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Abstract. This paper examines two major results concerning the symmetric
group, Sn. The first result, Landau’s theorem, gives an asymptotic formula

for the maximum order of an element in Sn, and the second, Dixon’s Theo-
rem, settled an open conjecture concerning the probability that two randomly

selected elements of Sn will generate An or Sn.

1. Introduction

The field of statistical group theory was born in the 1960s with the series of
papers by Erdős and Turán that gave a statistical characterization of the symmetric
group (see, for example, [5]). It is an easy exercise in induction to show that, for
example, if and element of Sn is chosen uniformly at random, the length of the
cycle containing 1 is distributed uniformly. On the other hand, the two authors
show that the order of elements in Sn are asymptotically normally distributed. This
paper will give two examples of proofs on the symmetric group: one “classical”,
the other statistical in the style of Erdős and Turán. Landau’s theorem, proved in
1902, states that the maximum order of an element in Sn is asymptotic to e

√
n log n.

Dixon’s theorem states that as n goes to infinity, if two elements are selected from
Sn uniformly at random, the probability that these two elements generate An or
Sn approaches 1. Both proofs are interesting in that they use both combinatorial
and number-theoretical techniques.

2. A Proof of Landau’s Theorem

The order of an element x in a group is defined as the smallest non-negative
integer n such that xn = 1. It is not difficult to prove that for an element x in Sn

with cycle lengths a1, a2, . . . , ak, the order of x is lcm (a1, a2, . . . , ak). Landau’s
Theorem, proved in 1902, states that the maximum order of an element in Sn is
asymptotic to e

√
n log n. The proof in this paper follows that of Miller [6].

Definition 2.1. The Landau function G(n) is defined as the maximum order of
an element in Sn. Equivalently,

G(n) = max{lcm (a1, a2, . . . , ak) :
∑

ai = n}

Definition 2.2. If m is any natural number greater than 1 and has prime factor-
ization qe1

1 qe2
2 . . . qek

k , define S(m) =
∑k

i=1 qei
i

The following lemma will allow us to relate the sum of the prime factors of a
given number to the Landau function.

Lemma 2.3. If lcm (a1, a2, . . . , ak) = m, S(m) ≤
∑k

i=1 ai
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Proof. Given m, take a1, a2, . . . , ak with lcm (a1, a2, . . . , ak) = m such that
∑

ai

is minimal. Each a1 is greater than 1 since if ai = 1 for any i, then ai can be
removed to get a smaller sum, contradicting minimality. Moreover, each ai is a
prime power. For if not, we may decompose ai into integers b and c such that
ai = bc and gcd(a, b) = 1 where neither a nor b are 1. Assuming without loss of
generality c > b > 1, we have that b + c ≤ b + c(b − 1) = bc + (b − c) < bc and
hence we can construct a new minimal set, a1, a2, . . . , ai−1, b, c, ai+1, . . . , ak with
least common multiple m (since b and c were relatively prime).

Finally, the pis must be distinct, since only the pi with the largest exponent
contributes to the least common multiple, so any smaller power may be removed
to get a smaller sum, contradicting minimality. After these reductions, then, we
have the lcm(pe1

1 , pe2
2 , . . . , pek

k ) = m, so the set of ai with minimal sum is exactly
the prime factorization of m. This means that S(m) =

∑k
i=1 ai for the minimal

case and hence that in general S(m) ≤
∑k

i=1 ai. �

Hence we have the following two corollaries, which reduce calculating G(n) to a
purely number theoretic question.

Corollary 2.4. Sn contains an element of order m if and only if S(m) ≤ n

Proof. If S(m) ≤ n, then if m has prime decomposition qe1
1 , . . . , qek

k , there is an
element of Sn containing one cycle each of lengths qei

i for i = 1, . . . , k with the
remaining points fixed. On the other hand, if there is a partition of n with least
common multiple of m, then by the previous lemma, S(m) ≤ n. �

This gives us the following:

Corollary 2.5. G(n) = max
S(m)≤n

m

Definition 2.6. Define P to be the unique prime such that
∑

p<P p ≤ n while∑
p≤P p > n and let F (n) =

∏
p<P

p.

