)⊕ · · · ⊕Hn(Xp).

Proposition 3.6. The zero-dimensional homology group of a space X is the direct sum of copies
of Z, one for each path-component of X. This is the analogue of Theorem 2.13.

Proof. It suffices to show that, for X path-connected, H0(X) ∼= Z. For x a 0-simplex, δ0(x) = 0
because the boundary of any 0-simplex vanishes. This means that Ker(δ0) = C0(X), so H0(X) =
C0(X)/Im(δ1) by definition. We recall Definition 2.11 of the index. Here, we have I : C0(X)→ Z,
with I(x) =

∑
i gi for x =

∑
i giσi ∈ C0(X). We wish to show that Ker(I) = Im(δ1), that is, that

for any 0-chain x, I(x) = 0 ⇐⇒ x ∼ 0. The proof proceeds as in Theorem 2.12.

4 Chain Complexes, Exact Sequences, and Relative Homology
Groups

We now introduce some ideas that will help us prove the equivalence of the groups Hn and H∆
n:

Definition 4.1. A chain complex is a sequence of abelian groups connected by homomorphisms
(called boundary operators) such that the composition of any two consecutive maps is 0.

Example 4.2. The groups Cn(X) of singular n-chains form a chain complex with boundary oper-
ator δn:

· · · // Cn+1
δn+1

// Cn
δn // Cn−1

// · · · // C1
δ1 // C0

δ0 // 0

Definition 4.3. As demonstrated by Example 4.2, the homology groups of a chain complex are
given by Ker(δn)/Im(δn+1).

Definition 4.4. A chain map f between two chain complexes A, δA and B, δB is a collection of
maps fn : An → Bn such that f commutes with the operators δA and δB as in the following
diagram:

· · · // An+1

f
��

δA // An

f

��

δA // An−1

f
��

// · · ·

· · · // Bn+1
δB // Bn

δB // Bn−1
// · · ·

Theorem 4.5. A chain map between two chain complexes induces homomorphisms between ho-
mology groups.

Proof. As illustrated by the preceding diagram, fδA = δBf . Then f maps cycles to cycles and
boundaries to boundaries, so f induces a homomorphism f∗ : Hn(A)→ Hn(B).

We now apply Theorem 4.5 to the case of singular homology: Let X,Y be topological spaces.
Then for any map f : X → Y , we can easily define an induced homomorphism fa : Cn(X)→ Cn(Y )
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by composing singular n-simplices σ : ∆n → X with f to get fa ◦ σ = fσ : ∆n → Y . We extend
this definition by applying fa to n-chains in Cn(X). This gives us the commutative diagram:

· · · // Cn+1(X)

fa

��

δ // Cn(X)

fa

��

δ // Cn−1(X)

fa

��

// · · ·

· · · // Cn+1(Y ) δ // Cn(Y ) δ // Cn−1(Y ) // · · ·

The chain map fa induces a homomorphism f∗ : Hn(X)→ Hn(Y ).
It is now readily apparent that if X and Y are homeomorphic, that is, if f : X → Y is a

homeomorphism, then the induced map f∗ is an isomorphism.
In order to formalize the relationships between the homology groups of a topological space X,

a subset A ⊂ X, and the quotient space X/A, we introduce the concept of exact sequences:

Definition 4.6. A sequence of the form:

· · · // An+1
αn+1

// An
αn // An−1

// · · ·

where the Ai are abelian groups and the αi are homomorphisms is called an exact sequence if
Ker(αn) = Im(αn+1) for all n.

We note two things:

1 Ker(αn) = Im(αn+1) =⇒ Im(αn+1) ⊂ Ker(αn) ⇐⇒ αnαn+1 = 0, so an exact sequence is
a chain complex.

2 As Ker(αn) ⊂ Im(αn+1), the homology groups of an exact sequence are trivial.

We can express some algebraic concepts using exact sequences:
1 0 // A

a // B is exact ⇐⇒ Ker(a) = 0, or a is injective.

2 A
a // B // 0 is exact ⇐⇒ Im(a) = B, or a is surjective.

3 0 // A
a // B // 0 is exact iff a is an isomorphism.

4 0 // A
a // B

b // C // 0 is exact iff a injective, b surjective, and Ker(b) = Im(a), in
which case b gives an isomorphism C ∼= B/Im(a). If a : A ↪→ B is an inclusion, we have C ∼= B/A.
This type of exact sequence is called a short exact sequence.

