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Abstract. Herein I define the global attractor for the semidynamical system

(H, {S(t)}t≥0), where H is a Hilbert space and S(t) is a semigroup. In par-

ticular, I will consider the semigroup S(t) which acts on a relevant function
space by S(t)u0 = u(t; u0), where u(t; u0) is the solution of a given partial

differential equation at time t with initial condition u(0) = u0. By imposing
regularity properties on the terms of the Navier-Stokes Equations (with peri-

odic boundary conditions), we can find in H a maximal compact invariant set

A that is also the minimal set that attracts all bounded sets X ⊂ H, and we
call this set the ’global attractor’. On the global attractor, we can extend our

semidynamical system to a true dynamical system (A, {S(t)}t∈R). Finally, I

will show that A is finite-dimensional by constructing an explicit bound on its
fractal dimension, and I will discuss in what sense this implies that the dynam-

ics of the attractor are determined by a finite number of degrees of freedom, by

showing that we can parametrize the attractor with a finite set of coordinates.
The reader should have some familiarity with the languages of Banach, Hilbert

and Sobolev spaces, as well as with the basic notations of PDEs and Dynami-

cal Systems. For conciseness, some well known inequalities and estimates will
be utilized without proof. This exposition most closely follows the treatment

given by Robinson [11].
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1. The 2D Navier-Stokes Equations: Existence and Uniqueness of
Strong Solutions

We will be interested in the semidynamical system (H, {S(t)}t≥0), where H is
an appropriate space containing the solutions of the 2D Navier-Stokes Equations,
and S(t) is the semigroup such that S(t)u0 = u(t;u0), where u(t;u0) is the solution
of the the equations at time t and for initial condition u(0) = u0. Our final aim
will be to show that the dynamics of fluid flow can be described with finitely many
degrees of freedom, and this is accomplished in the final section. Before we can
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make sense of this concept, however, and before we can understand how to choose
H appropriately, we must establish the existence and uniqueness of solutions to the
Navier-Stokes Equations:

(1.1) ρ
(
~ut + (~u · ∇)~u

)
− ν∆~u+∇p = f(~x, t), div ~u = 0

where ν ≥ 0 is the kinematic viscosity constant, ρ > 0 is the pressure constant,
u(~x, t) is the vector-valued velocity function, p(~x, t) is the scalar pressure, and
f(~x, t) ∈ L2(Ω,R), where Ω is our domain of interest, is the density of force per
unit volume. [6] [12] We normalize the constant density as ρ = 1, which we can do
since we are considering an incompressible fluid. Therefore, the condition div ·~u = 0
is just Newton’s second law, F = ma, in the form div · ~u = ∇ · (ρ~u) = ∇ · ~u = 0.
[11] Henceforth, the vector arrows will be dropped.

For simplicity, we will consider a domain Q = [0, L]2 and impose periodic bound-
ary conditions. Namely, in this case we needn’t worry about the boundary condi-
tions, because our solutions will be L-periodic. However, this means that our
solutions will not be unique, so to ensure uniqueness we must restrict our attention
to functions u ∈ L2 such that

∫
Q
u = 0. If we let λ1 = 4π2

L2 , then by Poincaré’s
Inequality:

(1.2) ‖u‖L2 ≤ λ−
1
2

1 ‖∇u‖L2

In order to ensure that
∫
Q
u = 0, we will want to assume that

∫
Q
u0(x)dx =∫

Q
f(x, t)dx = 0 for all t ≥ 0. This indeed gives us the desired result, if we

compute:

ut − ν∆u+ (u · ∇)u+∇p = f(x, t)

after rearranging terms, gives

ut = ν∆u− (u · ∇)u−∇p+ f(x, t)

Integration over Q now yields

d

dt

∫
Q

uidx =
∫
Q

[
ν(D1(D1ui) +D2(D2ui))− u1D1ui − u2D2ui −Dip+ f

]
dx

which reduces to

d

dt

∫
Q

uidx =
∫
Q

((D1u1)ui + (D2u2)ui)dx

after an integration by parts, since the integral over Q of a partial derivative of
the L-periodic functions is zero, and hence the periodic terms drop out. But since
∇ · u = 0, this becomes ∫

Q

u(x, t)dx = 0

which is precisely the condition we wanted for u.
To simplify our treatment, we will want to reformulate the Navier-Stokes Equa-

tions in a weaker form, that will therefore be easier to solve. Then we will want to
impose conditions on f and u0 that will imply that a solution of this weaker form
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of the equation is actually a classical solution. We will want to reformulate the
Navier-Stokes Equations in terms of a linear operator A and bilinear operator B as

du

dt
+ νAu+B(u, u) = f

To do this, we begin by defining a bilinear form a(u, v) ≡
∫
Q
∇u · ∇vdx and a tri-

linear form b(u, v, w) ≡
∑2
i,j=1

∫
Q
ui
∂vj

∂xi
wjdx. We then define the ’Stokes operator’

A to be the unique linear operator such that

〈Au, v〉 = a(u, v) for all v ∈ V

with

V =
{
u ∈ [H1

p (Q)]2 : ∇ · u = 0 and
∫
Q

u = 0
}

where we define the Sovolev space

Hk
p (Ω) =

{
u periodic : Dαu ∈ L2(Ω)∀ 0 ≤ |α| ≤ k

}
We have incorporated the condition ∇ · u = 0 into the definition of V , so that this
condition need not concern us further. The domain of A is just

