Linearly Independent Integer Roots over the Scalar Field \mathbb{Q}

Eric Jaffe

July 12, 2007

It is easy to show that certain integer roots are irrational; the numbers $\sqrt{2}$ and $\sqrt[3]{4}$ are good examples. An equivalent statement is that the sets $\{1, \sqrt{2}\}$ and $\{1, \sqrt[3]{4}\}$, respectively, are linearly independent over the scalar field \mathbb{Q} .

Furthermore, it can be shown that $\sqrt{3} + \sqrt{2}$ is irrational, and that $q\sqrt{3} + r\sqrt{2}$ is irrational for all $q, r \in \mathbb{Q}$. In fact, we can say that $\{1, \sqrt{2}, \sqrt{3}\}$ is linearly independent over \mathbb{Q} .

In this paper we will generalize the above notions. First, we aim to determine for which integers ρ and n > 0 the set $\{1, \sqrt[n]{\rho}\}$ is linearly independent over \mathbb{Q} . We can do this quickly by employing Lemma 2, which is a critical insight concerning the prime numbers due to Euclid. Theorem 3 shows that $\{1, \sqrt[n]{\rho}\}$ is linearly independent exactly when ρ is not the *n*th power of some integer.

Lemma 1. Let a be an integer, and p a prime. If p does not divide a then gcd(p, a) = 1.

Proof. We have gcd(p, a)|p, so gcd(p, a) = 1 or gcd(p, a) = p since p is prime. But by assumption p does not divide a, and gcd(p, a) does, so we must have gcd(p, a) = 1.

Lemma 2. Let a_1, a_2, \ldots, a_n be integers, and p a prime. If $p|a_1a_2 \cdots a_n$ then there is some i, $1 \le i \le n$, such that $p|a_i$.

Proof. The Lemma is clear for n = 1, so assume that it holds for n - 1.

Suppose that p does not divide a_1 . Then $gcd(p, a_1) = 1$ by Lemma 1. Hence there exist integers r, s such that

$$1 = ps + a_1r.$$

It follows that

$$a_2a_3\cdots a_n = pa_2a_3\cdots a_ns + a_1a_2a_3\cdots a_nr$$

But p divides both terms on the right, so $p|a_2a_3\cdots a_n$. In particular, p divides one of a_2,\ldots,a_n by the inductive hypothesis. This completes the proof.

Theorem 3. Let $\rho \neq 0$ and n > 0 be integers. The set $\{1, \sqrt[n]{\rho}\}$ is linearly independent over \mathbb{Q} if and only if ρ is not the nth power of some integer.

Proof. Suppose first that $\rho = \sigma^n, \sigma \in \mathbb{Z}$ (if n is even then let σ be positive). Then

$$1 - \frac{1}{\sigma} \sqrt[n]{\rho} = 0$$

is a nontrivial linear combination of 1 and $\sqrt[n]{\rho}$ with rational coefficients, so $\{1, \sqrt[n]{\rho}\}$ is linearly dependent.

Conversely, suppose $\{1, \sqrt[n]{\rho}\}$ is linearly dependent over \mathbb{Q} . Then there exist integers a and b > 0, with gcd(a, b) = 1, such that $\rho = (a/b)^n$. Hence

$$\rho b^n = a^n$$

In particular, this shows that $b|a^n$. Therefore if p is some prime that divides b, then p also divides a^n . It follows from Lemma 2 that p|a, which is impossible since gcd(a, b) = 1 < p. Therefore b must have no prime divisors, so it must be that b = 1 and $\rho = a^n$.

This question of linear independence generalizes to larger sets of numbers, and in this paper we will answer a broader question involving sets of square roots. For example, the claim that $\{1, \sqrt{a_1}, \sqrt{a_2}, \ldots, \sqrt{a_n}\}$ is linearly independent over \mathbb{Q} immediately implies that all numbers of the form

$$x_0 + x_1\sqrt{a_1} + x_2\sqrt{a_2} + \dots + x_n\sqrt{a_n}$$

are irrational whenever $x_0, x_1, \ldots, x_n \in \mathbb{Q}$. The next theorem provides a class of a_1, a_2, \ldots, a_n for which this is the case.

