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Abstract. We present an abstract version of the van Kampen theorem in-
volving fundamental groupoids, and we show that this result holds for both

topological spaces and simplicial sets. The goal is to make the basic theory of

simplicial sets accessible to undergraduates who have studied algebraic topol-
ogy. This paper does not assume any familiarity with category theory.
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1. Introduction

A simplicial set is a construction in algebraic topology that models a well be-
haved topological space. The notion of a simplicial set arises from the notion of
a simplicial complex and has some nice formal properties that make it ideal for
studying topology. Simplicial sets are useful because they are algebraic objects
and they make it possible to do topology indirectly, using only algebra. In this
paper we illustrate the use of simplicial sets in algebraic topology by proving an
abstract version of the van Kampen theorem, first for topological spaces and then
for simplicial sets.

We assume that the reader has studied basic algebraic topology, including sim-
plicial complexes, homotopy, the fundamental group, and van Kampen’s theorem
for fundamental groups. On the other hand, we do not assume any familiarity with
category theory. This paper could well serve as an introduction to category theory
in the context of algebraic topology.

In the next section we introduce some notions from category theory that we use
throughout our discussion. Then we introduce simplicial sets as a generalization of
simplicial complexes, and we rewrite the definition using category theory. We briefly
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discuss the concept of universality in mathematics, and then describe a method for
constructing a topological space from a given simplicial set. Following this, we
prove an abstract version of the van Kampen theorem for topological spaces. In
the final two sections, we introduce the important idea of an adjunction and show
that a version of van Kampen’s theorem holds for simplicial sets.

2. Basic Category Theory

In this section we introduce some of the most important definitions from category
theory, and we illustrate the definitions with examples from topology and algebra.
Category theory is a valuable tool for studying abstract mathematical entities and
the relationships between them. It is indispensable in any serious discussion of
simplicial sets.

Definition 1. A category C consists of the following.

(1) A class |C|, whose elements are called the objects of the category.
(2) For every pair X, Y of objects, a set C(X,Y ), whose elements are called

the arrows from X to Y in C.
(3) For every triple X, Y , Z of objects, a binary operation

C(X,Y )× C(Y, Z)→ C(X,Z)

called composition, sending arrows f and g to their composite g ◦ f .
(4) For every object X, an arrow 1X ∈ C(X,X) called the identity arrow on

X.

These data must satisfy the following axioms.

(1) Composition of arrows is associative:

h ◦ (g ◦ f) = (h ◦ g) ◦ f
whenever either side is defined.

(2) An identity arrow is a two-sided unit for composition:

f ◦ 1X = f = 1Y ◦ f
for f ∈ C(X,Y ).

In this paper we usually use the notation f : X → Y in place of f ∈ C(X,Y ). The
object X is called the domain of f , and Y is called the codomain of f . We often
display arrows in diagrams such as

X

f
  

@@
@@

@@
@

h // Z

Y

g

??~~~~~~~

for arrows f : X → Y , g : Y → Z, and h : X → Z. We say that such a diagram
commutes if any two composites sending one given object to another are equal. For
example, we say that the above diagram commutes if h = g ◦ f .

It is easy to see that the topological spaces form a category Top with arrows the
continuous mappings between spaces. The composite of arrows f and g is defined
in Top by x 7→ g(f(x)) where x is any point in the domain of f . The identity
arrow on a space X is simply the identity mapping 1X : X → X, x 7→ x. A
similar example is the category Top∗ of based topological spaces. The objects of
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this category are pairs (X,x) where X is a topological space and x is a point of X
called the basepoint of X. An arrow from (X,x) to (Y, y) in Top∗ is a continuous
mapping X → Y that takes the basepoint x to the basepoint y. Composition and
identities are the same as in Top.

There are also many examples of categories in algebra. The collection of all
groups is a category called Grp with arrows the homomorphisms of groups. Com-
position of arrows is again just composition of functions, and the identity on a
group G is simply the identity homomorphism 1G : G→ G, g 7→ g.

The next definition describes mappings between categories.

Definition 2. A functor F : C → D from a category C to a category D consists of
the following.

(1) A map sending each object X of C to an object F (X) of D.
(2) A map sending each arrow f : X → Y in C to an arrow F (f) : F (X) →

F (Y ) in D.

These data must satisfy the following axioms.

(1) F preserves composition:

F (g ◦ f) = F (g) ◦ F (f)

whenever the composite arrow g ◦ f is defined.
(2) F preserves identities:

F (1X) = 1F (X)

for every object X of C.

More precisely, this is the definition of a covariant functor F from C to D. There
are also contravariant functors which are defined in the same way, except that F
sends each arrow f : X → Y in C to an arrow F (f) : F (Y )→ F (X) in D, satisfying
F (g ◦ f) = F (f) ◦ F (g). Contravariant functors will be useful later on when we
define simplicial sets.

The notion of a functor is especially useful in algebraic topology. For example, we
can define a functor π1 : Top∗ → Grp sending each based topological space (X,x)
to the fundamental group π1(X,x) of X at the basepoint x ∈ X, and sending each
arrow f : (X,x) → (Y, y) of Top∗ to the induced homomorphism f∗ : π1(X,x) →
π1(Y, y). The functor concept thus allows us to map between categories, respecting
their structure. Sometimes we also need to define maps between functors.

Definition 3. Let F,G : C → D be functors. A natural transformation α : F → G
from F to G consists of an arrow αX : F (X)→ G(X) for each object X of C such
that the following diagram commutes for every arrow f : X → Y in C.

F (X)

αX

��

F (f)
// F (Y )

αY

��

G(X)
G(f)

// G(Y )

The arrows αX are called the components of the natural transformation α.

For certain categories C and D, this definition allows us to regard the collection
of functors C → D as a category whose arrows are the natural transformations
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between functors. Constructions of this sort will appear throughout our discussion
of simplicial sets.