F (n) represents the order of an obvious candidate for G(n), i.e. the one with
disjoint cycles with lengths corresponding to the first π(P − 1) primes. The goal is
to prove that log F (n) ∼ log G(n) and then to show that log F (n) ∼

√
n log n.

Lemma 2.7. Let q1 < . . . < qs be the primes dividing G(n). Then
∑s

i=1 log qi <
2 + log F (n) + log P

Proof. We note that
s∑

j=1

qj ≤ S(G(n)) ≤ n <
∑
p≤P

p.

Define q1, . . . , qt to be the primes dividing G(n) that do not exceed P , and p1,
. . . , pr to be the odd primes not dividing G(n) that do not exceed P . Then by
subtracting q1 + · · ·+ qt from above, we have

s∑
i=t+1

qi ≤ 2 +
r∑

i=1

pi

By definition, qj > P whenever j > t, and for all i = 1, . . . , r, pi < P . We note
that log x

x is a decreasing function, so that if a ≤ b, a
log a log b ≤ b and a ≤ b

log b log a.
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Thus log qi ≤ qi
log P

P and pi ≤ P
log P log pi. Hence we have

s∑
i=t

log qi ≤ 2
log P

P
+

r∑
i=1

log pi.

We then add
∑t

i=1 log qi to both sides to get the conclusion. �

Lemma 2.8. Let q be prime. If e > 1 and qe|G(n), then qe ≤ 2P and q ≤
√

2P .

Proof. Denote by Q the smallest prime not dividing G(n). We actually show that
qe ≤ 2Q. Suppose qe > 2Q, and let N be the smallest integer such that QN > q.
Since by definition QN−1 < q, we have q < QN < qQ. Now let m = QN

q G(n). Thus
m > G(n). Because q does not divide Q, m has the same prime factorization of
G(n) except that it includes a factor of QN and the exponent of q is (e−1) instead
of e. Thus we have the following equation for S(m):

S(m) = S(G(n)) + (QN − qe + qe−1).

Note that it is sufficient to prove that (QN − qe + qe−1) < 0, since this would imply
S(m) ≤ S(G(n)) ≤ n, while simultaneously m > G(n). This would contradict 2.5.
If q < Q, then N = 1 and −qe + qe−1 ≤ −qe/2 < −(2Q)/2 < −Q, a contradiction.
On the other hand, if q > Q, since e > 1, then

QN − qe + qe−1 < qQ− q(q − 1) ≤ qQ− qQ = 0,

also a contradiction. Q cannot equal q, of course, since q divides G(n) and Q does
not. �

Remark 2.9. The lemma is interesting in that it shows the prime factors of G(n)
are bunched up; once one is skipped, the number of primes larger than Q dividing
G(n) is bounded by π(2Q)− π(Q).

Theorem 2.10. log F (n) ∼ log G(n).

Proof. Split up the factorization of G(n) into primes with exponent 1 and primes
which appear with exponent greater than 1. The latter set contains at most

√
2P

primes, for otherwise we would have at least one prime factor greater than
√

2P
raised to a power of two or greater, contradicting Lemma 2.8. Thus

log F (n) ≤ log G(n) ≤ 2 + log F (n) + log P +
√

2P log 2P.

It thus suffices to prove that log F (n) > cP for some constant c. For this it is
sufficient to show that A(x) =

∑
p≤x log p ∼ x. Abel’s summation formula says

that if a(x) is the indicator function of the primes,

A(x) =
x∑

j=1

a(j) log j = π(x) log(x)− π(1) log(1)−
∫ x

2

π(x)
x

.

By the prime number theorem, then, we have that

A(x)
x

= 1 +
1
x

[∫ √
x

2

π(x)
x

+
∫ x

√
x

π(x)
x

]
∼ 1 +

1
x

[∫ √
x

2

1
log x

+
∫ x

√
x

1
log x

]
.

The theorem is proved with simple bounds on the last term above. �

Theorem 2.11.
∑

p<
√

n log n

p ∼ n.
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Proof. We will need a statement equivalent to the proof of the Prime Number The-
orem (whose equivalence we will not prove but can be found in [6]). In particular,
if we define

A (x) =
∑

p ≤ xp,

then we have

A(x) ∼ x2

2 log x
.