The next concept we will need is that of relative homology groups: Given a space X and a
subspace A ⊂ X, define Cn(X,A) to be the quotient group Cn(X)/Cn(A). This means that chains
in A get identified with the trivial chains in Cn(X). Since the operator δ : Cn(X)→ Cn−1(X) also
takes Cn(A) → Cn−1(A), we get a natural boundary map on the quotient group δ : Cn(X,A) →
Cn−1(X,A).

This gives us the sequence:

· · · // Cn+1(X,A)
δn+1

// Cn(X,A)
δn // Cn−1(X,A) // · · ·

which is a chain complex because δn+1δn = 0. We can then define relative homology groups
Hn(X,A) to be the homology groups of this chain complex.

Two important facts about Hn(X,A) are:
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1 elements in Hn(X,A) are represented by relative cycles, or n-chains x in Cn(X) such that
δnx = Cn−1(A).

2 A relative cycle x is trivial iff it is a relative boundary, i.e. x is the sum of a chain in Cn(A)
and the boundary of a chain in Cn+1(X).

We next show that the relative homology groups Hn(X,A) fit into the long exact sequence:

· · · // Hn(A) // Hn(X) // Hn(X,A) // Hn−1(A) // · · · // H0(X,A) // 0

and we can prove this algebraically.
Consider the diagram:

0 // Cn(A)

δ
��

i // Cn(X)

δ
��

j
// Cn(X,A)

δ
��

// 0

0 // Cn−1(A) i // Cn−1(X)
j

// Cn−1(X,A) // 0

where i is the inclusion map Cn(A) ↪→ Cn(X), and j is the quotient map Cn(X)→ Cn(X,A).
The diagram is commutative, and we turn it by 90 degrees to get one of the form:

0

��

0

��

0

��

· · · // An+1

i
��

δ // An

i
��

δ // An−1

i
��

δ // · · ·

· · · // Bn+1

j

��

δ // Bn

j

��

δ // Bn−1

j

��

δ // · · ·

· · · // Cn+1

��

δ // Cn

��

δ // Cn−1

��

δ // · · ·

0 0 0

where the columns are short exact sequences and the rows are chain complexes of the abelian groups
Ai, Bi, and Ci.

Writing the diagram in this form indicates that i and j are chain maps, and so induce maps
i∗ and j∗ on homology, as in Theorem 4.5. We take some c ∈ Cn to be a cycle. j is surjective, so
c = j(b) for some b ∈ Bn. For δb ∈ Bn−1, j(δb) = δj(b) by commutativity. Then δj(b) = δc = 0
since c is a cycle. Thus δb ∈ Ker(j).

Since the columns are exact, we have Ker(j) = Im(i), and this means that δ(b) = i(a) for
some a ∈ An−1. Commutativity gives i(δ(a)) = δi(a) = δδb = 0, and so i injective =⇒ δ(a) = 0.
Therefore a is a cycle and represents an element [a] ∈ Hn−1(A) of homology. We can now define
δ : Hn(C)→ Hn−1(A) by sending the homology class of [c] to the homology class of [a], δ[c] = [a].
This is well-defined for the following reasons:

1 i is injective, so a is uniquely determined by δb.
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2 Choosing b′ instead of b gives j(b′) = j(b) =⇒ j(b′) − j(b) = 0 =⇒ j(b′ − b) = 0 =⇒
b− b′ ∈ Ker(j) = Im(i). So b− b′ = i(a′), or b′ = b+ i(a′), and δ(b+ i(a′)) = δ(b) + δi(a′) =
i(a) + iδ(a′) = i(a+ δa′). But δa′ ∼ 0, so a+ δa′ ∼ a

3 Choosing c∗ from the coset of c implies c∗ = c + δc′. c′ = j(b′) for some b′, so c + δc′ =
c + δj(b′) = j(b) + jδ(b′) = j(b + δb′). Thus changing c has the effect of changing b to a
homologous element, which does not affect a at all.

Claim 4.7. The map δ : Hn(C)→ Hn−1(A) defined above is a homomorphism:

Proof. If δ[c1] = [a1] and δ[c2] = [a2] via b1 and b2, as above, then we have j(b1+b2) = j(b1)+j(b2) =
c1 + c2, and i(a1 + a2) = i(a1 + a2) = δb1 + δb2 = δ(b1 + b2), so δ([c1] + [c2]) = [a1] + [a2].

Proposition 4.8. The sequence

· · · // Hn(A)
i∗ // Hn(B)

j∗
// Hn(C) δ // Hn−1(A)

i∗ // Hn−1(B) // · · ·

is exact.