D(A) =
{
u ∈ [H2

p (Q)]2 : ∇ · u = 0 and
∫
Q

u = 0
}

It turns out that for u ∈ D(A) and f ∈ [H−1(Q)]2 (where H−k(Ω) is the dual
space of Hk

0 (Ω), which is the completion of C∞c (Ω) in Hk(Ω)), νAu = f , so that
A is a solution to Poisson’s Equation, and therefore Au = −∆u for all u ∈ D(A).
Returning to the Navier-Stokes Equations, if we take the inner product of (1.1)
with an element v ∈ V =

{
u ∈ [C∞p (Q)]2 : ∇ · u = 0 and

∫
Q
u = 0

}
, we get(

du

dt
, v

)
− ν

∫
Q

∆uv +
∫
Q

(u · ∇u)v +
∫
Q

(∇p)v =
∫
Q

fv

But if we integrate the pressure term by parts, we get∫
Q

(∇p)v =
∫
Q

p(∇ · v) = 0

since ∇ · v = 0, so the pressure term drops out, and we are left with(
du

dt
, v

)
− ν

∫
Q

∆uv +
∫
Q

(u · ∇u)v =
∫
Q

fv

Integrating the second term by parts gives

−ν
∫
Q

∆uv = ν

2∑
j=1

∫
Q

∂u

∂xj

∂v

∂xj
= νa(u, v)

and we are left with(
du

dt
, v

)
+ νa(u, v) +

∫
Q

(u · ∇u)v =
∫
Q

fv

Actually, this can be written as(
du

dt
, v

)
+ νa(u, v) + b(u, u, v) = 〈f, v〉 for all v ∈ V
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but we can actually write this for all v ∈ V , since V is dense in V . If we define
the bilinear operator B(u, v) to be the unique operator such that 〈B(u, v), w〉 =
b(u, v, w) for all w ∈ V , we are left with

du

dt
+ νAu+B(u, u) = f

with equality in L2(0, T ;H) for strong solutions, where we have let H ≡
{
u ∈

[L2(Q)]2 : ∇ · u = 0 and
∫
Q
u = 0

}
. This is the weak form of the Navier-Stokes

Equations with periodic boundary conditions, as desired.

Proposition 1.3. If f ∈ C0(Ω), and u ∈ C2(Ω) ∩ C0(Ω̄) satisfies u ∈ H1
0 (Ω) and

2∑
i=1

∫
Ω

Diu(x)Div(x)dx =
∫

Ω

f(x)v(x)dx

for all v ∈ C1
c (Ω), then u is a classical solution of

−∆u = f with u|∂Ω = 0

Proof. We have ∫
Ω

∇u · ∇vdx =
∫
f(x)v(x)dx

which, after integration by parts and rearrangement becomes∫
Ω

(∆u− f)vdx = 0

But u ∈ C2(Ω) and f ∈ C0(Ω), so ϕ ≡ ∆u− f ∈ C0(Ω). Suppose that there exists
an x ∈ Ω such that ϕ(x) 6= 0. Since ϕ is continuous, there is a neighborhood U
of x such that ϕ has constant sign on U . Let v be a positive function compactly
supported in U . Then ∫

Ω

ϕvdx =
∫
U

ϕvdx 6= 0

which is a contradiction. �

Corollary 1.4. If u(t) is a strong solution of the weak form of the Navier-Stokes
Equations, and u ∈ [C2

p(Q)]2, then u is a solution of the classical Navier-Stokes
Equations.

Proof. This works exactly the same as Proposition 1.3. Simply check that imposing
this continuity condition on u will force an equality in L2(O, T ;H) to be a true
pointwise equality. �

We need only a couple of properties of the trilinear form b(u, v, w), and we are
ready to prove the existence and uniquness of strong solutions of the 2D Navier-
Stokes Equations. I will state these without proof:

If u ∈ H and v, w ∈ V , then

(1.5) b(u, v, w) = −b(u,w, v)

and

(1.6) b(u, u,Au) = 0 ∀ u ∈ D(A)

Differentiating:
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(1.7) b(v, u,Au) + b(u, v,Au) + b(u, u,Av) = 0 ∀ u, v ∈ D(A)

Finally,

(1.8)

|b(u, v, w)| ≤

{ ‖u‖∞ ‖v‖V ‖w‖H if u ∈ L∞, v ∈ V, w ∈ H
k ‖u‖

1
2
H ‖u‖

1
2
V ‖v‖V ‖w‖

1
2
H ‖w‖

1
2
V if u, v, w ∈ V

k ‖u‖
1
2
H ‖u‖

1
2
V ‖v‖

1
2
V ‖Av‖

1
2
H ‖w‖H if u ∈ V, v ∈ D(A), w ∈ H

Theorem 1.9. (Strong Solutions) If u0 ∈ V and f ∈ L2
loc(0,∞;H), then there is

a unique solution of

du

dt
+ νAu+B(u, u) = f (as an equality in L2(0, T ;H))

that satisfies
u ∈ L∞(0, T ;V ) ∩ L2(0, T ;D(A))

and in fact u ∈ C0([0, T ];V ). The solutions depend continuously on u0.