3. Simplicial Sets

Recall that a simplicial complex is a set V , whose elements are called vertices,
together with a set X of nonempty finite subsets of V , whose elements are called
simplices, such that every vertex is an element of some simplex and every nonempty
subset of a simplex is again a simplex. In topology it is often important to define an
order on the vertices of each simplex in a simplicial complex. We define an oriented
n-simplex to be an (n + 1)-tuple (x0, . . . , xn) whose coordinates form a simplex,
and we write Xn for the set of all oriented n-simplices. Then there are functions
∂i : Xn → Xn−1, 0 ≤ i ≤ n, called the face operators on Xn, defined by

∂i(x0, . . . , xn) = (x0, . . . , xi−1, xi+1, . . . , xn).

For example, if (x0, x1, x2) is an oriented 2-simplex, then we have ∂0(x0, x1, x2) =
(x1, x2), ∂1(x0, x1, x2) = (x0, x2), and ∂2(x0, x1, x2) = (x0, x1). In other words, the
faces of a triangle are oriented 1-simplices. We also have the degeneracy operators
si : Xn → Xn+1, 0 ≤ i ≤ n, defined by

si(x0, . . . , xn) = (x0, . . . , xi, xi, xi+1, . . . , xn).

It is easy to check that these functions satisfy the following identities.

(1) ∂i ◦ ∂j = ∂j−1 ◦ ∂i if i < j.
(2) si ◦ sj = sj+1 ◦ si if i ≤ j.

(3) ∂i ◦ sj =


sj−1 ◦ ∂i if i < j

1 if i = j or i = j + 1

sj ◦ ∂i−1 if i > j + 1.

The notion of a simplicial set is a generalization of the notion of a complex with
face and degeneracy operators.

Definition 4. A simplicial set X is a collection of sets X0, X1, X2, . . . together
with maps ∂i : Xn → Xn−1 and si : Xn → Xn+1, 0 ≤ i ≤ n, which satisfy the
identities (1–3) above. An element of Xn is called an n-simplex, and the maps ∂i
and si are called face operators and degeneracy operators, respectively.

The notion of a simplicial set provides a purely algebraic model for studying
topological spaces. Before we can use this definition, however, we must reformulate
it in the language of category theory. Let ∆ be a category with objects the ordered
sets n = {0, 1, . . . , n} and arrows the order-preserving maps between them. For
example, the map 0 7→ 0, 1 7→ 2 and the map 0 7→ 1, 1 7→ 1 are both arrows in
∆(1,2). We consider the arrows δi : (n− 1)→ n and σi : (n + 1)→ n, 0 ≤ i ≤ n,
of ∆ defined by

δi(j) =

{
j if j < i

j + 1 if j ≥ i.
and

σi(j) =

{
j if j ≤ i
j − 1 if j > i.

These arrows have the property that if f : m → n is any arrow in ∆ then f can
be written as a composite of the δi and the σi. To see this, suppose i1, . . . , is,
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in decreasing order, are the elements of n not in the image f(m) and suppose
j1, . . . , jt, in increasing order, are the elements of m such that f(j) = f(j + 1).
Then

f = δi1 ◦ · · · ◦ δis ◦ σj1 ◦ · · · ◦ σjt
is a factorization of f . We express this property of the δi and σi by saying that
these arrows generate the category ∆. One can also check that δi and σi satisfy
the identities

(1) δj ◦ δi = δi ◦ δj−1 if i < j
(2) σj ◦ σi = σi ◦ σj+1 if i ≤ j

(3) σj ◦ δi =


δi ◦ σj−1 if i < j

1 if i = j or i = j + 1

δi−1 ◦ σj if i > j + 1

which are dual to the identities occurring in the definition of a simplicial set. Now,
if X is a contravariant functor ∆ → Set, where Set is the category of sets and
functions between them, and if we define ∂i = X(δi) and si = X(σi) and write
Xn = X(n) for every object n of ∆, then we obtain a simplicial set by the pre-
vious definition. This discussion gives us the following useful characterization of a
simplicial set.

Definition 5. A simplicial set is a contravariant functor X : ∆→ Set.

It is now clear that the simplicial sets form a category, which we denote sSet, with
arrows the natural transformations between simplicial sets.

4. Universal Cones

Many constructions in algebra and topology are “universal” in the sense that
they construct something with a desirable property, and any other object with
the property gets mapped to this one by a unique morphism. Consider the direct
product of groupsX and Y . We can describe it as a groupX×Y , whose elements are
the pairs (x, y) with x ∈ X and y ∈ Y , together with “projection” homomorphisms
pX : X × Y → X, (x, y) 7→ x and pY : X × Y → Y , (x, y) 7→ y. If Z is any
group equipped with homomorphisms f : Z → X and g : Z → Y , then the map
p : Z → X×Y defined by the rule p(x) = (f(x), g(x)) is the unique homomorphism
such that the following diagram commutes.

X X × Y
pXoo

pY // Y

Z

f

ccGGGGGGGGG g

;;xxxxxxxxx
p

OO

In fact, this description determines the direct product up to a unique isomorphism.
To see this, let W be a group with projection homomorphisms qX : W → X and
qY : W → Y and suppose that if f : Z → X and g : Z → Y are any homomorphisms
then there is a unique homomorphism q making

X W
qXoo

qY // Y

Z

f

``BBBBBBBB g

>>}}}}}}}}
q

OO
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commute. Then, in particular, the diagram

W
qX

{{ww
ww

ww
ww

w
qY

##G
GG

GG
GG

GG

X X × Y
pXoo

pY //

t

OO

Y

W

qX

ccGGGGGGGGG qY

;;xxxxxxxxx
s

OO

commutes for unique homomorphisms s and t. Now our hypothesis says that there
is a unique homomorphism u such that

X W
qXoo

qY // Y

W

qX

``BBBBBBBB qY

>>}}}}}}}}
u

OO

commutes, and the identity obviously has this property. Therefore we must have
t ◦ s = u = 1W . Interchanging the roles of W and X × Y in this argument, we
conclude also that s ◦ t = 1X×Y . This proves that the homomorphism s : W →
X × Y has an inverse t : X × Y → W , and hence s is a unique isomorphism from
W to X × Y commuting with the projections. This observation that the direct
product is unique up to isomorphism means we can define the direct product of X
and Y to be a group X × Y together with homomorphisms pX : X × Y → X and
pY : X × Y → Y satisfying the property that if f : Z → X and g : Z → Y are
any homomorphisms then there is a unique homomorphism p making our original
diagram commute.