Proof. There are six inclusions to be verified:

1 Im(i∗) ⊂ Ker(j∗): ji = 0 =⇒ j∗i∗ = 0.

2 Im(j∗) ⊂ Ker(δ): δb = 0 by definition, so δj∗ = 0.

3 Im(δ) ⊂ Ker(i∗): i∗δ = 0 since i∗δ[c] = [δb] = 0.

4 Ker(j∗) ⊂ Im(i∗): A homology class in Ker(j∗) can be represented by a cycle b ∈ Bn such
that j(b) = δc′ is a boundary for some c′ ∈ Cn+1. Surjectivity of j gives c′ = j(b′) for some
b′ ∈ Bn+1. But then j(b) = δc′ = δjb′, so j(b− δb′) = 0, and b− δb′ = i(a) for some a ∈ An. a
is a cycle, since iδa = δia = δ(b−δb′) = δb = 0 because b is a cycle and i injective. Therefore,
i∗[a] = [b], and the two inclusions give us: Im(i∗) = Ker(j∗)

5 Ker(δ) ⊂ Im(j∗): we take c a representative of a homology class in Ker(δ). Then we have
a = δa′ for some a′ ∈ An. b− i(a′) is a cycle because δ(b− i(a′)) = δ(b)−δi(a′) = δb− i(δa′) =
δb− i(a) = 0. We also have j(b− i(a′)) = j(b)− ji(a′) = j(b) = c, so Ker(δ) ⊂ Im(j∗).

6 Ker(i∗) ⊂ Im(δ): We take a cycle a ∈ An−1 such that i(a) = δb for some b ∈ Bn. j(b) is a
cycle, because δ(j(b)) = j(δb) = ji(a) = 0. Thus δ[j(b)] = [a], and Ker(i∗) ⊂ Im(δ).

Thus we have: Im(i∗) = Ker(j∗), Im(j∗) = Ker(δ), and Im(δ) = Ker(i∗), and so the sequence is
exact.

Proposition 4.9. The sequence:

· · · // Hn(A)
i∗ // Hn(X)

j∗
// Hn(X,A) δ // Hn−1(A) // · · · // H0(X,A) // 0

is exact.

This follows from the previous proposition, with the note that for a relative cycle x in Hn(X,A),
δ[x] is the class of the cycle [δx] ∈ Hn−1(A).

We also cite here the following theorem, known as the Excision Theorem
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Theorem 4.10. Given Y ⊂ A ⊂ X, with the closure of Y contained in the interior of A, then
(X − Y,A− Y ) ↪→ (X,A) induces isomorphisms Hn(X − Y,A− Y )→ Hn(X,A) for all n.

Although the statement of this theorem is straightforward and seems intuitive, it is nevertheless
rather complicated to prove, and so we merely state it here.

5 The Equivalence of H∆
n and Hn

We wish to prove that the groups Hn(X) and H∆
n(X) are equivalent. Immediately we recall that

simplicial homology groups only have meaning and can only be calculated for simplicial structures.
This is not a serious problem, as we can calculate singular homology groups on any topological space,
including a simplicial complex. Moreover, the fact that homeomorphic spaces have isomorphic
singular homology groups lends itself to the idea that we can put some sort of simplicial structure
on a topological space. Therefore, in order to prove the equivalence of Hn(X) and H∆

n(X), we
take an arbitrary simplicial complex as our topological space X. It should be noted, however, that
not all topological spaces are homeomorphic to a simplicial complex; we will ignore such spaces for
the purposes of this paper.

In order to show the equivalence of Hn(X) and H∆
n(X), we need to show the existence of

an isomorphism between the two groups for all n. It is easy enough to see the existence of a
homomorphism: we already have a map Ln(X) → Cn(X) from the simplicial chain group to
the singular chain group which sends each simplex of X to σ : ∆n → X. This induces a map
H∆

n(X)→ Hn(X).

Theorem 5.1. For all n, the homomorphisms H∆
n(X) → Hn(X) are isomorphisms. Thus the

singular and simplicial homology groups are equivalent.

Proof. We take X to be a simplicial complex. For Xk the k-skeleton of X, we get the following
commutative diagram of exact sequences, since Xk−1 ⊂ Xk.