The proof is immediate when one substitutes
√

n log n for x. �

Corollary 2.12. G(n) ∼ e
√

n log n.

Proof. By Theorem 2.11, we have that log F (n) ∼
√

n log n. Hence F (n) ∼ e
√

n log n.
By Theorem 2.10, G(n) ∼ e

√
n log n. �

3. Dixon’s Theorem

We will now prove Dixon’s theorem, which settled affirmatively a 70-year-old
conjecture that as n tends to infinity, the probability that randomly selected pairs
of elements of Sn generate either An or Sn tends to 1. The theorem employs some
algebraic machinery, combinatorial analysis, and some of the results of Erdős and
Turán. We begin with some standard definitions about group actions that will help
classify the subgroups of Sn that candidate pairs will generate.

Definition 3.1. The orbit of an element a ∈ A under the action of a group G is
the set {ag : g ∈ G}.

Definition 3.2. A subset of S ⊆ {1, 2, . . . , n} is called a block if for any element
g ∈ G, Sg ∩ S = ∅.

Definition 3.3. A subgroup G ≤ Sn is called transitive if it has one orbit.

Definition 3.4. A subgroup G ≤ Sn is called primitive if it is transitive and has
no non-trivial blocks, where singletons and the whole set are considered trivial.

Definition 3.5. tn and pn are defined as the proportion of the (n!)2 pairs of
elements in Sn that generate a transitive group and primitive group, respectively.

The idea of the proof is to show that pn is nearly 1, while at the same time using
primitivity as part of a sufficient condition for generating An and Sn.

Lemma 3.6. We have the recursive formula n =
n∑

i=1

(
n

i

)−1

iti

Proof. Choose any partition of {1, 2, . . . , n}, say, A1, A2, . . . , Ak. Then the number
of pairs of elements (x, y) that have exactly A1, A2, . . . , Ak as fixed blocks in the
subgroup 〈x, y〉 is

n∏
i=1

(ki!)2tki

where ki = |Ai|. We next observe that the number of partitions of {1, 2, . . . , n}
that have ji parts of size i is

vj1,j2,...,jn =
n∏

i=1

n!
(i!)jiji!

.
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This, of course, comes from the multinomial coefficient with ki indices of i, further
divided by

∏n
i=1 ji! because subsets of the same size are not distinguished. Thus

by summing over all n-tuples (j1, j2, . . . , jn) such that
∑n

i=1 iji = n, we arrive at
the identity:

(n!)2 =
∑

vj1,j2,...,jn

n∏
i=1

((i!)2ti)ji

Substituting for vj1,j2,...,jn we get

n! =
∑ n∏

i=1

(i!ti)ji

ji!
.

Next, we multiply each side by Xn and formally sum over all nonnegative integers
n, giving the following formal identities:

∞∑
n=0

n!Xn =
∞∑

n=0

[∑ n∏
i=1

(i!ti)ki

ki!

]
Xn =

∞∏
i=0

∞∑
j=0

(i!tiXi)j

j!
= exp

( ∞∑
i=0

i!tiXi

)
.

The second equality can be justified as follows: the series on the right will contribute
1 to the coefficient of Xn if and only if it is the product of coefficients whose power
terms where the ns are the kis. We recall that (ef(x))′ = f ′(x)ef(x), and hence we
have:

∞∑
n=0

n!nXn−1 =
∞∑

i=1

i!itiXi−1
∞∑

k=0

k!Xk.

Thus by taking the formal product of the two series on the right and equating the
(n− 1)st coefficients, we get

n =
n∑

i=1

(
n

i

)−1

iti

as desired. �

Lemma 3.7. We have the relation tn = 1− 1
n + O(n−2)

Proof. Define rn = n(1− tn) and cn =
∑n−1

i=1

(
n
i

)−1
i. Then

rn = n(1− tn) =
n∑

i=1

(
n

i

)−1

i−
n∑

i=1

(
n

i

)−1

i(1− ti) = cn −
n∑

i=1

(
n

i

)−1

ri

Since
(
n
i

)
=
(

n
n−i

)
, we may write cn =

∑n−1
i=1

(
n
i

)−1
i = n

∑n−1
i=1

(
n
i

)−1. Since also(
n
3

)
≤
(
n
c

)
, c ≤ n− 3 and

(
n
3

)
= O(n3), we have the following upper bound:

cn ≤ n
n−1∑
i=1

(
n

3

)−1

= O(n−1)

