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It is easy to show that certain integer roots are irrational; the numbers
√

2 and 3
√

4 are good
examples. An equivalent statement is that the sets {1,

√
2} and {1, 3

√
4}, respectively, are linearly

independent over the scalar field Q.
Furthermore, it can be shown that

√
3 +

√
2 is irrational, and that q

√
3 + r

√
2 is irrational for

all q, r ∈ Q. In fact, we can say that {1,
√

2,
√

3} is linearly independent over Q.
In this paper we will generalize the above notions. First, we aim to determine for which integers

ρ and n > 0 the set {1, n
√

ρ} is linearly independent over Q. We can do this quickly by employing
Lemma 2, which is a critical insight concerning the prime numbers due to Euclid. Theorem 3 shows
that {1, n

√
ρ} is linearly independent exactly when ρ is not the nth power of some integer.

Lemma 1. Let a be an integer, and p a prime. If p does not divide a then gcd(p, a) = 1.

Proof. We have gcd(p, a)|p, so gcd(p, a) = 1 or gcd(p, a) = p since p is prime. But by assumption
p does not divide a, and gcd(p, a) does, so we must have gcd(p, a) = 1.

Lemma 2. Let a1, a2, . . . , an be integers, and p a prime. If p|a1a2 · · · an then there is some i,
1 ≤ i ≤ n, such that p|ai.

Proof. The Lemma is clear for n = 1, so assume that it holds for n− 1.
Suppose that p does not divide a1. Then gcd(p, a1) = 1 by Lemma 1. Hence there exist integers

r, s such that
1 = ps + a1r.

It follows that
a2a3 · · · an = pa2a3 · · · ans + a1a2a3 · · · anr.

But p divides both terms on the right, so p|a2a3 · · · an. In particular, p divides one of a2, . . . , an by
the inductive hypothesis. This completes the proof.

Theorem 3. Let ρ 6= 0 and n > 0 be integers. The set {1, n
√

ρ} is linearly independent over Q if
and only if ρ is not the nth power of some integer.

Proof. Suppose first that ρ = σn, σ ∈ Z (if n is even then let σ be positive). Then

1− 1
σ

n
√

ρ = 0

is a nontrivial linear combination of 1 and n
√

ρ with rational coefficients, so {1, n
√

ρ} is linearly
dependent.

Conversely, suppose {1, n
√

ρ} is linearly dependent over Q. Then there exist integers a and
b > 0, with gcd(a, b) = 1, such that ρ = (a/b)n. Hence

ρbn = an.
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In particular, this shows that b|an. Therefore if p is some prime that divides b, then p also divides
an. It follows from Lemma 2 that p|a, which is impossible since gcd(a, b) = 1 < p. Therefore b
must have no prime divisors, so it must be that b = 1 and ρ = an.

This question of linear independence generalizes to larger sets of numbers, and in this paper
we will answer a broader question involving sets of square roots. For example, the claim that
{1,

√
a1,

√
a2, . . . ,

√
an} is linearly independent over Q immediately implies that all numbers of the

form
x0 + x1

√
a1 + x2

√
a2 + · · ·+ xn

√
an

are irrational whenever x0, x1, . . . , xn ∈ Q. The next theorem provides a class of a1, a2, . . . , an for
which this is the case.

Theorem 4. The set
S := {

√
n : n is a squarefree positive integer}

is linearly independent over Q.

Note that an integer is squarefree if its prime factorization contains no prime more than once.
The sequence of squarefree integers is

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, . . .

In order to prove Theorem 4, we shall use the concept of field extensions. If F1 is a subfield of F2,
written F1 ≤ F2, then we shall say that F2 over F1 is a field extension. We use the shorthand
F2/F1 to refer to F2 as a field extension over F1, although such notation has nothing to do with
quotient groups.

When F2/F1 is a field extension one can consider F2 as a vector space over the scalar field F1.
We write [F2 : F1] to denote the dimension of this space; this number is also called the degree of
F2/F1. It can be shown that degrees are “multiplicative in towers”—that is, if F1 ≤ F2 ≤ F3 then

[F3 : F1] = [F3 : F2][F2 : F1].

Finally, if F2/F1 is a field extension and K ⊂ F2, then F1(K) is the smallest subfield of F2 which
contains K and is an extension of F1. For example, when Q is considered as a subfield of R,

Q(
√

2) = {a + b
√

2 : a, b ∈ Q};
Q({

√
2,
√

3}) = (Q(
√

2))(
√

3) = {a + b
√

2 + c
√

3 + d
√

6 : a, b ∈ Q}
= {a + b

√
3 : a, b ∈ Q(

√
2)}.

