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Abstract. This paper will provide a brief introduction to Gröbner bases and

some of their applications: identifying and proving geometric theorems, solving

coloring problems, and computing minimal polynomials.

Contents

1. Background

We will work with ideals of polynomial rings with coefficients in a field F of char-
acteristic 0. As we will see, Gröbner bases are a particularly useful generating
set with many interesting and unexpected applications. The construction in this
section follows the construction in [CLO] chapter 2 and [DF] section 9.6

Definition 1.1. The ideal of leading terms of a polynomial ideal I, denoted LT (I),
is the ideal generated by the leading terms of the polynomials of I. To avoid
confusion, the notation lt(f) will be used to refer to the leading term of an individual
polynomial, while LT (I) will refer to the leading term ideal of I.

Of course, the leading term of a polynomial will depend on the order in which the
terms of the polynomial are written. Thus, before any calculation can be made, one
must specify a well-ordering on the monomials of the ideal and list the polynomials
according to that order. For the purposes of this paper, we will use the lexicographic
order x1 > x2 > . . . > xn, called the lex order, unless otherwise specified.

Example 1.2. In the lex order x > y, the following inequalities hold:
(1) x > y
(2) x > y2

(3) x2 > x
(4) x2 > xy2

Definition 1.3. A Gröbner basis for an ideal I in F [x1, . . . , xn] is a generating set
G = {g1, . . . , gm} such that {lt(gi) : 1 ≤ i ≤ n} generates LT (I).

Theorem 1.4. (Hilbert Basis Theorem) If R is a Noetherian ring, then the poly-
nomial ring R[x1, . . . , xn] is also Noetherian. [CLO ch2.5]

A Gröbner basis for an ideal I is unique among the other generating sets because
Gröbner bases have the following property:
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Theorem 1.5. Fix a monomial ordering on R = F [x1, . . . , xn] and let G =
{g1, . . . , gm} be a Gröbner basis for a non-zero ideal I in R. Then

(1) If f is in R, there is a unique f1 in I and r in R so that f = f1 + r where
no monomial in r is divisible by any leading term lt(gi)

(2) f1 and r can be computed by polynomial division by the elements of the
Gröbner basis, and the order in which these polynomials are used does not
impact the f1 and r.

(3) The remainder r is a unique representative of the coset of f in F [x1, . . . , xn]/I.
In particular, f is an element of I if and only if r = 0.

Proof. By general polynomial division, f =
∑m

i=1(qigi) + r, and
∑m

i=1(qigi) is in I,
so let f1 =

∑m
i=1(qigi). To show uniqueness, suppose f = f1 + r = f ′1 + r′. Then

r− r′ = f ′1−f1 which is an element of I, so lt(r− r′) is in LT (I), and thus lt(r− r)
is a sum of multiples of the leading terms of {g1, . . . , gm}. However, by definition
of remainder, r and r′ and thus r − r′ are sums of monomial terms none of which
is divisible by any lt(gi), so r − r′ = 0. But then r = r′ and f1 = f ′1 = f − r, so
the decomposition is unique. This uniqueness proves that the order in which the
division occurs does not affect the final result, completing the proofs of 1 and 2.

Further, since r is unique, it provides a unique representative of the coset of f
in F [x1, . . . , xn]/I. If r = 0, then f = f1 and f1 is an element of I, so f is an
element of I. If f is in I, then f = f1 + 0 for f = f1 and uniqueness of r implies
that r = 0. �

It remains to show that Gröbner bases exist. In fact, Gröbner bases exist for all
ideals of polynomial rings with coefficients in a field. To show this, we first need a
lemma:

Lemma 1.6. If I is a non-zero ideal in F [x1, . . . , xn] and I is generated by a set
of polynomials S, then I is generated by a finite subset of S.

Proof. By the Hilbert Basis Theorem, I is generated by a finite set of polynomials
{f1, . . . , fk} (not necessarily in S). Since I is generated by S, we know that if fi is
in I, fi =

∑l
j=1 αjqj where αj is an element of F and qj is an element of S. Then

the set ∪k
i=1{qj} is a finite generating set for I. �

Theorem 1.7. Fix a monomial ordering on R = F [x1, . . . , xn] and let I be a
non-zero ideal in R. Then

(1) If g1, . . . , gm are elements of I such that LT (I) = 〈lt(g1), . . . , lt(gm)〉, then
{g1, . . . , gm} is a Gröbner basis for I.

(2) I has a Gröbner basis.