The free product of X and Y is another example of a “universal” construction
in the category of groups. We can describe the free product of X and Y as a group
X ∗ Y , whose elements are formal combinations of the form x1y1x2y2 · · ·xnyn with
xi ∈ X and yi ∈ Y , together with “inclusion” homomorphisms iX : X → X ∗ Y ,
x 7→ x1Y and iY : Y → X ∗ Y , y 7→ 1Xy. If Z is any group equipped with
homomorphisms f : X → Z and g : Y → Z, then the map i : X ∗ Y → Z
defined by the rule i(x1y1x2y2 · · ·xnyn) = f(x1)g(y1) . . . f(xn)g(yn) is the unique
homomorphism such that the following diagram commutes.

X
iX //

f
##F

FF
FF

FF
FF

X ∗ Y

i

��

Y
iYoo

g
{{xx

xx
xx

xx
x

Z

Using an argument like the one we used in our discussion of the direct product,
one can show that this description determines the free product up to a unique
isomorphism. Thus we can define the free product to be a group X ∗ Y , together
with homomorphisms iX : X → X ∗ Y and iY : Y → X ∗ Y satisfying the above
property. Notice that the diagram is the same as in the definition of a direct
product, with the arrows reversed.

To make the notion of a universal construction more precise, we introduce the
formal definitions of diagrams and cones. Intuitively, a diagram in a category C is
exactly what one would expect: a collection of objects Ci of C together with arrows
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g : Ci → Cj between certain objects in the diagram. Formally, a D-shaped diagram
in C is a functor F : D → C, where D is a small category (a category for which |D| is
a set, rather than a proper class). Thus, an object Ci in a D-shaped diagram is the
image of some object Di of D under the functor F , and an arrow in the D-shaped
diagram is the image of some arrow in D under the functor F .

We define a cone for a D-shaped diagram F to be an object C of C together with
an arrow fi : C → Ci for every object Ci in the D-shaped diagram such that

Ci
g

// Cj

C

fi

__@@@@@@@@ fj

>>~~~~~~~

commutes whenever g : Ci → Cj is an arrow in the D-shaped diagram. We denote
such a cone by {fi : C → Ci}. A cone {fi : C → Ci} is said to be universal if, given
any other cone {f ′i : C ′ → Ci}, there exists a unique arrow f : C ′ → C making

Ci

C

fi
>>~~~~~~~

C ′

f ′i

``AAAAAAAA

f
oo

commute for every object Ci in the D-shaped diagram. In this case, we call C a
limit of the D-shaped diagram F , and we write C ∼= lim F .

Dually, we can define a cocone {fi : Ci → C} for a D-shaped diagram F to be
an object C of C together with an arrow fi : Ci → C for every object Ci in the
D-shaped diagram such that all of the resulting triangles commute. A cocone is
universal if, given any other cocone {f ′i : Ci → C ′}, there exists a unique arrow
f : C → C ′ making

Ci
f ′i

~~}}
}}

}}
}} fi

  
@@

@@
@@

@@

C ′ C
f

oo

commute for every object Ci in the D-shaped diagram. This time we call C a
colimit of the D-shaped diagram F , and we write C ∼= colim F .

If we now let D be a two-object category whose only arrows are identities and
let C be the category of groups, then we can choose a functor F : D → C sending
one of the the objects of D to a group X and sending the other object of D to a
group Y . Then a limit of the D-shaped diagram F is the group X × Y , while a
colimit of F is the group X ∗ Y .

5. Geometric Realization

In Section 3 we began with the notion of a simplicial complex and by abstrac-
tion arrived at the purely algebraic notion of a simplicial set. In this section we
use colimits to go the other direction, constructing topological spaces from given
simplicial sets. Recall that the standard topological n-simplex is defined to be the
subspace

∆n = {(t0, . . . , tn) : 0 ≤ ti ≤ 1,
∑

ti = 1}
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of Rn+1 with the usual subspace topology. For example, ∆0 is the standard basis
vector e0, ∆1 is the line segment with endpoints e0 and e1, and ∆2 a triangle with
vertices e0, e1, and e2. Define maps

δi(t0, . . . , tn−1) = (t0, . . . , ti−1, 0, ti, . . . , tn−1)

and

σi(t0, . . . , tn+1) = (t0, . . . , ti + ti+1, . . . , tn+1).

for 0 ≤ i ≤ n. We can think of the maps δi as “including” the standard topological
(n−1)-simplex as faces of the standard n-simplex, and we can think of the maps σi
as “collapsing” the standard (n + 1)-simplex to give an n-simplex. The geometric
realization of a simplicial set X is a topological space |X| defined as follows. As a
set we have

|X| =

∐
n≥0

Xn ×∆n

 / ∼,

where ∼ is the equivalence relation generated by

(x, δi(u)) ∼ (∂i(x), u)

and

(x, σi(v)) ∼ (si(x), v)

where u and v are points in ∆n−1 and ∆n+1, respectively, and x is an n-simplex.
We obtain a topology for |X| by giving ∐

0≤n≤q

Xn ×∆n

 / ∼

the quotient topology for each q and taking the union of the resulting topologies. In
other words, the geometric realization of a simplicial set X is the topological space
obtained by associating, to each element of the set Xn, the standard topological
n-simplex ∆n, and then “gluing” these simplices at specific points determined by
the face and degeneracy operators.