Since ri ≥ 0, rn ≤ cn by definition. Hence

tn = 1− rn

n
≥ 1− cn

n
which goes to 1 as n goes to infinity. �

Definition 3.8. An imprimitive group is a transitive group which is not primitive.
The proportion of pairs of elements in Sn which generate an imprimitive group is
denoted by in.
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Proposition 3.9. There are at most (m!)2tm(d!)2m pairs (x, y) ∈ Sn × Sn that
generate an imprimitive group with m blocks.

Proof. As in the first part of the proof, there are exactly (m!)2tm pairs of elements
which generate a group that has m blocks of equal size of d. Each element x and y
acts transitively on these blocks, so the action of x or y on a single block determines
the action of x or y on the whole set. This gives at most (d!)2m possible choices
(with each factor d! coming from the internal variation within each block). �

Lemma 3.10. The proportion of pairs of (x, y) that generate an imprimitive group
in Sn is at most n2−

n
4 .

Proof. There are n!
(d!)mm! ways to partition {1, 2, . . . , n} into m blocks of size d. Each

imprimitive group has some block structure, even if it is not unique, so summing
over each pair m, d such that md = n, we have at most n!(m!)2tm(d!)2m

(d!)mm! pairs of
generators, and hence we have:

in ≤
∑

md=n

(m!)2tm(d!)2m

n!(d!)mm!
≤
∑

md=n

m!(d!)m

n!

We need the identity
m∏

i=1

i

(
id

d

)−1

=
m∏

i=1

(id− d)!d!i
(id)!

=
m!(d!)m

n!
.

We also note that
(id− d)!d!i

(id)!
=

d−1∏
j=1

d− j

id− j
.

Since each d−j
id−j ≤

1
i , this product is bounded above by

≤
m∏

i=1

i−(d−1) = (m!)−(d−1).

Since we require m ≥ 2 and d ≥ 2, we have m! ≥ 2
m
2 and −(d − 1) ≤ d

2 . Hence
m!(d!)m

n! ≤ (2
m
2 )−

d
2 = 2−

n
4 . So we arrive at:

in ≤
∑

md=n

2−
n
4 ≤ n2−

n
4 = O(n−2).

�

We have shown that almost all pairs of elements generate a primitive group.
This is very useful when combined with Jordan’s Theorem, which gives a sufficient
condition for a subgroup to generate An or Sn.

Theorem 3.11. (Jordan, 1893). A primitive subgroup of Sn is equal to either An

or Sn whenever it contains at least one permutation which is a q-cycle for some
prime q ≤ n− 3.

Proof. Throughout the proof we will make use of a few lemmas whose proofs are
elementary and can be found in [7]. To begin, we must give a multidimensional
analogue to transitivity:

Definition 3.12. A subgroup G ≤ Sn is called k-fold transitive if for every pair of
ordered k-tuples S and B, there exists g ∈ G such that Sg = B.
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Suppose that some element g ∈ G is a q-cycle; without loss of generality g =
(123 . . . q). Throughout the proof we use the following notation: Ω = {1, 2, . . . , n},
Γ = {1, 2, . . . , q}, and ∆ = {q + 1, . . . , n}, where of course |∆| ≥ 3 by hypothesis.
For any set A, we also denote the pointwise stabiliser of A by GA. Observe that
〈g〉, having order q, is a Sylow subgroup of G∆, which has order dividing q!. It is
not hard to see that G∆ is primitive on Γ. Thus we can apply the following lemma
from [7]:

Lemma 3.13. If G is primitive on {1, 2, . . . , n} and G∆ is primitive on Γ, where
1 < |Γ| = m < n, then G is (n−m + 1)-fold transitive and primitive on Ω.

We next use the following lemma, which can also be found in [7]:

Lemma 3.14. Let G be k-fold transitive on Ω, and a subgroup U ≤ GΓ be a
subgroup such that for any V such that U is conjugate to V in G, U is conjugate to
V in GΓ. Then the normalizer N = N (U) is k-fold transitive on the set of points
left fixed by U .

