Linearly Independent Integer Roots over the Scalar Field \mathbb{Q}

Eric Jaffe

July 12, 2007

It is easy to show that certain integer roots are irrational; the numbers $\sqrt{2}$ and $\sqrt[3]{4}$ are good examples. An equivalent statement is that the sets $\{1, \sqrt{2}\}$ and $\{1, \sqrt[3]{4}\}$, respectively, are linearly independent over the scalar field \mathbb{Q}.

Furthermore, it can be shown that $\sqrt{3}+\sqrt{2}$ is irrational, and that $q \sqrt{3}+r \sqrt{2}$ is irrational for all $q, r \in \mathbb{Q}$. In fact, we can say that $\{1, \sqrt{2}, \sqrt{3}\}$ is linearly independent over \mathbb{Q}.

In this paper we will generalize the above notions. First, we aim to determine for which integers ρ and $n>0$ the set $\{1, \sqrt[n]{\rho}\}$ is linearly independent over \mathbb{Q}. We can do this quickly by employing Lemma 2, which is a critical insight concerning the prime numbers due to Euclid. Theorem 3 shows that $\{1, \sqrt[n]{\rho}\}$ is linearly independent exactly when ρ is not the nth power of some integer.

Lemma 1. Let a be an integer, and p a prime. If p does not divide a then $\operatorname{gcd}(p, a)=1$.
Proof. We have $\operatorname{gcd}(p, a) \mid p, \operatorname{so} \operatorname{gcd}(p, a)=1$ or $\operatorname{gcd}(p, a)=p$ since p is prime. But by assumption p does not divide a, and $\operatorname{gcd}(p, a)$ does, so we must have $\operatorname{gcd}(p, a)=1$.

Lemma 2. Let $a_{1}, a_{2}, \ldots, a_{n}$ be integers, and p a prime. If $p \mid a_{1} a_{2} \cdots a_{n}$ then there is some i, $1 \leq i \leq n$, such that $p \mid a_{i}$.

Proof. The Lemma is clear for $n=1$, so assume that it holds for $n-1$.
Suppose that p does not divide a_{1}. Then $\operatorname{gcd}\left(p, a_{1}\right)=1$ by Lemma 1. Hence there exist integers r, s such that

$$
1=p s+a_{1} r .
$$

It follows that

$$
a_{2} a_{3} \cdots a_{n}=p a_{2} a_{3} \cdots a_{n} s+a_{1} a_{2} a_{3} \cdots a_{n} r .
$$

But p divides both terms on the right, so $p \mid a_{2} a_{3} \cdots a_{n}$. In particular, p divides one of a_{2}, \ldots, a_{n} by the inductive hypothesis. This completes the proof.

Theorem 3. Let $\rho \neq 0$ and $n>0$ be integers. The set $\{1, \sqrt[n]{\rho}\}$ is linearly independent over \mathbb{Q} if and only if ρ is not the nth power of some integer.

Proof. Suppose first that $\rho=\sigma^{n}, \sigma \in \mathbb{Z}$ (if n is even then let σ be positive). Then

$$
1-\frac{1}{\sigma} \sqrt[n]{\rho}=0
$$

is a nontrivial linear combination of 1 and $\sqrt[n]{\rho}$ with rational coefficients, so $\{1, \sqrt[n]{\rho}\}$ is linearly dependent.

Conversely, suppose $\{1, \sqrt[n]{\rho}\}$ is linearly dependent over \mathbb{Q}. Then there exist integers a and $b>0$, with $\operatorname{gcd}(a, b)=1$, such that $\rho=(a / b)^{n}$. Hence

$$
\rho b^{n}=a^{n} .
$$

In particular, this shows that $b \mid a^{n}$. Therefore if p is some prime that divides b, then p also divides a^{n}. It follows from Lemma 2 that $p \mid a$, which is impossible since $\operatorname{gcd}(a, b)=1<p$. Therefore b must have no prime divisors, so it must be that $b=1$ and $\rho=a^{n}$.

This question of linear independence generalizes to larger sets of numbers, and in this paper we will answer a broader question involving sets of square roots. For example, the claim that $\left\{1, \sqrt{a_{1}}, \sqrt{a_{2}}, \ldots, \sqrt{a_{n}}\right\}$ is linearly independent over \mathbb{Q} immediately implies that all numbers of the form

$$
x_{0}+x_{1} \sqrt{a_{1}}+x_{2} \sqrt{a_{2}}+\cdots+x_{n} \sqrt{a_{n}}
$$

are irrational whenever $x_{0}, x_{1}, \ldots, x_{n} \in \mathbb{Q}$. The next theorem provides a class of $a_{1}, a_{2}, \ldots, a_{n}$ for which this is the case.