Now let ϕn be the map Xn × ∆n → |X| induced by the inclusion of Xn × ∆n

into
∐
Xn ×∆n. Our definition of geometric realization says that the diagrams

Xn ×∆n−1

∂i×1∆n−1

��

1Xn×δi // Xn ×∆n

ϕn

��

Xn−1 ×∆n−1 ϕn−1

// |X|

Xn ×∆n+1

si×1∆n+1

��

1Xn×σi
// Xn ×∆n

ϕn

��

Xn+1 ×∆n+1 ϕn+1

// |X|

commute for every nonnegative integer n and 0 ≤ i ≤ n, and they have the property
that if {ψn : Xn×∆n → T} is any collection of maps to a topological space T such
that the outer parts of the following diagrams commute, then there exists a unique
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continuous function B : |X| → T such that

Xn ×∆n−1

∂i×1∆n−1

��

1Xn×δi // Xn ×∆n

ϕn

�� ψn

��

Xn−1 ×∆n−1 ϕn−1

//

ψn−1
--

|X|
B

$$
T

and

Xn ×∆n+1

si×1∆n+1

��

1Xn×σi
// Xn ×∆n

ϕn

�� ψn

��

Xn+1 ×∆n+1 ϕn+1

//

ψn+1
--

|X|
B

$$
T

commute for all n. The function B simply maps each point (x, v) in |X| with
x ∈ Xn and v ∈ ∆n to the point ψn(x, v) in T . This is well defined since the outer
squares in the above diagrams commute. Now every arrow f : m→ n is a product
of the generators δi and the σi described above for the category ∆ and thus induces
a map ∆(f) : ∆m → ∆n which is a product of the δi and the σi as defined in this
section. Thus we could also say that |X| is the unique topological space such that

Xn ×∆m

1Xn×∆(f)

��

X(f)×1∆m// Xm ×∆m

ϕm

��

Xn ×∆n ϕn

// |X|

commutes for every arrow f : m → n, and, given maps ψn : Xn × ∆n → T for
each n making the outer parts of the following diagram commute, there is a unique
continuous function B making

Xn ×∆m

1Xn×∆(f)

��

X(f)×1∆m// Xm ×∆m

ϕm

�� ψm

��

Xn ×∆n ϕn

//

ψn
--

|X|
B

$$
T
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commute for every f : m → n. In fact, this is equivalent to saying that |X| is the
colimit of the diagram which includes, for every f : m→ n,

Xn ×∆m

X(f)×1∆m//

1Xn×∆(f)

��

Xm ×∆m

Xn ×∆n.

To see this, recall that a cocone for this diagram consists of maps into |X| such
that the following diagram

Xn ×∆m

X(f)×1∆m//

&&NNNNNNNNNNNN

1Xn×∆(f)

��

Xm ×∆m

��

Xn ×∆n
// |X|

commutes for every f : m → n. Since the diagonal arrow is the composite of the
sides of this square, we can ignore it and think of the cocone as consisting of just
the vertical and horizontal arrows into |X|. Thus, the universal property just given
for |X| says that |X| is a colimit. This characterization of the geometric realization
will be useful in the next section.

6. Fundamental Groupoids

Although the fundamental group is extremely useful for studying topological
spaces with chosen basepoints, it is often useful to forget about basepoints and
work in the category Top of unbased topological spaces. Suppose we are given a
topological space X. We can form the category Π(X) whose objects are the points
of X and whose arrows [f ] : x→ y are the homotopy classes of paths from x to y.
Composition of arrows [f ] and [g] in Π(X) is given by [g] ◦ [f ] = [g · f ], and the
identity arrow on an object x of Π(X) is the homotopy class [cx] of the constant
path on x. To every arrow [f ] in the category Π(X) there is an inverse arrow [f−1]
such that the composites of these arrows are [f−1] ◦ [f ] = [cx] and [f ] ◦ [f−1] = [cy].
In general, a category in which every arrow is invertible is called a groupoid. The
category Π(X) is called the fundamental groupoid of the space X. Notice that the
set of arrows from x to x in Π(X) is the fundamental group of X at the basepoint
x ∈ X.

Now if Gpd denotes the category of small groupoids and functors between them,
then we can define a functor Π : Top → Gpd sending each space X to the
fundamental groupoid Π(X), and sending continuous maps X → Y to functors
Π(X)→ Π(Y ). We shall call the functor Π the fundamental groupoid functor. This
is clearly analogous to the fundamental group functor defined previously.

To illustrate how algebraic topologists use the fundamental groupoid we shall
now state and prove a modern version of the classical van Kampen theorem. Let X
be any topological space and consider a cover O = {Ui} of X in which each Ui is a
path connected open subset of X. Suppose further that the intersection of finitely
many of the Ui is again in O. Then we can regard O as a category whose arrows
are the inclusions of sets. We can also regard the fundamental groupoid functor,
restricted to the spaces and maps in O, as an O-shaped diagram Π|O : O → Gpd.
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Whenever there is an arrow Ui ↪→ Uj in O we have exactly one functor Π(Ui) →
Π(Uj) in the O-shaped diagram Π|O.

Theorem 1 (van Kampen). The fundamental groupoid Π(X) is a colimit of the
O-shaped diagram Π|O. That is, Π(X) ∼= colim Π|O.

Proof. Observe that the functors Fi : Π(Ui) → Π(X) induced by the inclusions
Ui ↪→ X form a cocone for the O-shaped diagram Π|O since the following diagram
commutes

Π(Ui)
G //

Fi ##H
HH

HH
HH

HH
Π(Uj)

Fj{{vv
vv

vv
vv

v

Π(X)

for every functor G : Π(Ui) → Π(Uj) in the O-shaped diagram. We need to show
that this cocone is universal. Suppose {F ′i : Π(Ui) → C} is any other cocone for
the O-shaped diagram. This means that

Π(Ui)
G //

F ′i
!!D

DDDDDDD
Π(Uj)

F ′j
||zzzzzzzz

C
commutes for every functor G : Π(Ui) → Π(Uj) in the O-shaped diagram. To say
that {Fi : Π(Ui)→ Π(X)} is universal means there is a unique functor F : Π(X)→
C such that

Π(Ui)

F ′i

}}{{
{{

{{
{{

{
Fi

##H
HH

HH
HH

HH

C Π(X)
F

oo

commutes for every i. In other words, F is the unique functor that restricts to F ′i
on Π(Ui). We need to show that such a functor exists.