Proof. Let g1, . . . , gm be in I such that LT (I) = 〈lt(g1), . . . , lt(gm)〉. Let f be an
element of I. Then by general polynomial division, f =

∑m
i=1(qigi) + r. Now, r is

an element of I since f is an element of I, but then lt(r) is in LT (I) and is divisible
by one of the leading terms of {gi}. This contradicts the definition of remainder
unless r = 0, so f =

∑m
i=1(qigi) and {g1, . . . , gm} generate I and is a Gröbner basis

for I.

Next, note that LT (I) is a monomial ideal generated by a set of monomials - specifi-
cally the leading terms of the polynomials in I. Then, by the previous lemma, there
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is a finite subset {g1, . . . , gm} generating I, and by (1) this is a Gröbner basis for
I. �

Gröbner bases are only of use if we can compute them, however. While for most
ideals, computation of the Gröbner basis by hand is too long to be practical, there
are algorithms that make it possible to compute the Gröbner basis by computer.

Definition 1.8. The S-polynomial of two polynomials f1, f2 is given by

S(f1, f2) =
M

LT (f1)
f1 −

M

LT (f2)
f2

where M is the least common multiple of LT (f1) and LT (f2).

Theorem 1.9. (Buchberger’s Criterion) Fix a monomial ordering on R = F [x1, . . . , xn].
If I = (g1, . . . , gm) is a non-zero ideal in R, then G = {g1, . . . , gm} is a Gröbner
basis for I if and only if S(gi, gj) ≡ 0 mod G for 1 ≤ i < j ≤ m. [CLO ch2.7]

This will not necessarily give a unique Gröbner basis. Changing the order in which
the terms of G are listed can change the resulting set, and there is no provision
for removing redundant terms. To find a unique generating set, called a reduced
Gröbner basis, we eliminate gi from G if there is a j < i such that LT (gj) divides
LT (gi).

Example 1.10. To find the reduced Gröbner basis for the ideal

I = (x2 − y, xy − y, x− y2) ⊂ F [x, y],

we let x > y in the lexicographic order and denote:

f1 = x2 − y

f2 = xy − y

f3 = x− y2

Let G = {f1, f2, f3}. Then

S(f1, f2) = yf1 − xf2

= xy − y2

≡ −y2 + y

S(f1, f3) = f1 − xf3

≡ y2 − y

S(f2, f3) = f2 − yf3

≡ y3 − y

where all the equivalences are modulo the set G. Note that −y2 + y ≡ y2 − y mod
G, since S(−y2 + y, y2− y) = 0. Further, we can reduce the generating set because
lt(f3) divides lt(f1), and lt(f2) and lt(y2 − y) divide lt(y3 − y). Now, we revise the
set G, adding the remainders we obtained from the S-polynomial and removing the
reducible terms. This gives G′ = {f3, y

2−y}. G′ is then the reduced Gröbner basis
generating I.
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2. Geometric Theorem Proving and Discovery

One surprising application of Gröbner bases is their ability to prove and discover
geometric theorems. If the conclusion polynomials all belong to the ideal generated
by the hypothesis polynomials, then they are true, as are all geometric statements
corresponding to polynomials in the ideal. This application is presented in [W].

Example 2.1. We will use Gröbner bases to show that if E is the midpoint of AC,
F is the midpoint of BD, and M is the intersection of AB and EF in the figure
below, then M is the midpoint of AB. We will use Gröbner bases to show that if

E is the midpoint of AC, F is the midpoint of BD, and M is the intersection of
AB and EF in the figure above, then M is the midpoint of AB.
First, assign coordinates to the points A−M as follows:

A = (x1, 0)

B = (x3, x4)

C = (x5, x4)

D = (x2, 0)

E = (x6, x7)

F = (x8, x9)

M = (x10, x11).

Note that the choice of coordinates means that our figure is a quadrilateral with
two parallel sides. The polynomials in Q[x1, . . . , xn, y] corresponding to the figure
are:

h1 = 2x6 − x5 − x1 = 0
h2 = 2x7 − x4 = 0
h3 = 2x8 − x3 − x2 = 0
h4 = 2x9 − x4 = 0

h5 = (x8 − x6)x11 − (x9 − x7)x10 + x6x9 − x7x8 = 0

h6 = (x3 − x1)x11− x4(x10 − x1) = 0
h7 = x4z − 1 = 0.
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The first two polynomials correspond to the statement E is the midpoint of AC;
the first for the x coordinate and the other for the y coordinate. The second two
correspond to the analogous statement for F , the third pair to to definition of M
as the intersection of AB and EF , and the final polynomial, with the introduction
of a new variable z, to the statement x4 6= 0 - namely, our quadrilateral is not a
straight line.
The conclusion of the theorem is also represented by two polynomials,with the first
again representing the x-coordinate and the second the y-coordinate:

c1 = 2x10 − x3 − x1 = 0c2 = 2x11 − x4 = 0.