Proof. We will want to utilize a Galerkin approximation of the Navier-Stokes Equa-
tions, approximating the equation with a sequence of ODE’s un. By obtaining
uniform bounds on the un and their derivatives, we will then be able to establish
that our sequence converges to some u in L∞(0, T ;V )∩L2(0, T ;D(A)), and we will
show that this u is our desired solution.

Let {wj} be the set of eigenfunctions Awi = λiwi. By the Hilbert-Schmidt
Theorem, {wj} is an orthonormal basis for H. It is also an orthogonal basis for V.
Define

Pnu =
n∑
j=1

(u,wj)wj

to be the projection of an element of H onto the subspace spanned by {w1, . . . , wn}.
Now take the n-th Galerkin approximation of the Navier-Stokes equation (by ODEs
that we know we can solve using fixed point arguments)

dun
dt

+ νAun + PnB(un, un) = Pnf

If we take the inner product of this approximation with Aun we get

1
2
d

dt
‖un‖2V + ν ‖Aun‖2H + (PnB(un, un), Aun) = (f,Aun)

A commutes with Pn, since Awj = λjwj , so

(PnB(un, un), Aun) = (B(un, un), Aun) = b(un, un, Aun) = 0 by (1.7)

so we have
1
2
d

dt
‖un‖2V + ν ‖Aun‖2H ≤ ‖f‖H ‖Aun‖H

Using Young’s Inequality, we get

1
2
d

dt
‖un‖2V + ν ‖Aun‖2H ≤

‖f‖2H
ν
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If we integrate from 0 to t, this becomes

‖un(t)‖2V + ν

∫ t

0

‖Aun(s)‖2H ds ≤ ‖un(0)‖2V +
‖f‖2L2(0,t:H)

ν

But clearly, ‖un(0)‖V ≤ ‖u(0)‖V for all n, so we have

sup
t∈[0,T ]

‖un(t)‖2V ≤ K = ‖u0‖2V +
‖f‖2L2(0,t:H)

ν

and ∫ T

0

‖Aun(s)‖2H ds ≤
K

ν

Therefore un is uniformly bounded in L∞(0, T ;V ) and in L2(0, T ;D(A)), and by
the Alaoglu weak-* compactness theorem we can take a subsequence {un} such
that

un
∗
⇀ u in L∞(0, T ;V )

and

un ⇀ u in L2(0, T ;D(A))

for some u ∈ L∞(0, T ;V ) ∩ L2(0, T ;D(A)). We want to obtain a uniform bound
for dun

dt in L2(0, T ;H). We can actually show that dun

dt is uniformly bounded in
L2(0, T ;V ∗) (where throughout X∗ denotes the dual space of the Banach space
X). For the equation

dun
dt

= −νAun − PnB(un, un) + Pnf

we need to show that each term on the right is uniformly bounded in L2(0, T : V ∗).
Since un is uniformly bounded in L2(0, T : V ) and A : V → V ∗ is a continuous
linear operator, the term −νAun is uniformly bounded. Since f ∈ L2(0, T : V ∗), it
is clear that the term Pnf is also uniformly bounded. Finally, by (1.8) we have

‖b(u, v, w)‖H ≤ k ‖u‖
1
2
H ‖u‖

1
2
V ‖v‖

1
2
H ‖v‖

1
2
V ‖w‖V

But b(u, v, w) = −b(u,w, v) by (1.5), so

〈B(u, u), w〉 ≤ k ‖u‖H ‖u‖V ‖w‖V for all w ∈ V

and we therefore have

‖B(u, u)‖V ∗ ≤ k ‖u‖H ‖u‖V
But clearly, ‖PnB(u, v)‖V ∗ ≤ ‖B(u, v)‖V ∗ for all u, v ∈ V , so

‖PnB(un, un)‖2L2(0,T ;V ∗) ≤
∫ T

0

‖B(un(s), un(s))‖2V ∗ ds

and

‖PnB(un, un)‖2L2(0,T ;V ∗) ≤ k
∫ T

0

‖un(s)‖2H ‖un(s)‖2V ds

≤ k ‖un‖2L∞(0,T ;H) ‖un‖
2
L2(0,T ;V )
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So PnB(un, un) is uniformly bounded in L2(0, T ;V ∗), and thus, dun

dt is uniformly
bounded in L2(0, T ;V ∗), and hence in L2(0, T ;H). Following Temam [12] we can
take a further subsequence {dunj

dt } such that

dunj

dt
⇀

du

dt
in L2(0, T ;H)

Another result of Temam [12] confirms that u ∈ C0([0, T ];V ). We now have that
unj
→ u strongly in L2(0, T ;V ), so

du

dt
+ νAu+B(u, u) = f

holds as an equality in L2(0, T ;H), and we have therefore proved the existence of
strong solutions.