H∆
n+1(Xk, Xk−1)

��

// H∆
n(Xk−1)

��

// H∆
n(Xk)

��

// H∆
n(Xk, Xk−1)

��

// H∆
n−1(Xk−1)

��

Hn+1(Xk, Xk−1) // Hn(Xk−1) // Hn(Xk) // Hn(Xk, Xk−1) // Hn−1(Xk−1)

The space Xk/Xk−1 contains only simplices of dimension k. Hence for n 6= k, the group
Ln(Xk, Xk−1) is equal to zero. When n = k, Ln(Xk, Xk−1) is a free abelian group with basis
consisting of the k-simplices of X. Since the cycles Zn form a subgroup in Ln, and the boundary
group Bn is empty, H∆

n(Xk, Xk−1) has the same description as Ln, with the caveat that when
n = k, the basis of Zn consists of k-cycles.

We observe that the characteristic maps ∆k → X for all the k-simplices of X give us a map
Φ : ti(∆k

i,∆k−1
i) → (Xk, Xk−1). It is then fairly clear that this map induces a homeomorphism

Φ∗ : ti∆k
i/ ti ∆k−1

i → Xk/Xk−1. But then, Hn(ti∆k
i/ ti ∆k−1

i) ∼= Hn(Xk/Xk−1).
It is a consequence of the Excision Theorem (Theorem 4.10) that there exists an isomorphism

Hn(X,A)→ Hn(X/A) for all good pairs (X,A). Then we have Hnti (∆k
i,∆k−1

i) ∼= Hn(ti∆k
i/ti

∆k−1
i) and Hn(Xk, Xk−1) ∼= Hn(Xk/Xk−1). By transitivity, this gives us Hn ti (∆k

i,∆k−1
i) ∼=

Hn(Xk, Xk−1).
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This gives us that Hn(Xk, Xk−1) is zero for n 6= k and a free abelian group with basis the
relative cycles given by the maps ∆k → X. Therefore the map H∆

n(Xk, Xk−1)→ Hn(Xk, Xk−1)
is an isomorphism. That is, the first and fourth vertical maps in the diagram are isomorphisms.

We use induction to complete the argument, and therefore assume that the second and fifth
arrows are isomorphisms. We can then prove that the third arrow is an isomorphism using the
following lemma, known as the Five Lemma:

Lemma 5.2. In a commutative diagram of the form:

A

α

��

i // B

β
��

j
// C

γ

��

k // D

δ
��

l // E

ε

��

A′
i′ // B′

j′
// C ′

k′ // D′
l′ // E′

if α, β, δ, and ε are all isomorphisms, and the two rows are exact, then γ is also an isomorphism.

Proof. Commutativity of the diagram gives us that γ must be a homomorphism. Therefore, it
suffices to show that γ is a bijection.

Take c′ ∈ C ′. Since δ is surjective, k′(c′) = δ(d) for some d ∈ D. Injectivity of ε gives us that
εl(d) = l′δ(d) = l′k′(c′) = 0 =⇒ l(d) = 0. But the rows are exact, so we have d = k(c) for some
c ∈ C.
k′(c′) − k′(γ(c)) = k′(c′) − δk(c) = k′(c′) − δ(d) = 0, so k′(c′ − γ(c)) = 0, and, by exactness,
c′− γ(c) = j′(b′) for some b′ ∈ B′. Surjectivity of β gives b′ = β(b) for some b ∈ B, so γ(c+ j(b)) =
γ(c) + γ(j(b)) = γ(c) + j′β(b) = γ(c)− j′(b′) = c′, so γ is surjective.

For injectivity, suppose γ(c) = 0. δ is injective, so δ(k(c)) = k′(γ(c)) = 0 =⇒ k(c) = 0. Then
c = j(b) for some b ∈ B. γ(c) = γ(j(b)) = j′(β(b)), so we have β(b) = i′(a′) for some a′ ∈ A′.
Surjectivity of α gives a′ = α(a) for some a ∈ A. β is injective, so β(i(a) − b) = β(i(a)) − β(b) =
i′(α(a)) − β(b) = i′(a′) − β(b) = 0 =⇒ i(a) − b = 0. That is, b = i(a), so c = j(b) = j(i(a)) = 0
by exactness of rows. Hence, γ has trivial kernel and is therefore injective.

Applying this to the earlier diagram, we note that the arrow H∆
n(Xk)→ Hn(Xk) must there-

fore be an isomorphism, and so the theorem is proven.

Although simplicial and singular homology express the same ideas, the two constructions have
different uses. For instance, as perhaps demonstrated by some of the examples and theorems in
this paper, it is much simpler to calculate homology groups using the ideas of simplicial homology,
but in many cases is easier and more straightforward to prove theorems using singular homology, as
the notion of continuous maps is much more compatible with the second theory. The equivalence
of singular and simplicial homology groups, then, gives us a powerful tool with which to attack
both types of problems and is an important result in algebraic topology.
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