Theorem 4. The set

 $\mathcal{S} := \{\sqrt{n} : n \text{ is a squarefree positive integer}\}$

is linearly independent over \mathbb{Q} .

Note that an integer is **squarefree** if its prime factorization contains no prime more than once. The sequence of squarefree integers is

 $1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, \ldots$

In order to prove Theorem 4, we shall use the concept of field extensions. If F_1 is a subfield of F_2 , written $F_1 \leq F_2$, then we shall say that F_2 over F_1 is a **field extension**. We use the shorthand F_2/F_1 to refer to F_2 as a field extension over F_1 , although such notation has nothing to do with quotient groups.

When F_2/F_1 is a field extension one can consider F_2 as a vector space over the scalar field F_1 . We write $[F_2 : F_1]$ to denote the dimension of this space; this number is also called the **degree** of F_2/F_1 . It can be shown that degrees are "multiplicative in towers"—that is, if $F_1 \leq F_2 \leq F_3$ then

$$[F_3:F_1] = [F_3:F_2][F_2:F_1].$$

Finally, if F_2/F_1 is a field extension and $K \subset F_2$, then $F_1(K)$ is the smallest subfield of F_2 which contains K and is an extension of F_1 . For example, when \mathbb{Q} is considered as a subfield of \mathbb{R} ,

$$\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\};$$
$$\mathbb{Q}(\{\sqrt{2}, \sqrt{3}\}) = (\mathbb{Q}(\sqrt{2}))(\sqrt{3}) = \{a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6} : a, b \in \mathbb{Q}\}$$
$$= \{a + b\sqrt{3} : a, b \in \mathbb{Q}(\sqrt{2})\}.$$

We shall now prove the following Lemma. Observe that Lemma 5 implies Theorem 4, since for any finite subset $T \subset S$ of squarefree positive integers, we can find a suitable set \mathcal{A}_n such that $T = \mathcal{B}_n$ $(\mathcal{A}_n \text{ and } \mathcal{B}_n \text{ are defined below}).$

Lemma 5. Suppose that $\mathcal{A}_n := \{\rho_1, \rho_2, \dots, \rho_n\} \subset \mathbb{Z}_+$ is a set of positive integers such that no $\rho_i \in \mathcal{A}_n$ is the square of any integer, and every pair of elements in \mathcal{A}_n is relatively prime. Then the set

$$\mathcal{B}_n := \{\sqrt{\sigma_1 \sigma_2 \cdots \sigma_n} : 0 \le k \le n; each \ \sigma_i \ is \ a \ distinct \ element \ of \ \mathcal{A}_n\}$$

is a basis of the space $\mathbb{Q}(\sqrt{\rho_1}, \sqrt{\rho_2}, \dots, \sqrt{\rho_n})$ over the scalar field \mathbb{Q} . (Note that \mathcal{B}_n has exactly 2^n elements, corresponding to the power set of \mathcal{A}_n .)

Proof. The proof is by induction on n. Suppose that ρ is a positive integer that is not a perfect square. Then $\{1, \sqrt{\rho}\}$ certainly spans $\mathbb{Q}(\sqrt{\rho})$, since every element of the latter is of the form $a+b\sqrt{\rho}$ for $a, b \in \mathbb{Q}$. Linear independence follows from Theorem 3. Hence the Lemma holds for n = 1. The Lemma also holds for n = 0, since $\{1\}$ is a basis of \mathbb{Q}/\mathbb{Q} .