For uniqueness, let w = u− v where u and v are strong solutions of the Navier-
Stokes Equations, and consider

dw

dt
+ νAw +B(u, u)−B(v, v) = f

Taking the inner product with Aw we get

1
2
d

dt
‖w‖2V + ν ‖Aw‖2H = b(v, v, Aw)− b(u, u,Aw)

≤ k
[
‖w‖

1
2
H ‖w‖

1
2
V ‖u‖

1
2
V ‖Au‖

1
2
H ‖Aw‖H

+ ‖v‖
1
2
H ‖v‖

1
2
V ‖w‖

1
2
V ‖Aw‖

3
2
H

]
Applying Young’s Inequality and neglecting the terms in ‖Aw‖2H , we get

1
2
d

dt
‖w‖2V ≤ C

[
‖u‖V ‖Au‖H + ‖v‖4V

]
‖w‖2V

so that

‖w(t)‖2V ≤ exp
(
C

∫ t

0

(
‖u(s)‖V ‖Au(s)‖H + ‖v(s)‖4V

)
ds

)
‖w(0)‖2

Since u and v are strong solutions, they are bounded in L∞(0, T ;V ) and in L2(0, T ;D(A)),
and we have continuous dependence on initial conditions. Furthermore, if w(0) = 0,
since the integral expression in the exponential function is finite this implies that
w(t) = 0 for all t. In other words, if u(0) = v(0) = u0, then u(t) = v(t) for all t, so
the strong solutions of the Navier-Stokes Equations are unique. �

Having proved the existence and uniqueness of strong solutions of the 2D Navier-
Stokes equations with periodic boundary conditions, we can now make sense of our
semidynamical system. If f ∈ V ∗, we can define (H, {S(t)}t≥0) as above sensibly.
However, we encounter difficulties for t < 0, since we could only confirm unique
solutions u(t, u0) for positive time. [11] We will see, however, that by considering
the asymptotic behavior of (H, {S(t)}t≥0), we can define a structure A called the
global attractor, on which we can sensibly define a dynamical system for all time.
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2. Existence of the Global Attractor

To begin, we should define some important concepts:

Definition 2.1. A set B ⊂ H is called an absorbing set if for each bounded set
X ⊂ H there exists a time t0(X) such that S(t)X ⊂ B for all t ≥ t0(X).

Definition 2.2. A semigroup S(t) (here the semigroup relevant to us) is dissipative
if it possesses a compact absorbing set B.

Definition 2.3. For any set X ⊂ H we define the ω-limit set of X as

ω(X) = {y : ∃tn →∞, xn ∈ X with S(tn)xn → y}

The ω-limit is an important concept. Here is a useful characterisation:

Proposition 2.4. For a bounded set X, ω(X) =
⋂
t≥0

⋃
s≥t S(s)X

Proof. Let X be a bounded set. Let ω1(X) =
⋂
t≥0

⋃
s≥t S(s)X. If y ∈ ω(X), we

clearly have y ∈
⋃
s≥t S(s)X for all t ≥ 0, y ∈ ω1, and we now know that ω ⊂ ω1.

Conversely, if y ∈ ω1, then for all t ≥ 0 we have y ∈
⋃
s≥t S(s)X, so there are

sequences {τ (t)
m } and {x(t)

m }, with τ
(t)
m ≥ t, x(t)

m ∈ X, such that S(τ (t)
m )x(t)

m → y.
Now we can construct new sequences {tn} and {xn}, with tn chosen from {τ (n)

m }
and xn chosen from {x(n)

m } such that∥∥∥S(τ (n)
m )x(n)

m − y
∥∥∥
H
≤ 1
n

Then S(tn)xn → y as tn →∞, so y ∈ ω ⇒ ω1 ⊂ ω ⇒ ω = ω1. �

Definition 2.5. A set X is called invariant if S(t)X = X for all t ≥ 0.

We are now ready to define the global attractor:

Definition 2.6. (The Global Attractor) The global attractor A is the maximal
compact invariant set, and the minimal set that attracts all bounded sets X ⊂ H
(i.e. dist(S(t)X,A) → 0 as t → ∞, where dist is the semidistance between sets:
dist(X,Y ) = supx∈X infy∈Y |x− y|).

Therefore, if A exists for the 2D Navier-Stokes Equations, then at least asymp-
totically, all the dynamics of (H, {S(t)}t≥0) will occur in A. Furthermore, since A
is invariant, no part of A can be neglected. The condition that A be compact is
what prevents us from simply choosing A = H, and, as we will see, A will turn out
to be a much smaller space than H. First, however, we must establish the existence
of A for (H, {S(t)}t≥0). The following lemma is key:

Lemma 2.7. If S(t) is dissipative, and B is a compact absorbing set, then the
global attractor exists, and A = ω(B).

Proof. We first want to show that ω(B) is nonempty, compact, and invariant. We
want to use the characterisation from Proposition 2.4. Since for t ≥ t0 (where to
is defined in the definition of an absorbing set), the sets

⋃
s≥t S(s)B are nonempty

compact sets decreasing with t, their intersection ω(B) is nonempty and compact.
To show that ω(B) is invariant, suppose x ∈ ω(B). Then there exists sequences
{tn} and {xn}, tn →∞ and xn ∈ B, such that S(tn)xn → x. Therefore,

S(t)S(tn)xn = S(t+ tn)xn → S(t)x
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since S(t) is continuous. So S(t)ω(B) ⊂ ω(B). Conversely, for tn ≥ t+ t0, we have

S(tn − t)xn ∈
⋃
s≥t

S(s)B

so that there is a convergent subsequences {tnj} and {xnj} such that S(tnj−t)xnj →
y for some y, and so y ∈ ω(B). But since S(t) is continuous,

x = lim
j→∞

S(t)S(tnj
− t)xnj

= S(t)y

so ω(B) ⊂ S(t)ω(B)⇒ S(t)ω(B) = ω(B) ∀ t ≥ 0, and ω(B) is invariant. We know
now that, for t ≥ t0(B),

⋃
s≥t S(s)B is a compact subset of ω(B). It is clear that

ω(B) is the maximal compact invariant set, since if Y is compact and invariant,
we know that Y is bounded, and hence that there exists a t0(Y ) such that for all
t ≥ t0(Y ), we have Y = S(t)Y ⊂ ω(B).