Theorem 4. The set

$$
\mathcal{S}:=\{\sqrt{n}: n \text { is a squarefree positive integer }\}
$$

is linearly independent over \mathbb{Q}.
Note that an integer is squarefree if its prime factorization contains no prime more than once. The sequence of squarefree integers is

$$
1,2,3,5,6,7,10,11,13,14,15,17,19,21, \ldots
$$

In order to prove Theorem 4, we shall use the concept of field extensions. If F_{1} is a subfield of F_{2}, written $F_{1} \leq F_{2}$, then we shall say that F_{2} over F_{1} is a field extension. We use the shorthand F_{2} / F_{1} to refer to F_{2} as a field extension over F_{1}, although such notation has nothing to do with quotient groups.

When F_{2} / F_{1} is a field extension one can consider F_{2} as a vector space over the scalar field F_{1}. We write $\left[F_{2}: F_{1}\right]$ to denote the dimension of this space; this number is also called the degree of F_{2} / F_{1}. It can be shown that degrees are "multiplicative in towers"-that is, if $F_{1} \leq F_{2} \leq F_{3}$ then

$$
\left[F_{3}: F_{1}\right]=\left[F_{3}: F_{2}\right]\left[F_{2}: F_{1}\right] .
$$

Finally, if F_{2} / F_{1} is a field extension and $K \subset F_{2}$, then $F_{1}(K)$ is the smallest subfield of F_{2} which contains K and is an extension of F_{1}. For example, when \mathbb{Q} is considered as a subfield of \mathbb{R},

$$
\begin{aligned}
\mathbb{Q}(\sqrt{2}) & =\{a+b \sqrt{2}: a, b \in \mathbb{Q}\} ; \\
\mathbb{Q}(\{\sqrt{2}, \sqrt{3}\})=(\mathbb{Q}(\sqrt{2}))(\sqrt{3}) & =\{a+b \sqrt{2}+c \sqrt{3}+d \sqrt{6}: a, b \in \mathbb{Q}\} \\
& =\{a+b \sqrt{3}: a, b \in \mathbb{Q}(\sqrt{2})\} .
\end{aligned}
$$

We shall now prove the following Lemma. Observe that Lemma 5 implies Theorem 4, since for any finite subset $T \subset \mathcal{S}$ of squarefree positive integers, we can find a suitable set \mathcal{A}_{n} such that $T=\mathcal{B}_{n}$ (\mathcal{A}_{n} and \mathcal{B}_{n} are defined below).

Lemma 5. Suppose that $\mathcal{A}_{n}:=\left\{\rho_{1}, \rho_{2}, \ldots, \rho_{n}\right\} \subset \mathbb{Z}_{+}$is a set of positive integers such that no $\rho_{i} \in \mathcal{A}_{n}$ is the square of any integer, and every pair of elements in \mathcal{A}_{n} is relatively prime. Then the set

$$
\mathcal{B}_{n}:=\left\{\sqrt{\sigma_{1} \sigma_{2} \cdots \sigma_{n}}: 0 \leq k \leq n ; \text { each } \sigma_{i} \text { is a distinct element of } \mathcal{A}_{n}\right\}
$$

is a basis of the space $\mathbb{Q}\left(\sqrt{\rho_{1}}, \sqrt{\rho_{2}}, \ldots, \sqrt{\rho_{n}}\right)$ over the scalar field \mathbb{Q}. (Note that \mathcal{B}_{n} has exactly 2^{n} elements, corresponding to the power set of \mathcal{A}_{n}.)

Proof. The proof is by induction on n. Suppose that ρ is a positive integer that is not a perfect square. Then $\{1, \sqrt{\rho}\}$ certainly spans $\mathbb{Q}(\sqrt{\rho})$, since every element of the latter is of the form $a+b \sqrt{\rho}$ for $a, b \in \mathbb{Q}$. Linear independence follows from Theorem 3. Hence the Lemma holds for $n=1$. The Lemma also holds for $n=0$, since $\{1\}$ is a basis of \mathbb{Q} / \mathbb{Q}.