Since 〈g〉 is a Sylow subgroup, it satisfies the hypotheses of the lemma and hence
the normalizer N of 〈g〉 is k-fold transitive on G∆. If GS denotes the action of G
on the subset S, then this amounts to N∆ = S∆, since k-fold transitivity on a set
of cardinality k generates the entire S∆. The following stronger fact is also true:

Lemma 3.15. If α ∈ Γ, N∆
α = S∆.

Proof. By the work above, N∆ = S∆, so for any k-tuple τ ∈ S∆, there exists
σ ∈ N∆ such that σ = τ on ∆. But if we take the composition gcσ for some
appropriate exponent c, then gcσ(α) = α, where still gcσ = τ on ∆, since gc leaves
these points fixed. �

The next fact about NΓ
α will give us a complete characterization of the commu-

tator subgroup of Nα:

Lemma 3.16. NΓ
α is abelian.

Proof.
NΓ

α = {σ ∈ Sn : σ(α) = α, σ|∆ = id, σ 〈g〉σ−1 = 〈g〉}
In particular, the first and third condition give exactly one σ ∈ Sn for each
g ∈ 〈g〉 such that σ 〈g〉σ−1 = 〈g〉. This is because for each gc ∈ 〈g〉, we require
(σ(1)σ(c)σ(2c + 1) . . . ασ(α + c) . . . ) ∈ σ 〈g〉σ−1. Since the elements in the cycle
must be equally spaced, together these uniquely determine some element in Sn. NΓ

α

is isomorphic to some subgroup of the automorphisms of 〈g〉; in other words,

NΓ
α
∼= T ≤ Aut(〈g〉).

Since Aut(〈g〉) is abelian, the result follows. �

We just need one more well-known fact [3], namely that

Lemma 3.17. Any primitive group G containing a 3-cycle is the alternating group
or the symmetric group.

Proof. Denote by Λ the largest subset of Ω such that Alt(Λ) ≤ G, where Alt(Λ)
denotes the subgroup of AΩ which leaves points outside of Λ fixed. Such a set is
non-empty since G contains a 3-cycle. For the sake of contradiction, assume Λ 6= Ω.
Λ is not a block, so for some g ∈ G, Λ ∩ Λg 6= ∅ or Λ. Suppose this intersection
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consists of at most one point for each g. Call this point a and let the original 3-cycle
be (abc). We note that since g Alt(Λ)g−1 = Alt(Λg) ≤ G, some other 3-cycle (ade)
is in G as well. It’s easily checked that

(abc) (ade) (abc)−1 (ade)−1 = (abd) .

Now suppose that the intersection Λ∩Λg consists of two points or more points,
including a and b, for some g ∈ G, choose d ∈ Λg − Λ. We know there is such
a point since G is primitive. Since Alt(Λg) ≤ G, G contains the 3-cycle (abd).
Now suppose Alt(Φ) = Λ ∪ {d}. We wish to show Alt(Φ) ≤ G, which will give
the desired contradiction. To do this, note that we only need to show that for all
elements σ ∈ Alt(Φ) such that σ(d) 6= d, we have σ ∈ G. Of course, if without loss
of generality a = σ(d) 6= d but σ ∈ Alt(Φ), then σ(d) ∈ Λ. But then we have some
τ ∈ Alt(∆) such that τ(σ(d)) = b, so π = τσ ∈ Alt(∆). However, then we have
both (abd) πσ and (abd)π in G since the former fixes d. Then clearly σ ∈ G. �

Note that the commutator of a direct product follows a rather nice rule:

[Nα, Nα] =
[
N∆

α , N∆
α

]
×
[
NΓ

α , NΓ
α

]
=
[
S∆, S∆

]
= A∆

Thus G contains a 3-cycle, since a subgroup of a subgroup of G contains a 3-cycle,
and we apply Lemma 3.17. This completes the proof of Jordan’s theorem. �

Definition 3.18. For a prime q satisfying (log n)2 ≤ q ≤ n−3, define Tn =
⋃
q

{σ ∈

Sn|σ contains a q-cycle and its other cycle lengths are relatively prime to q}.