It remains only to show that ω(B) attracts all bounded sets. Suppose for a
contradiction that it does not. Then there is a bounded set X, a δ > 0, and a
sequence {tn}, tn →∞, such that

dist(S(tn)X,ω(B)) ≥ δ for all n

Then there are xn ∈ X such that

dist(S(tn)xn, ω(B)) ≥ δ

2
for all n

Since X is bounded, S(tn)xn ∈ B for large n. But B is compact, so there is a
subsequence with S(tnj )xnj → β ∈ B and dist(β, ω(B)) ≥ δ

2 . But

β = lim
j→∞

S(tnj
)xnj

= lim
j→∞

S(tnj
− t0(X))S(t0(X))xnj

Set βj = S(t0(X))xnj . Then βj ∈ B ⇒ β ∈ ω(B), which is a contradiction.
Therefore, ω(B) attracts all bounded sets. It also minimal, since it must attract
itself, and it is invariant. Therefore, ω(B) = A. �

We are now ready to prove the existence of the global attractor for the 2D
Navier-Stokes Equations with periodic boundary conditions:

Theorem 2.8. If f ∈ H, then there exists a global attractor A for the system
(H, {S(t)}t≥0).

Proof. Since V ⊂⊂ H, it suffices to show that there is an absorbing set in V . In
other words, there exists a time t1(‖u0‖H), a ρV , and an IA such that

‖u(t)‖V ≤ ρV and
∫ t+1

t

‖Au(s)‖2H ds ≤ IA

for all t ≥ t1(‖u0‖H). Indeed, by taking the inner product of the weak form of the
Navier-Stokes equation with Au (noting that b(u, u,Au) = 0), we get

d

dt
‖u‖2V + ν ‖Au‖2H ≤

‖f‖2H
ν

Neglecting the second term
d

dt
‖u‖2V ≤

‖f‖2H
ν
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Integrating both sides between s and t, with t− 1 ≤ s ≤ t, gives us

‖u(t)‖2V ≤ ‖u(s)‖2V +
‖f‖2H
ν

We now integrate from s = t− 1 to s = t to obtain

‖u(t)‖2V ≤
∫ t

t−1

‖u(s)‖2V ds+
‖f‖2H
ν

We now want to bound ∫ t+1

t

‖u(s)‖2V ds

To do this, take the inner product of the weak form of the Navier-Stokes equation
with u to get

1
2
d

dt
‖u‖2H + ν ‖u‖2V + b(u, u, u) = 〈f, u〉

But b(u, u, u) = 0, so we have
1
2
d

dt
‖u‖2H + ν ‖u‖2V ≤ ‖f‖V ∗ ‖u‖V

Applying Young’s inequality, we get

(2.9)
d

dt
‖u‖2H + ν ‖u‖2V ≤

‖f‖2V ∗
ν

Finally, integrating between t and t+ 1 gives

ν

∫ t+1

t

‖u(s)‖2V ds ≤
‖f‖2V ∗
ν

+ ‖u(t)‖2H

So we now have to bound ‖u(t)‖2H . To do this, use Poincaré’s inequality to obtain
‖u‖2V ≥ λ1 ‖u‖2H , (where λ1 is defined as in Section 1). Applying this to (2.9), we
get

d

dt
‖u‖2H + νλ1 ‖u‖2H ≤

‖f‖2V ∗
ν

Applying Gronwall’s lemma, we get

‖u(t)‖2H ≤ ‖u0‖2H e
−νλ1t +

‖f‖2V ∗
ν2λ1

(1− e−νλ1t)

So if

t0(‖u0‖H) ≡ max
(
− 1
νλ1

ln

(
‖f‖2V ∗

ν2λ1 ‖u0‖H

)
, 0
)

then for all t ≥ t0, we have

(2.10) ‖u(t)‖2H ≤ 2
‖f‖2V ∗
ν2λ1

Which therefore implies that

(2.11)
∫ t+1

t

‖u(s)‖2V ds ≤
‖f‖2V ∗
ν2

+ 2
‖f‖2V ∗
ν3λ1

Therefore if t ≥ t1(‖u0‖H) ≡ t0(‖u0‖H) + 1, then we have

‖u(t)‖2V ≤ ρV ≡
‖f‖2V ∗
ν2

+ 2
‖f‖2V ∗
ν3λ1

+
‖f‖2H
ν
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To obtain the integral bound, integrate the expression

d

dt
‖u‖2V + ν ‖Au‖2H ≤

‖f‖2H
ν

between t and t+ 1 to get∫ t+1

t

‖Au(s)‖2H ds ≤ IA ≡
‖f‖2H
ν2

+
ρ2
V

ν

So V has a bounded absorbing set. But since V ⊂⊂ H, this means that H has
a compact absorbing set, and that therefore (H, {S(t)t≥0) has a global attractor
A. �

Furthermore, one can show that the 2D Navier-Stokes equations have the injec-
tive property, so that if u0, v0 ∈ A, and S(T )u0 = S(T )v0 for some T > 0, then
we must have uo = v0. The proof is straightforward from the estimates we have
made thus far, and the interested reader can refer to Robinson [11]. A corollary of
this is that, on A, solutions of the Navier-Stokes Equations are unique backwards
in time as well as forwards in time, so that we can generate a dynamical system
(A, {S(t)}t∈R). Surprisingly, A is finite dimensional (which we will prove in the
next section), and as we will see in Section 4, this has profound implications for
the dynamics of (A, {S(t)}t∈R)

3. Dimension of the Global Attractor

We proceed by showing that the global attractor A, which lies in the infinite
dimensional phase space H =

{
u ∈ [L2(Q)]2 : ∇ · u = 0 and

∫
Q
u = 0

}
, is

nonetheless finite dimensional. Before we can prove this, however, we will need to
define some relevant concepts.

Definition 3.1. The semigroup S(t) is uniformly differentiable on A if for each
u ∈ A, there exists a linear operator Λ(t, u) such that, for all t ≥ 0,

sup
u,v∈A;0<‖u−v‖H≤ε

‖S(t)v − S(t)u− Λ(t, u)(v − u)‖H
‖v − u‖H

→ 0 as ε→ 0

and
sup
u∈A
‖Λ(t, u)‖op <∞ for all t ≥ 0

If we know that our semigroup is uniformly differentiable, we can linearise our
differential equation to obtain

dU

dt
= L(t;u0)U(t) ; U(0) = ξ

where L(t, u0) = L(u(t)) where in the case of the 2D Navier-Stokes Equations we
will see that L is the linear operator such that

L(u)w = νAw −B(w, u)−B(u,w)

for all w ∈ H. We can define another important concept:

Definition 3.2. If {δx(i)} is an orthogonal set of infintesimal displacements from
an initial position u0 ∈ A and {φ(i)} a set of orthonormal vectors in the directions
of the δx(i),
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T Rn(A) ≡ sup
x0∈A

sup
P (n)(0)

lim sup
t→∞

1
t

∫ t

0

Tr
(
L(s;u0)P (n)(s)

)
ds

where Tr denotes the trace of a matrix and P (n)(t) denotes the projection of
the parallelepiped formed by {S(t)δx(1), . . . , S(t)δx(n)} onto the space spanned by
{φ(1), . . . , φ(n)}

If we write 〈·〉 for the time-average operation, this becomes:

T Rn(A) = sup
x0∈A

sup
P (n)(0)

〈
Tr(L(t;u0)P (n)(t)

〉
Thus, T Rn(A) represents the maximum possible asymptotic growth of an in-

fintesimal n-volume over all initial positions u0 ∈ A. Therefore, if T Rn(A) < 0,
then our infintesimal n-volume necessarily decays to nothing in A. [11] It is then
reasonable to conjecture that A contains no n-dimensional subsets and thus that
the fractal dimension of A must be no larger than n. This is indeed true, but the
proof (attributable to Hunt) is quite involved, and a proof will not be given.

Lemma 3.3. (Hunt) If S(t) is uniformly differentiable on A and there exists a t0
such that Λ(t, u0) is compact for all t ≥ t0, and also T Rn(A) < 0, then df (A) ≤ n.

Before proceeding to bound the dimension of A, we will need two additional
lemmas:

Lemma 3.4. Let Pn be a rank n orthogonal projection in L2(Q) (Q the periodic
domain [0, L]2 ∈ R2). Then Tr(−∆Pn) ≥ Cn2.

Proof. Write A = −∆, and let wj be its orthonormal eigenfunctions, with eigen-
values λj ordered as λj+1 ≥ λj . If Pn is the projection onto the space spanned by
the orthonormal vectors {φ1, . . . , φn}, then

Tr(APn) =
n∑
j=1

(φj , Aφj)

so that

Tr(APn) =
n∑
j=1

∞∑
k=1

λk ‖(φj , wk)‖2H

=
∞∑
k=1

λk

( n∑
j=1

‖(φj , wk)‖2H

)
But the φj are normal, so

n∑
j=1

∞∑
k=1

‖(wk, φj)‖2H = n

But φj do not span H, so
n∑
j=1

‖(wk, φj)‖2H ≤ 1

so that

Tr(APn) ≥
n∑
j=1

λj
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We now want to bound the eigenvalues λj by

cj ≤ λj ≤ Cj
To do this, note that since the eigenvalues are proportional to the sums of squares
of two integers (since we have periodic boundary conditions), we will have reached
the eigenvalue 2k2 once we have taken k2 combinations of integers, so λk2 = Ck2,
and so if k2 < n, (k + 1)2, then

Ck2 ≤ λn ≤ C(k + 1)2

so k < n
1
2 < (k + 1) so that

1
2
n

1
2 < k < k + 1 < 2n

1
2

which gives
cn ≤ λn ≤ Cn

as wanted. But then
n∑
j=1

λj ≥ c
n∑
j=1

j ≥ cn2

which implies that
Tr(−∆Pn) ≥ cn2

as desired. �

Lemma 3.5. S(t) for the 2D Navier-Stokes Equations is uniformly differentiable,
where Λ(t;u0)ξ is the solution of the equation

(3.6)
dU

dt
+ νAU +B(u, U) +B(U, u) = 0 ; U(0) = ξ

Furthermore, Λ(t, u0) is compact for all t > 0.