Now suppose the Lemma holds for n-1 and n-2 and define the fields

$$F_0 := \mathbb{Q}$$

$$F_1 := \mathbb{Q}(\sqrt{\rho_1})$$

$$F_2 := F_1(\sqrt{\rho_2}) = \mathbb{Q}(\sqrt{\rho_1}, \sqrt{\rho_2})$$

$$\vdots$$

$$F_n := F_{n-1}(\sqrt{\rho_n}) = \mathbb{Q}(\sqrt{\rho_1}, \dots, \sqrt{\rho_n}).$$

By the induction hypothesis we have $[F_{n-1}: F_0] = 2^{n-1}$ since \mathcal{B}_{n-1} is a basis of F_{n-1}/F_0 . Let $\beta_1, \beta_2, \ldots, \beta_{2^{n-1}}$ be the 2^{n-1} distinct elements of \mathcal{B}_{n-1} . Since $\{1, \sqrt{\rho_n}\}$ spans F_n/F_{n-1} , and then since \mathcal{B}_{n-1} spans F_{n-1}/F_0 , every element $x \in F_n$ can be written as

$$x = a_{1} + a_{2}\sqrt{\rho_{n}}, \qquad a_{1}, a_{2} \in F_{n-1}$$

$$= \sum_{k=1}^{2^{n-1}} b_{k}\beta_{k} + \sqrt{\rho_{n}} \sum_{k=1}^{2^{n-1}} b_{2^{n-1}+k}\beta_{k}, \qquad b_{1}, \dots, b_{2^{n}} \in F_{0}$$

$$= \sum_{k=1}^{2^{n-1}} b_{k}\beta_{k} + \sum_{k=1}^{2^{n-1}} b_{2^{n-1}+k}(\beta_{k}\sqrt{\rho_{n}}).$$

But the 2^n numbers $\{\beta_1, \ldots, \beta_{2^{n-1}}, \beta_1 \sqrt{\rho_n}, \ldots, \beta_{2^{n-1}} \sqrt{\rho_n}\}$ are exactly the elements of \mathcal{B}_n , so we conclude that \mathcal{B}_n spans F_n/F_0 and $[F_n:F_0] \leq 2^n$.

It remains to show that \mathcal{B}_n is linearly independent. This will now follow immediately if we can show that $[F_n : F_0] = 2^n$ (since \mathcal{B}_n spans F_n/F_0 , if it were linearly dependent then we could discard elements to obtain a basis of $< 2^n$ elements, which would be a contradiction). And degrees are multiplicative in towers, so it suffices to show that $[F_n : F_{n-1}] = 2$.

Suppose not. Then we must have $[F_n : F_{n-1}] = 1$, which means that F_n and F_{n-1} are the same field; in particular, $\sqrt{\rho_n} \in F_{n-1}$. Since $\{1, \sqrt{\rho_{n-1}}\}$ spans F_{n-1}/F_{n-2} , there exist scalars $a, b \in F_{n-2}$ such that

$$a + b\sqrt{\rho_{n-1}} = \sqrt{\rho_n}.$$

That is,

$$a^2 + 2ab\sqrt{\rho_{n-1}} + b^2\rho_{n-1} = \rho_n.$$

Now if $ab \neq 0$, then this would give an expression for $\sqrt{\rho_{n-1}}$ in terms of scalars in F_{n-2} . But $[F_{n-1}:F_{n-2}] = 2 \neq 1$ by the inductive hypothesis, so we must have $\sqrt{\rho_{n-1}} \notin F_{n-2}$ and therefore ab = 0. Since F_{n-2} is a field this means that either a = 0 or b = 0.

If a = 0 then we have $b\rho_{n-1} = \sqrt{\rho_n\rho_{n-1}}$, which implies that $\sqrt{\rho_n\rho_{n-1}} \in F_{n-2}$. Now $\rho_n\rho_{n-1}$ is not the square of any integer since ρ_n and ρ_{n-1} are relatively prime, so this contradicts the inductive hypothesis when applied to $\mathcal{A}_{n-1} = \{\rho_1, \rho_2, \dots, \rho_{n-2}, \rho_n\rho_{n-1}\}$. Similarly, if b = 0 then we have $\sqrt{\rho_n} \in F_{n-2}$, which contradicts the inductive hypothesis when applied to $\mathcal{A}_{n-1} = \{\rho_1, \rho_2, \dots, \rho_{n-2}, \rho_n\rho_{n-1}\}$.

Therefore \mathcal{B}_n is linearly independent over \mathbb{Q} , so it is a basis of F_n/F_0 , as desired.