For every object of Π(X), that is, for every point x of X, define F (x) = F ′i (x)
where Ui is any of the open subsets containing x. This definition is independent of
the choice of Ui. To see this, suppose x ∈ Ui and x ∈ Uj . Then x ∈ Ui ∩ Uj ∈ O.
Since Ui∩Uj ⊆ Ui and Ui∩Uj ⊆ Uj , we then have induced maps Π(Ui∩Uj)→ Π(Ui)
and Π(Ui ∩ Uj)→ Π(Uj) such that the following diagram commutes.

Π(Ui ∩ Uj) //

��

Π(Ui)

F ′i

��

Π(Uj)
F ′j

// C

Then F ′i (x) = F ′j(x), so F is well defined on objects. Next we must define F
on arrows. If f : x → y is a path that lies entirely in some Ui, then we define
F ([f ]) = F ′i ([f ]). It is easy to check that this definition is also independent of
the choice of Ui if f lies entirely in more than one Ui. Since every path f is the
composite of a finite number of paths fi, each of which lies entirely in some Ui,
we must define F ([f ]) to be the composite of all the F ′i ([fi]). This will give us a
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functor F : Π(X)→ C that restricts to F ′i on Π(Ui), provided that F is well defined
on arrows.

Suppose that f and g are two paths in the same homotopy class in X. Then
there is a homotopy I × I → X from f to g. We can subdivide the square I × I
into rectangles [a, b]× [c, d], each of which gets mapped entirely into one of the Ui
under the homotopy. Since the square I × I is compact, there is a finite collection
of rectangles in this subdivision, such that every point of I× I is contained in some
rectangle and each rectangle gets mapped entirely into one of the Ui. Moreover,
we can choose this subdivision so that the resulting subdivision of I × {0} refines
the subdivision used above to decompose f into paths fi. We can also decompose
g into paths gi, each of which lies entirely in one of the Ui, and we can choose the
subdivision of I × I so that that the resulting subdivision of I × {1} refines the
subdivision used to compose g into the gi. This shows that the relation [f ] = [g] is a
consequence of a finite number of relations because each rectangle in the subdivision
is a homotopy within one of the Ui. Therefore F ([f ]) = F ([g]), and the functor F
is well defined on arrows. This completes the proof. �

For a proof that the classical van Kampen theorem follows from this result, the
reader should consult [3]. In this paper we are interested instead in formulating
this more general result for simplicial sets. To do this, we must first define the
fundamental groupoid of a simplicial set.

Recall that each object n of the category ∆ is an ordered set {0, 1, . . . , n}. We
can also think of n as a category consisting of objects 0, 1, . . . , n with arrows

0→ 1→ · · · → n

between consecutive objects, plus identities and composites. In Section 5 we defined
the geometric realization of a space X to be the colimit of the diagram which
includes, for every f : m→ n,

Xn ×∆m

X(f)×1∆m//

1Xn×∆(f)

��

Xm ×∆m

Xn ×∆n.

For the fundamental groupoid of a simplicial set, we need something like the geomet-
ric realization with invertible arrows. We define a (covariant) functorG : ∆→ Gpd
which sends n to the groupoid Gn with the same objects as n and exactly one ar-
row and its inverse between each object i and i+ 1. We can display this groupoid
schematically as

0
→← 1

→← · · · →← n.

The functor G is defined in the obvious way on arrows in ∆. Let Xn ×Gn denote
the groupoid whose objects are pairs (x, i) with x ∈ Xn and i ∈ |Gn| and whose
arrows are the products 1x× p where 1x is the function x 7→ x and p is an arrow in
Gn. Then we can define the fundamental groupoid Π(X) of a simplicial set X to
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be the colimit of the diagram which includes, for every f : m→ n,

Xn ×Gm
X(f)×1Gm//

1Xn×G(f)

��

Xm ×Gm

Xn ×Gn.

This is well defined because all colimits exist in the category of groupoids. In fact,
Π(X) is the image of the simplicial set X under a functor Π : sSet→ Gpd. To see
this, suppose α : X → Y is an arrow between simplicial sets X and Y and consider
the three-dimensional diagram

Xn ×Gm
1Xn×G(f)

����
��

��
��

��

X(f)×1Gm //

αn×1Gm

��

Xm ×Gm

����
��

��
��

��

αm×1Gm

��

Xn ×Gn //

αn×1Gn

��

Π(X)

Yn ×Gm

1Yn×G(f)
��

��

����
��

Y (f)×1Gm // Ym ×Gm

����
��

��
��

��

Yn ×Gn // Π(Y ).

The top and bottom faces of this diagram commute for all f by the definition of the
fundamental groupoid. The left side face commutes for all f trivially, and the back
face commutes for all f by naturality (recall that an arrow α between simplicial sets
is a natural transformation). It follows that any two composites from Xn ×Gm to
Π(Y ) are equal. By the universal property of the fundamental groupoid Π(X), there
is a unique functor Π(X) → Π(Y ) such that the above diagram commutes for all
f with this additional arrow. If we call this arrow Π(α), then we have completely
specified the functor Π : sSet → Gpd. We call this functor the fundamental
groupoid functor on simplicial sets.

We can now prove that the fundamental groupoid of the geometric realization
of a simplicial set X is equivalent (as a category) to the fundamental groupoid
Π(X) just defined. This is one reason it makes sense to use the term “fundamental
groupoid functor” for both functors Π.