Proof. For a proof, see Robinson [11] page 347. �

With these results in hand, we can finally bound the dimension of the global
attractor:

Theorem 3.7. The fractal dimension of the global attractor A for the 2D Navier-
Stokes Equations is finite-dimensional, and in fact

(3.8) df (A) ≤ α
(ρV
ν

)2

where ρV is as defined above and α is a constant.

Proof. We have
L(u)w = νAw −B(w, u)−B(u,w)

by Lemma 3.5, so that

〈PnL(u)〉 =
〈 n∑
j=1

(L(u)φj , φj)
〉

−
〈 n∑
j=1

(−ν∆φj , φj)
〉
−
〈 n∑
j=1

b(φj , u, φj)
〉

But by (1.8) we therefore have
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since φj are normal in H. Applying Young’s inequality to the last term, we get

〈PnL(u)〉 ≤ −ν
n∑
j=1

〈‖φj‖2V 〉+
n∑
j=1

〈
ν

2
‖φj‖2V +

k2

2ν
‖u‖2V

〉

= −ν
2

n∑
j=1

〈‖φj‖2V 〉+
k2

2ν

n∑
j=1

〈‖u‖2V 〉

= −ν
2
〈Tr(−∆Pn)〉+

k2n

2ν
〈‖u‖2V 〉

By Lemma 3.4, we have

〈PnL(u)〉 ≤ −cν
2
n2 +

k2n

2ν
〈‖u‖2V 〉

so that the trace is negative for n > α
( 〈‖u‖2V 〉

ν2

)
. But 〈‖u‖V 〉 ≤ ρV on A, so our

result follows by Lemma 3.3. �

Now that we have bounded the dimension of the global attractor, we can study
the implications of this finite-dimensionality for the dynamics of fluid flow. In
particular, by parametrizing the global attractor with a finite number of parameters,
we can show that, at least asymptotically, the dynamics of fluid flow are determined
by a finite number of degrees of freedom.

4. Parametrizing the Global Attractor

Ideally, if we have df (A) < d, we would hope to find a d-dimensional invariant
smooth manifold that contains A. The desired notion of a manifold, termed inertial
manifold, is attributable to Foias:

Definition 4.1. (Inertial Manifold) An inertial manifoldM for the semidynamical
system (H, {S(t)}t≥0) is a finite-dimensional Lipschitz manifold that is positively
invariant and attracts all trajectories exponentially:

dist(S(t)u0,M) ≤ C(‖u0‖H)e−kt for all u0 ∈ H

If we know that there is an inertial manifold for our system, then we can de-
termine the dynamics of the attractor with a finite system of ordinary differential
equations. Unfortunately, though the concept of an inertial manifold was created
specifically in order to be applied to the Navier-Stokes Equations, the existence of
an inertial manifold even for the 2D Navier-Stokes Equations with periodic bound-
ary conditions remains open.

We are not without hope, however. There is no a priori reason to believe that
A should be smooth enough to be imbedded on an inertial manifold, and it should
at least be clear that this is a deep problem, but that does not mean that we
cannot imbed A into some appropriate Euclidean space. It is a familiar result that
a compact n-manifold can be imbedded in R2n+1. A first guess, then, would be
that if df (A) < d for an integer d, then we can inject A into R2d+1. This turns out
to be correct, and will follow from a more general result:

Theorem 4.2. Let X be a compact subset of a Hilbert space H, df (X) < d with d
an integer, and let k ≥ 2d+ 1. If L0 is a bounded linear map into Rk, then for any
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ε > 0 there exists a bounded linear map into Rk, L = L(ε), such that L is injective
on X and ‖L− L0‖op ≤ ε.

Proof. We will construct an appropriate collection of countable dense subsets of
L(H,Rk), and then take a countable intersection and utilize the Baire Category
Theorem. Let Y ≡ {v−w : v, w ∈ X}. Y is the image of X×X under the Lipschitz
map that takes (v, w) 7→ v−w, so since the fractal dimension does not increase under
the operation of a Lipschitz map, we have df (Y ) ≤ df (X × X) = 2df (X) < 2d.
Now define

Ar ≡
{
v − w : v, w ∈ X and ‖v − w‖H ≥

1
r

}
and let

Ar,j,n ≡
{
u ∈ Ar : |(ej , u)| ≥ 1

n

}
where {ej} are an orthonormal basis for H. Ar,j,n is compact and 0 /∈ Ar, so we
have