When we compute the reduced Gröbner basis for the ideal generated by the poly-
nomials h1, . . . , h7 we obtain

G = {h1, . . . , h4, (x5 − x3 − x2 + x1)(2x10 − x3 − x1),

h6, 2(x5 − x2)x11 − x4(2x10 + x5 − x3 − x2 − x1), h7}.

We can use the ability of Gröbner bases to determine ideal membership to decide
whether or not the polynomial equivalents of our conclusion are in the ideal. Since
the two conclusion polynomials do not reduce to 0 mod G and the theorem can
be verified by elementary geometry, we know that we are missing a condition.
To discover the missing condition, we turn to another form of reducing a set of
polynomials:

Definition 2.2. Consider the set S of polynomials of leading variable xi in F [x1, . . . , xn]
and choose the polynomial bi of minimal degree in xi. Then the q-basic set of S is
{bi : 1 ≤ i ≤ n}.

Example 2.3. Consider the set

S = {x2
1 + 2x2, x1x2 + x3

2, x
2
2 + x2x

2
3, x

2
2 + x3}

under the lex order x1 > x2 > x3. Then

b1 = x1x2 + x3
2

b2 = x2
1 + 2x2

b3 = x2
2 + x3

so the q-basic set of S is B = {b1, b2, b3}.

We can compute the q-basic set of the Gröbner basis and use this as a second test.
When we do so, we obtain the q-basic set

B = {h1, . . . , h4, (x5 − x3 − x2 + x1)(2x10 − x3 − x1), h6}.

In fact, both c1 and c2 are equivalent to 0 mod B, implying that they are true under
additional conditions. The additional conditions are obtained from the leading
coefficients of the polynomials in the q-basic set - provided that those are non-zero,
the theorem is true.

Example 2.4. In the example of a q-basic set, the leading coefficient of b1 is x2,
the leading coefficient of b2 is 2, and the leading coefficient of b3 is 1. Note that
these are not necessarily the leading coefficients under the same polynomials in
the order x1 > x2 > x3, but rather the leading coefficients of the monomial they
represent in the q-basic set.
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The leading coefficients of h1, . . . , h4 are all 2, but the leading coefficient of (x5 −
x3−x2 +x1)(2x10−x3−x1) is x5−x3−x2 +x1 with respect to x10 and the leading
coefficient of h6 is x3 − x1 with respect to x11. The new condition is thus that

2(x5 − x3 − x2 + x1)(x3 − x1) 6= 0

Since 2 is always non-zero, that imposes no new conditions on our figure. The
condition x3−x1 6= 0 removes the case of a trapezoid with one pair of right angles,
even though the theorem is still true under that condition. The last factor, however,
can be rewritten as (x5 − x3) − (x2 − x1), which is the polynomial interpretation
of the geometric statement that AB is parallel to CD. In this case, the figure is
a parallelogram and it can be easily verified that E and F are, in fact, the same
point. However, then the line EF is no longer uniquely determined and M could
be any point on AB.

3. Coloring of Graphs

Gröbner bases can be used to determine whether or not a system of equations has
a solution, and thus are a simple way to solve the system of equations associated
with graph colorings. The ideas and example in this section follow those in [AL]
section 2.8 and [DF] exercise 45 in section 9.6.

Definition 3.1. We say a graph is n-colorable if we can assign one of n colors to
each vertex so that no two vertices that are connected by an edge have the same
color.

Consider a graph with k vertices. We assign a variable xi to each vertex and an
element αi to each color. Then consider a field F containing the set {αi : 1 ≤ i ≤ n}.
Define the function f(x) =

∏n
i=1(x − αi). Then a given xj = αj if f(xj) = 0, so

each vertex is colored. To distinguish between different colorings, note that if
αi 6= αj then f(xi) = f(xj), where xiand xj are vertices colored by αi and αj ,
respectively. We want a function g(xi, xj) such that g(xi, xj) = 0 when xi, xj

represent vertices connected by an edge in the graph. The easy choice for g is then
g(xi, xj) = f(xi)−f(xj)

xi−xj
. It then suffices to solve the system of equations

f(xi) = 0 g(xi, xj) = 0 for all i, j such that (i, j) is an edge in the graph.

.
A solution to this system of equations corresponds to a coloring of the graph. We
can use Gröbner bases to solve the system by calculating the Gröbner basis for
the ideal generated by the equations. If, however, this ideal is not proper, then
the following variant of the Nullstellansatz says that there is no solution. This
means that if the Gröbner basis consists solely of the element (1), then there is no
n-coloring of the graph.