Definition 6. A functor F : C → D is said to be

(1) full if the map C(X,Y ) → D(F (X), F (Y )) induced by F is surjective for
all objects X and Y of C.

(2) faithful if C(X,Y ) → D(F (X), F (Y )) is injective for all objects X and Y
of C.

(3) essentially surjective if each object X ′ of D is isomorphic to an object of
the form F (X) for some object X of C.

If there is a full, faithful, and essentially surjective functor F : C → D, then every
set D(X ′, Y ′) is in bijection with some set C(X,Y ) where X ′ is isomorphic to F (X)
and Y ′ is isomorphic to F (Y ), so we say that the categories C and D are equivalent.
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Theorem 1. Let X be a simplicial set. Then the categories Π(X) and Π(|X|) are
equivalent.

Proof. When we construct the geometric realization of X, we map each object
(x, ei) of Xn ×∆n to a point of |X|. Regard this point as an object of Π(|X|) and
call it ψn(x, i). Next, suppose 1x×p is an arrow in Xn×Gn where p : i→ j. There
is a path (1− t)ei + tej in ∆n, parameterized by t, and this corresponds to a path
in |X|. Then the homotopy class of this path is an arrow in Π(|X|), which we can
call ψn(1Xn × p). This specifies a functor ψn : Xn ×Gn → Π(|X|) of groupoids for
each nonnegative integer n.

By the universal property of Π(X), there is a unique functor B : Π(X)→ Π(|X|)
such that

Xn ×Gm
1Xn×G(f)

��

X(f)×1Gm// Xm ×Gm
ϕm

�� ψm

��

Xn ×Gn ϕn

//

ψn ,,

Π(X)

B

%%

Π(|X|)

commutes for all f : m→ n. Now, each standard topological simplex ∆n is simply
connected, so any path between vertices ψn(x, i) and ψn(x, j) in the space |X| is
homotopic to one of the induced paths ψn(1x× p). This shows that B is full. Since
there is exactly one arrow between any two objects of Gn, there is exactly one arrow
between any two objects of Xn × Gn. It follows that there is at most one arrow
between any two objects ϕn(x, i) and ϕn(x, j) of Π(X). Thus, if two paths between
the points ψn(x, i) and ψn(x, j) of |X| are homotopic, then they are in the image of
only one arrow under the functor B. This shows that B is faithful. Finally, since
each ∆n is path-connected, there is a path from any point of |X| to some ψn(x, i).
Since every path in |X| corresponds to an invertible arrow in Π(|X|), this shows
that B is essentially surjective. This completes the proof. �

7. Adjunctions

Before we can prove the van Kampen theorem for simplicial sets, we need to
introduce the notion of an adjunction. Suppose C and D are categories and there
are functors L : C → D and R : D → C. Given an object X of C and an object Y of
D, we can consider the arrows X → R(Y ) in C and L(X)→ Y in D. The term “ad-
junction” refers to a situation in which each arrow X → R(Y ) corresponds exactly
to an arrow L(X)→ Y and this correspondence preserves categorical structure as
X and Y vary.

Definition 7. An adjunction from C to D consists of functors L : C → D and
R : D → C together with a bijection

θX,Y : D(L(X), Y ) ∼= C(X,R(Y ))
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of sets, defined for all objects X of C and Y of D, and natural in these arguments
X and Y . This last requirement means that the diagram

L(X)
f
//

L(g)

��

Y

h

��

L(X ′)
f ′
// Y ′

commutes if and only if

X
θf
//

g

��

R(Y )

R(h)

��

X ′
θf ′
// R(Y ′)

commutes. Given such an adjunction, we say that L is a left adjoint of R, and R
is a right adjoint of L.

Adjunctions are ubiquitous in mathematics. In topology the functor L : Set→
Top which sends each set X to the topological space X with the discrete topology
is left adjoint to the functor R : Top → Set, (X, T ) 7→ X which “forgets” the
topology T . In algebra the functor L : Set→ Grp which sends each set X to the
free group with generators x ∈ X is left adjoint to the functor R : Grp → Set
which sends each group to its underlying set.

The following technical lemma will give us a very interesting example of adjoint
functors involving simplicial sets.

Lemma 1. Suppose G and H are small groupoids and X is a set. Then there is a
bijection φ : Gpd(X × G,H) ∼= Set(X,Gpd(G,H)) which is natural in H and X.

Proof. Let S : X × G → H be a functor in Gpd(X × G,H). For each element x of
X, define a functor (φS)(x) in Gpd(G,H) sending each object G of G to the object
S(x,G) of H and sending each arrow f : G1 → G2 in G to the arrow S(1x × f) in
H. Then there is a function φ : Gpd(X × G,H)→ Set(X,Gpd(G,H)) defined by
S 7→ φS. Next, suppose t is a function in Set(X,Gpd(G,H)). Then t assigns a
functor G → H to every element of X. Define a functor φ−1t in Gpd(X × G,H)
sending each object (x,G) of X × G to the object t(x)(G) of H and sending each
arrow 1x×f : (x,G1)→ (x,G2) to the arrow t(x)(f) in H. Then the function φ−1 :
t 7→ φ−1t is an inverse for φ since φ−1(φS) : (x,G) 7→ (φS)(x)(G) = S(x,G) and
φ−1(φS) : 1x × f 7→ (φS)(x)(f) = S(1x × f) and also φ(φ−1t) : x 7→ φ(φ−1t)(x) =
t(x). Hence φ is a bijection.

We must now show that φ is natural inH and X. Consider the following diagram

X × G S //

u×1G

��

H

V

��

X ′ × G
S′
// H′

where u is a set function and S, S′, and V are functors of groupoids. The composite
functor V ◦ S takes each object (x,G) of X ×G to an object V (S(x,G)) of H′ and
takes each arrow 1x×f of X×G to an arrow V (S(1x×f)) of H′. On the other hand,
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the composite S′ ◦ (u × 1G) takes the object (x,G) to an object S′(u(x), G) and
the arrow 1x × f to an arrow S′(1u(x) × f). Thus the diagram commutes precisely
when V (S(x,G)) = S′(u(x), G) and V (S(1x × f)) = S′(1u(x) × f). Next, consider
the following diagram.