We shall now prove the following Lemma. Observe that Lemma 5 implies Theorem 4, since for any
finite subset T ⊂ S of squarefree positive integers, we can find a suitable set An such that T = Bn

(An and Bn are defined below).

Lemma 5. Suppose that An := {ρ1, ρ2, . . . , ρn} ⊂ Z+ is a set of positive integers such that no
ρi ∈ An is the square of any integer, and every pair of elements in An is relatively prime. Then
the set

Bn := {
√

σ1σ2 · · ·σn : 0 ≤ k ≤ n; each σi is a distinct element of An}

is a basis of the space Q(
√

ρ1,
√

ρ2, . . . ,
√

ρn) over the scalar field Q. (Note that Bn has exactly 2n

elements, corresponding to the power set of An.)
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Proof. The proof is by induction on n. Suppose that ρ is a positive integer that is not a perfect
square. Then {1,

√
ρ} certainly spans Q(

√
ρ), since every element of the latter is of the form a+b

√
ρ

for a, b ∈ Q. Linear independence follows from Theorem 3. Hence the Lemma holds for n = 1. The
Lemma also holds for n = 0, since {1} is a basis of Q/Q.

Now suppose the Lemma holds for n− 1 and n− 2 and define the fields

F0 := Q
F1 := Q(

√
ρ1)

F2 := F1(
√

ρ2) = Q(
√

ρ1,
√

ρ2)
...

Fn := Fn−1(
√

ρn) = Q(
√

ρ1, . . . ,
√

ρn).

By the induction hypothesis we have [Fn−1 : F0] = 2n−1 since Bn−1 is a basis of Fn−1/F0. Let
β1, β2, . . . , β2n−1 be the 2n−1 distinct elements of Bn−1. Since {1,

√
ρn} spans Fn/Fn−1, and then

since Bn−1 spans Fn−1/F0, every element x ∈ Fn can be written as

x = a1 + a2
√

ρn, a1, a2 ∈ Fn−1

=
2n−1∑
k=1

bkβk +
√

ρn

2n−1∑
k=1

b2n−1+kβk, b1, . . . , b2n ∈ F0

=
2n−1∑
k=1

bkβk +
2n−1∑
k=1

b2n−1+k(βk
√

ρn).

But the 2n numbers {β1, . . . , β2n−1 , β1
√

ρn, . . . , β2n−1
√

ρn} are exactly the elements of Bn, so we
conclude that Bn spans Fn/F0 and [Fn : F0] ≤ 2n.

It remains to show that Bn is linearly independent. This will now follow immediately if we can
show that [Fn : F0] = 2n (since Bn spans Fn/F0, if it were linearly dependent then we could discard
elements to obtain a basis of < 2n elements, which would be a contradiction). And degrees are
multiplicative in towers, so it suffices to show that [Fn : Fn−1] = 2.

Suppose not. Then we must have [Fn : Fn−1] = 1, which means that Fn and Fn−1 are the same
field; in particular,

√
ρn ∈ Fn−1. Since {1,

√
ρn−1} spans Fn−1/Fn−2, there exist scalars a, b ∈ Fn−2

such that
a + b

√
ρn−1 =

√
ρn.

That is,
a2 + 2ab

√
ρn−1 + b2ρn−1 = ρn.

Now if ab 6= 0, then this would give an expression for √ρn−1 in terms of scalars in Fn−2. But
[Fn−1 : Fn−2] = 2 6= 1 by the inductive hypothesis, so we must have √ρn−1 /∈ Fn−2 and therefore
ab = 0. Since Fn−2 is a field this means that either a = 0 or b = 0.

If a = 0 then we have bρn−1 = √
ρnρn−1, which implies that√ρnρn−1 ∈ Fn−2. Now ρnρn−1 is not

the square of any integer since ρn and ρn−1 are relatively prime, so this contradicts the inductive hy-
pothesis when applied to An−1 = {ρ1, ρ2, . . . , ρn−2, ρnρn−1}. Similarly, if b = 0 then we have

√
ρn ∈

Fn−2, which contradicts the inductive hypothesis when applied to An−1 = {ρ1, ρ2, . . . , ρn−2, ρn}.
Therefore Bn is linearly independent over Q, so it is a basis of Fn/F0, as desired.
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