Now suppose the Lemma holds for $n-1$ and $n-2$ and define the fields

$$
\begin{aligned}
F_{0} & :=\mathbb{Q} \\
F_{1} & :=\mathbb{Q}\left(\sqrt{\rho_{1}}\right) \\
F_{2} & :=F_{1}\left(\sqrt{\rho_{2}}\right)=\mathbb{Q}\left(\sqrt{\rho_{1}}, \sqrt{\rho_{2}}\right) \\
& \vdots \\
F_{n} & :=F_{n-1}\left(\sqrt{\rho_{n}}\right)=\mathbb{Q}\left(\sqrt{\rho_{1}}, \ldots, \sqrt{\rho_{n}}\right) .
\end{aligned}
$$

By the induction hypothesis we have $\left[F_{n-1}: F_{0}\right]=2^{n-1}$ since \mathcal{B}_{n-1} is a basis of F_{n-1} / F_{0}. Let $\beta_{1}, \beta_{2}, \ldots, \beta_{2^{n-1}}$ be the 2^{n-1} distinct elements of \mathcal{B}_{n-1}. Since $\left\{1, \sqrt{\rho_{n}}\right\}$ spans F_{n} / F_{n-1}, and then since \mathcal{B}_{n-1} spans F_{n-1} / F_{0}, every element $x \in F_{n}$ can be written as

$$
\begin{aligned}
x & =a_{1}+a_{2} \sqrt{\rho_{n}}, & a_{1}, a_{2} \in F_{n-1} \\
& =\sum_{k=1}^{2^{n-1}} b_{k} \beta_{k}+\sqrt{\rho_{n}} \sum_{k=1}^{2^{n-1}} b_{2^{n-1}+k} \beta_{k}, & b_{1}, \ldots, b_{2^{n}} \in F_{0} \\
& =\sum_{k=1}^{2^{n-1}} b_{k} \beta_{k}+\sum_{k=1}^{2^{n-1}} b_{2^{n-1}+k}\left(\beta_{k} \sqrt{\rho_{n}}\right) . &
\end{aligned}
$$

But the 2^{n} numbers $\left\{\beta_{1}, \ldots, \beta_{2^{n-1}}, \beta_{1} \sqrt{\rho_{n}}, \ldots, \beta_{2^{n-1}} \sqrt{\rho_{n}}\right\}$ are exactly the elements of \mathcal{B}_{n}, so we conclude that \mathcal{B}_{n} spans F_{n} / F_{0} and $\left[F_{n}: F_{0}\right] \leq 2^{n}$.

It remains to show that \mathcal{B}_{n} is linearly independent. This will now follow immediately if we can show that $\left[F_{n}: F_{0}\right]=2^{n}$ (since \mathcal{B}_{n} spans F_{n} / F_{0}, if it were linearly dependent then we could discard elements to obtain a basis of $<2^{n}$ elements, which would be a contradiction). And degrees are multiplicative in towers, so it suffices to show that $\left[F_{n}: F_{n-1}\right]=2$.

Suppose not. Then we must have $\left[F_{n}: F_{n-1}\right]=1$, which means that F_{n} and F_{n-1} are the same field; in particular, $\sqrt{\rho_{n}} \in F_{n-1}$. Since $\left\{1, \sqrt{\rho_{n-1}}\right\}$ spans F_{n-1} / F_{n-2}, there exist scalars $a, b \in F_{n-2}$ such that

$$
a+b \sqrt{\rho_{n-1}}=\sqrt{\rho_{n}}
$$

That is,

$$
a^{2}+2 a b \sqrt{\rho_{n-1}}+b^{2} \rho_{n-1}=\rho_{n} .
$$

Now if $a b \neq 0$, then this would give an expression for $\sqrt{\rho_{n-1}}$ in terms of scalars in F_{n-2}. But $\left[F_{n-1}: F_{n-2}\right]=2 \neq 1$ by the inductive hypothesis, so we must have $\sqrt{\rho_{n-1}} \notin F_{n-2}$ and therefore $a b=0$. Since F_{n-2} is a field this means that either $a=0$ or $b=0$.

If $a=0$ then we have $b \rho_{n-1}=\sqrt{\rho_{n} \rho_{n-1}}$, which implies that $\sqrt{\rho_{n} \rho_{n-1}} \in F_{n-2}$. Now $\rho_{n} \rho_{n-1}$ is not the square of any integer since ρ_{n} and ρ_{n-1} are relatively prime, so this contradicts the inductive hypothesis when applied to $\mathcal{A}_{n-1}=\left\{\rho_{1}, \rho_{2}, \ldots, \rho_{n-2}, \rho_{n} \rho_{n-1}\right\}$. Similarly, if $b=0$ then we have $\sqrt{\rho_{n}} \in$ F_{n-2}, which contradicts the inductive hypothesis when applied to $\mathcal{A}_{n-1}=\left\{\rho_{1}, \rho_{2}, \ldots, \rho_{n-2}, \rho_{n}\right\}$.

Therefore \mathcal{B}_{n} is linearly independent over \mathbb{Q}, so it is a basis of F_{n} / F_{0}, as desired.