X
φS
//

u

��

Gpd(G,H)

V ◦
��

X ′
φS′
// Gpd(G,H′)

If we start with an element x in X, compute the functor (φS)(x), and then post-
compose the result with the functor V , we obtain a functor from G to H′ which
sends each object G of G to the object V (S(x,G)) of H′ and sends each arrow f in
G to an arrow V (S(1x×f)) in H′. On the other hand, the composite (φS′)(u) takes
x to a functor which sends each object G of G to the object S′(u(x), G) of H′ and
sends each arrow f in G to an arrow S′(1u(x) × f) in H′. Again, the diagram com-
mutes precisely when V (S(x,G)) = S′(u(x), G) and V (S(1x × f)) = S′(1u(x) × f).
This proves that the bijection is natural in X and H. �

Let the nerve NC of a small category C be a simplicial set, that is, a contravariant
functor ∆ → Set, defined as follows. On objects we have n 7→ Cat(n, C) where
Cat is the category of small categories and functors between them. In other words,
the nerve NC sends the category n to the set of functors n → C. It sends each
arrow f : m→ n to the arrow Cat(n, C)→ Cat(m, C) defined by t 7→ t ◦ f .

Our next result involves the functor N : Gpd→ sSet which sends each groupoid
G to the nerve NG. If F : G → H is a functor of groupoids, this functor N gives
us a natural transformation NF : NG → NH whose nth component NFn sends
the functor T : n → G in NGn = Cat(n,G) to the functor FT : n → H in
NHn = Cat(n,H).

Theorem 2. The fundamental groupoid functor Π : sSet→ Gpd is a left adjoint
of the nerve functor N : Gpd→ sSet.

Proof. There is an obvious bijection Cat(n,H) ∼= Gpd(Gn,H) where Gn is one
of the groupoids that we defined above to be the image of n under the functor
G : ∆ → Gpd. This gives us a bijection sSet(X,NH) ∼= sSet(X,N ′H) where
N ′H is defined by N ′H : n 7→ Gpd(Gn,H). This bijection is natural in X and H,
so it is enough to show that there exists a bijection sSet(X,N ′H) ∼= Gpd(Π(X),H)
which is natural in X and H.

Let α be an element of sSet(X,N ′H). This is a mapping α : X → N ′H of
simplicial sets. It consists of a function αn : Xn → Gpd(n,H) for each nonnegative
integer n such that

Xn

αn

��

X(f)
// Xm

αm

��

Gpd(Gn,H)
◦G(f)

// Gpd(Gm,H)

commutes where f : m → n is any arrow in the category ∆. If we let c be the
composite map Xn → Gpd(Gm,H) then we can divide this commutative square
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diagram into the following two commutative triangular diagrams

Xn

c

((QQQQQQQQQQQQQQ

αn

��

Gpd(Gn,H)
◦G(f)

// Gpd(Gm,H)

Xn

X(f)
//

c
&&LLLLLLLLLL Xm

αm

��

Gpd(Gm,H)

where f : m→ n. If we apply the inverse of the bijection φ : Gpd(Xi ×Gj ,H) ∼=
Set(Xi,Gpd(Gj ,H)) constructed in Lemma 1, we find that the following diagrams
commute

Xn ×Gm
φ−1c

$$I
III

III
III

1Xn×G(f)

��

Xn ×Gn
φ−1αn

// H

Xn ×Gm
X(f)×1Gm//

φ−1c
''NNNNNNNNNNNN Xm ×Gm

φ−1αm

��

H

for all f : m → n. But the diagonal arrows are the same for these two diagrams,
so we conclude that

Xn ×Gm
X(f)×1Gm//

1Xn×G(f)

��

Xm ×Gm

φ−1αm

��

Xn ×Gn
φ−1αn

// H

commutes for all f : m→ n. This proves that {φ−1αi : Xi ×Gi → H} is a cocone
for the diagram which includes, for every arrow f : m→ n,

Xn ×Gm
X(f)×1Gm//

1Xn×G(f)

��

Xm ×Gm

Xn ×Gn.

But Π(X) is the colimit for this diagram, so there is a unique functor of groupoids
Π(X)→ H, which we shall call θX,Hα, such that the following diagram commutes

Xn ×Gm
X(f)×1Gm//

1Xn×G(f)

��

Xm ×Gm
ϕm

�� φ−1αm

��

Xn ×Gn ϕn

//

φ−1αn --

Π(X)

θX,Hα

$$
H

for all arrows f : m→ n. Define a function θX,H : sSet(X,N ′H)→ Gpd(Π(X),H)

by α 7→ θX,Hα. Given any functor B : Π(X) → H, let θ−1
X,HB be a the natural

transformation whose nth component is φ(B ◦ϕn). Then the function θ−1
X,H defined

by B 7→ θ−1
X,HB is an inverse for θX,H since the nth component of θ−1

X,H(θX,Hα) is



18 DYLAN G.L. ALLEGRETTI

φ((θX,Hα) ◦ ϕn) = αn and since θX,H(θ−1
X,HB) = B. This proves that θX,H is a

bijection. It remains to show that θX,H is natural in in X and H.
Let T be any functor from H to H′ and let σ be a mapping from a simplicial set

X to a simplicial set X ′. Consider the diagram

Xn
αn //

σn

��

Gpd(Gn,H)

T◦
��

X ′n
α′n

// Gpd(Gn,H′).