Ar =
∞⋃
j=1

∞⋃
n=1

Ar,j,n

Define
Lr,j,n ≡ {L ∈ L(H,Rk) : L−1(0) ∩Ar,j,n = ∅}

Then
∞⋂
j=1

∞⋂
n=1

Lr,j,n

consists of maps L for which L−1(0)∩Ar = ∅, or for which diam(L−1(x)∩X) < 1
r

for all x ∈ Rk. Therefore,
∞⋂
r=1

∞⋂
j=1

∞⋂
n=1

Lr,j,n

consists of maps that are injective on X.
We now want to show that Lr,j,n are open and dense in L(H,Rk). To show that

they are open, let L ∈ Lr,j,n We want to find an ε > 0 such that ‖L − L̃‖op ≤ ε

implies L̃ ∈ Lr,j,n. But from the definition of Lr,j,n, this is just to say that if Lx 6= 0
for all x ∈ Ar,j,n, then L̃x 6= 0 for all x ∈ Ar,j,n. But since Ar,j,n is compact, if
Lx 6= 0 for all x ∈ Ar,j,n, then minx∈Ar,j,n |Lx| = η > 0 and maxx∈Ar,j,n ‖x‖H ≤ R
for some 0 < η ≤ R. Then we have

|L̃x| = |Lx− (L− L̃)x|

≥ |Lx| − |(L− L̃)x|

≥ η − ‖L− L̃‖opR

so that if we choose 0 < ε ≤ η
2R , then |L̃x| 6= 0 for all x ∈ Ar,j,n, and it follows that

Lr,j,n is open.
To show that Lr,j,n are dense in L(H,Rk), fix L0 ∈ L(H,Rk) and ε > 0. Define

a map φ : Rk → Sk−1, where Sk−1 is the k − 1-sphere, as

φ(x) =
{ x
|x| if x 6= 0
p if x = 0
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where p is just some point on Sk−1. φ is Lipschitz on Oρ ≡ {x : |x| ≥ ρ} for all
ρ > 0. Letting W ⊂ Rk, we can write

φ(W ) =
{ ∞⋃
k=1

φ(W ∩ O 1
k

)
} ⋃

p︸︷︷︸
if 0∈W

If we let dH denote Hausdorff dimension, we know that dH(p) = 0, and so by the
countable additivity of Hausdorff dimension,

dH(φ(W )) ≤ sup
k
dH(φ(W ∩ O 1

k
))

and since φ is Lipschitz on O 1
k

, we have dH(φ(W )) ≤ dH(W ). In particular,

dH(φ(L0Ar)) ≤ dH(L0Ar) ≤ dH(Ar) ≤ df (Ar) ≤ df (Y ) < 2d

since Hausdorff dimension is bounded above by fractal dimension and the fractal
dimension of a subset of Y is no greater than the fractal dimension of Y . But
dH(Sk−1) = k − 1 ≥ 2d, so it follows that φ|L0Ar

is not surjective. Choose z ∈ Sd
such that z /∈ φ(L0Ar), and set L ≡ L0 + εze∗j , where e∗j is the linear functional
that takes u 7→ (u, ej). L ∈ L(H,Rk), and also ‖L− L0‖op ≤ ε. It remains only to
show that L ∈ Lr,j,n. Suppose for a contradiction that it is not. Then there exists
a u ∈ Ar,j,n with Lu = 0. Then

L0u = −(ej , u)εz

and since u ∈ Ar,j,n implies that |(ej , u)| ≥ 1
r > 0, we can write

z = −((ej , u)ε)−1L0u

and hence
z = φ(z) = φ(L0u) ∈ φ(L0Ar)

which is a contradiction. Therefore, Lr,j,n are dense open subsets of L(H,Rk), and
so by the Baire Category Theorem,

∞⋂
r=1

∞⋂
j=1

∞⋂
n=1

Lr,j,n

is a dense open subset of L(H,Rk), but since elements of this set are injective on
X the result follows. �

Corollary 4.3. If d ∈ Z, d > α
(
ρV

ν

)2

, then there exists a parametrisation of A
using 2d+ 1 coordinates.

Proof. We have bounded the dimension of A as above, and we know A ⊂ H, so
it remains only to show that L−1|LA is continuous for L ∈

⋂∞
r=1

⋂∞
j=1

⋂∞
n=1 Lr,j,n.

Suppose for a contradiction that it is not. Then there exists ε > 0 and a sequence
{xn} ∈ LA with xn → y ∈ LA with

∥∥L−1xn − L−1y
∥∥
H
≥ ε. But L−1xn ∈ A,

and since A is compact there exists a subsequence {xnj} such that L−1xnj → z for
some z ∈ A. Since L is continuous, it follows that xnj

→ Lz = y. But since L is
injective on A, we therefore have z = L−1y, which is a contradiction. Therefore,
L−1 is continuous on A and the result follows. �
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We therefore know that, at least asymptotically (i.e. on the global attractor), we
can describe the dynamics of fluid flow (at least in a 2D periodic domain, with 2d+1
parameters. This is also true for the 3D Navier-Stokes Equations with Dirichlet
boundary condition, but the arguments necessary are much more involved, and the
ambitious reader is referred to Constantin [2] for details. Unfortunately, these 2d+1
parameters need not correspond to any known observable physical conditions, so
modeling turbulent flows remains a difficult task. This result, however, provides
hope that such work is not fruitless.
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[8] J. Hale, L. Magalhães and W. Oliva. Dynamics in Infinite Dimensions. Springer-Verlag New
York, 2002.

[9] N. Markley, J. Martin and W. Perrizo. The Structure of Attractors in Dynamical Systems.

Springer-Verlag Berlin Heidelberg, 1978.
[10] D. Rand and L.-S. Young. Dynamical Systems and Turbulence. Springer-Verlag Berlin Hei-

delberg, 1981.
[11] J. Robinson. Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Para-

bolic PDEs and the Theory of Global Attractors. Cambridge University Press, 2001.

[12] R. Temam. Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer-
Verlag New York, 1988.