Corollary 3.19. Suppose there is some z ∈ Tn with order h, where h is divisible by
q. Since ord(z

h
q ) = h

gcd( h
q ,h)

= q, then any primitive group G containing z generates

An or Sn by Jordan’s theorem.

We shall prove that the proportion of Tn in Sn is at least 1− 4
3 log log n to prove

Dixon’s theorem. Three more lemmas will finish the proof. The first is an asymp-
totic estimate for

∑
p

1
p that I wrote. Two come from Erdős’ and Turán’s seminal

paper from 1967 [5].

Lemma 3.20. For prime p ≤ n,
∑

p
1
p ∼ log log n.

Proof. We write
∑

p
1
p =

∑
1≤x≤n a(x) 1

x , where a(n) is the indicator function of
the primes. Now,

∑n
i=0 a(i) = π(n), so by Abel’s summation formula,∑

p

1
p

= π(x)
1
x

+
∫ x

2

π(x)
x2

.

The estimate π(x) ∼ x
log x of the Prime Number Theorem proves the lemma.

�

Lemma 3.21. Let 1 ≤ a1 ≤ a2 ≤ · · · ≤ an ≤ n. Then the proportion dn of
elements in Sn without any cycles of length a1, a2, . . . , an is at most (

∑n
i=1

1
ai

)−1.

Lemma 3.22. The proportion of elements in Sn−q with order relatively prime to
q is bounded below by e−

1
log n for sufficiently large n.
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Proof. It is clear that if we take the product over all positive integers such that p
does not divide v and for any |z| < 1,∏

v

∞∑
n=0

(
zv

v

)n 1
n!

=
∏
v

exp
(

zv

v

)
the nth coefficient gives the number of ways to sum to n using no multiple of p.
But in taking this product, we are merely excluding multiples of p, so∏

v

exp(
zv

v
) = exp(

∞∑
v=0

zv

v
−

∞∑
v=0

zpv

pv
).

But using the facts that − log(1 − z) =
∑∞

v=0
zv

v and − log(1−zp)
p =

∑∞
v=0

zpv

pv , we
simplify this to

(1− zp)
1
p

1− z
= (

∑p−1
i=0 zi

(1− z)p−1
)

1
p = (

p−1∑
i=0

zi)(1− zp)−
p−1

p .

Using the representation (1− zp)−
p−1

p = 1 +
∑∞

m=1 zmp
∏m

k=1(1−
1
kp ), we actually

get the exact formula,

dn =
m∏

i=1

qi− 1
qi

where m =
⌊

n−q
q

⌋
. It is not difficult to show that, since q ≥ (log n)2,

m∏
i=1

qi− 1
qi

∼ exp(− log n− log q

q
) ≥ exp(− log n

q
) ≥ exp(− 1

log n
)

�

We now have all the tools to prove Dixon’s celebrated result.

Theorem 3.23. (Dixon, 1969.) The proportion of pairs of elements in Sn which
generate either An or Sn is at least 1− 2

(log log n)2 .

Proof. Let un be the proportion of elements in Sn which lie in Tn. Combining
the previous two lemmas, we see that for q prime, (log n)2 ≤ q ≤ n − 3, and n
sufficiently large,

un ≥ (1− (
∑

q

1
q
)−1)e−

1
log n

By the estimate on the sum of prime reciprocals, for sufficiently large n∑
q

1
q
∼ log log(n− 3)− log log(log n)2 >

4
5

log log n.

In the previous part of the proof, we showed that the proportion of elements which
generate a primitive group, pn ≥ 1− 2

n for large enough n. Thus the proportion of
pairs of elements which generate An or Sn is at least

pn − (1− un)2 ≥ (1− 2
n

)− 16
9(log log n)2

≥ 1− 2
(log log n)2

.

�
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Remark 3.24. Since publishing his paper in 1969, Dixon has sharpened his result
with respect to the rate at which the probability approaches one. In fact, he finds
an asymptotic formula [4]:

1− 1
n
− 1

n2
− 4

n3
− 23

n4
− . . .

This result is an improvement on Babai’s 1989 theorem [1] which also gave a linear
error term. Both of these papers use the classification of finite simple groups.
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