Since the bijection φ : Gpd(Xn ×Gn,H) ∼= Set(Xn,Gpd(Gn,H)) constructed in
Lemma 1 is natural in Xn and H, it follows that this diagram commutes for all n
if and only if

Xn ×Gn
φ−1αn //

σn×1Gn

��

H

T

��

X ′n ×Gn
φ−1α′n

// H′

commutes for all n. Now the fundamental groupoids Π(X) and Π(X ′) have the
property that θX,Hα and θX,Hα

′ are the unique functors making the diagrams

Xn ×Gn
ϕn //

φ−1αn ,,

Π(X)

θX,Hα

""E
EE

EE
EE

E

H

X ′n ×Gn
ϕ′n //

φ−1α′n ,,

Π(X ′)
θX′,H′α

′

""F
FFFFFFF

H′

commute for each nonnegative integer n. Thus the last square diagram commutes
for all n precisely when

Xn ×Gn
ϕn //

σn×1Gn

��

Π(X)
θX,Hα

// H

T

��

X ′n ×Gn
ϕ′n

// Π(X ′)
θX′,H′α

′
// H′
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commutes for all n. Now Π(σ) is defined to be the unique functor such that the
following diagram commutes for all f : m→ n.

Xn ×Gm
1Xn×G(f)

����
��

��
��

��

X(f)×1Gm //

σn×1Gm

��

Xm ×Gm

ϕm

����
��

��
��

��

σm×1Gm

��

Xn ×Gn
ϕn //

σn×1Gn

��

Π(X)

Π(σ)

��

X ′n ×Gm

1X′n
×G(f)

��
��

����
��

X′(f)×1Gm // X ′m ×Gm

ϕ′m
����

��
��

��
��

X ′n ×Gn
ϕ′n

// Π(X ′)

In particular, the front face of this diagram commutes for all f . It follows that our
last rectangular diagram commutes for all n precisely when

Π(X)
θX,Hα

//

Π(σ)

��

H

T

��

Π(X ′)
θX′,H′α

′
// H′

commutes for all n. This is the desired commutative diagram, so the proof is
complete. �

Theorem 3. Left adjoints preserve colimits. That is, if F : D → C is a D-
shaped diagram and L : C → E is a left adjoint of some functor R : E → C, then
L(colim F ) ∼= colim LF .

Proof. First put C = colim F . Our definition of the colimit says that there is a
universal cocone {fi : Ci → C} for the D-shaped diagram F . Since L is a functor,
we know that {L(fi) : L(Ci) → L(C)} is a cocone for the D-shaped diagram
LF : D → E . We want to show that L(C) is the colimit of LF ; hence we must
show that the cocone {L(fi) : L(Ci)→ L(C)} is universal.

Let {hi : L(Ci)→ E} be any other cocone for LF . By our definition this means
that

L(Ci)

hi
""D

DD
DD

DD
D

L(g)
// L(Cj)

hj
||yy

yy
yy

yy

E

commutes whenever g : Ci → Cj is an arrow in the D-shaped diagram F . Now
L : C → E is a left adjoint of R : E → C, so there is a bijection of sets θCi,E :
E(L(Ci), E) ∼= C(Ci, R(E)) which is natural in Ci and E. Therefore

Ci

θCi,E
hi !!D

DD
DD

DD
D

g
// Cj

θCi,E
hj||zz

zz
zz

zz

R(E)
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commutes whenever g : Ci → Cj is an arrow in the D-shaped diagram F . This
shows that {θCi,Ehi : Ci → R(E)} is a cocone for F . Since {fi : Ci → C} is a
universal cocone, it follows that there is a unique arrow f : C → R(E) such that

Ci
θCi,E

hi

||zz
zz

zz
zz fi

��
??

??
??

??

R(E) C
f

oo

commutes for every object Ci in the D-shaped diagram F . Since L is a left adjoint
of R, there is a bijection of sets θC,E : E(L(C), E) ∼= C(C,R(E)), and we can define

k = θ−1
C,Ef : L(C)→ E. Then

L(Ci)

L(fi)

##G
GG

GG
GG

GG
hi

}}{{
{{

{{
{{

{

E L(C)
k

oo

commutes for every object Ci in the D-shaped diagram F . Since the arrow f is
unique and θ−1

C,E is injective, we conclude that k is the unique map making the

above diagram commute. This proves that the cocone {L(fi) : L(Ci) → L(C)} is
universal. �

8. Van Kampen’s Theorem

Now that we have discussed adjunctions, we can finally return to our discussion
of van Kampen’s theorem and show that a version of the theorem holds for simplicial
sets. First, let us observe that van Kampen’s theorem is really a statement about
the preservation of colimits. If O = {Ui} is a cover of X satisfying the hypotheses
of van Kampen’s theorem, then

Ui

fi
  

@@
@@

@@
@@

g
// Uj

fj
~~~~

~~
~~

~

X

commutes where g is any arrow in O and the functions fi are the inclusions of the
Ui into X. This shows that {fi : Ui → X} is a cocone for the diagram F consisting
of the sets Ui and the inclusion maps between them. If {f ′i : Ui → X ′} is any
other cocone for this diagram, then the function f : X → X ′ sending each point
x ∈ Ui ⊆ X to fi(x) is the unique function making

Ui
f ′i

  
@@

@@
@@

@@
fi

~~}}
}}

}}
}}

X ′ X
f

oo

commute for all Ui. Hence X is the colimit of F , and van Kampen’s theorem says

Π(colim F ) ∼= colim ΠF.
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On the other hand, if F is any diagram in the category of simplicial sets, then this
equation still holds by Theorems 2 and 3. This shows the fundamental groupoid
functor Π : sSet → Gpd preserves all colimits and thus satisfies what could be
viewed as a stronger version of the van Kampen theorem. The fact that versions
of van Kampen’s theorem hold for both topological spaces and simplicial sets is a
manifestation of the fact that topological spaces and simplicial sets are, in some
sense, the “same up to homotopy.” It is possible to develop an entire homotopy
theory for simplicial sets, but readers wishing to understand these statements will
have to consult the more advanced texts listed below.
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