Theorem 3.2. (Hilbert’s Nullstellensatz - Variant) An ideal I over a polynomial
ring is proper if and only if there is a common zero in the zero set of the polynomials
in I. [DF ch15.3]

We can use this process to determine whether or not a graph has an n-coloring and
to calculate any such coloring in the following manner:

Example 3.3. The graph on the following page is 3-colorable and has precisely
two three colorings.
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Since 3 is prime, we assign the values 0, 1, and 2 in an algebraic closure of Z/3Z to
the three colors. Without loss of generality, let x1 = 0. Our ideal is generated by
the polynomials f(x) = x3 − x and g(xi, xj) = x2

i + xixj + x2
j − 1, evaluating g for

only values of xi, xj such that the edge (i, j) is in the graph. Under the lex order
x1 > . . . > x8, we find a Gröbner basis

G = {x1, x2, x3+8, x4 + 2x8, x5 + x8, x6, x7 + x8, x
2
8 + 2}.

Since 1 is not an element of G, we know that there is at least one 3-coloring of the
graph. It is readily apparent that x1 = x2 = x6 = 0. Since 12 + 2 = 3 ≡ 0 (mod 3)
and 22 + 2 = 6 ≡ 0 (mod 3), x8 could be either 1 or 2. Assume that x8 = 1. Then
x3 = x5 = x7 = 2 and x4 = 1. If x8 = 2, then x3 = x5 = x7 = 1 and x4 = 2. Either
map provides a valid 3-coloring of the graph.

4. Minimal Polynomials

For a slightly more algebraic application, Gröbner bases can be used to calculate
the minimal polynomial of an algebraic element over a field extension. The ideas
in this section follow [AL] section 2.4 and 2.6.

Lemma 4.1. Let a1, . . . , an and b1, . . . , bn be elements of a commutative ring R.
Then a1a2 · · · an − b1b2 · · · bn is an element of the ideal I = 〈a1 − b1, . . . , an − bn〉

Proof. The proof is by induction on n. Define In = 〈a1 − b1, . . . , an − bn〉. It is
clearly true for n = 1. For n = k, note that a1a2 · · · ak − b1b2 · · · bk = a1(a2 · · · ak −
b2 · · · bk) + (a1− b1)(b2 · · · bk) By the inductive hypothesis, a2 · · · ak − b2 · · · bk is an
element of Ik−1, so a1(a2 · · · ak − b2 · · · bk) + (a1 − b1)(b2 · · · bk) is in Ik. �

Lemma 4.2. Let I be an ideal of k[x1, . . . , xn], J an ideal of k[y1, ym], φ a homo-
morphism φ : k[y1, . . . , ym]/J → k[x1, . . . , xn]/I such that φ : yi+J 7→ fi+I with fi

in k[x1, . . . xn]. Let K = 〈I, y1−f1, . . . , ym−fm〉. Then ker(φ) = K∩k[y1, . . . , ym].
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Proof. Define

f ′(y1, . . . , ym) =
m∑

i=1

(yi − fi(x1, . . . , xn))hi(y1, . . . , ym, x1, . . . , xn)

+ w(y1, . . . , ym, x1, . . . , xn)

where

w(y1, . . . , ym, x1, . . . , xn) =
∑

j

uj(y1, . . . , ym, x1, . . . , xn)vj(x1, . . . , xn)

with vj in I and hi and uj in k[y1, . . . , ym, x1, . . . , xn]. Since the vj are in I, we can
write

w(f1, . . . , fm, x1, . . . , xn) =
∑

j(uj(f1, . . . , fm, x1, . . . , xn)vj(x1, . . . , xn)) ∈ I.

Then

φ(f ′ + J) = f ′(f1, . . . , fm) + I

= w(f1, . . . , fm, x1, xn) + I

= 0

so f ′ + J ∈ kerφ.
To prove the opposite inclusion, let f ′ be an element of k[y1, . . . , ym] such that φ(f ′+
J) = 0. Then f ′(f1, . . . , fm) is in I. Define f ′(y1, . . . , ym) =

∑
j cjy

(
1j1) · · · y

(
mjm),

with finitely many non-zero cj and j = (j1, . . . , jm) with each jt in the natural.
Then by adding and subtracting f ′(f1, . . . , fm) from f ′(y1, . . . , ym), we obtain

f ′(y1, . . . , ym) =
∑

j

cj(y
(
1j1) · · · y(

mjm)− f
(
1j1) · · · f (

mjm))

which is in K by the previous lemma. �

Theorem 4.3. Let k ⊂ K be a field extension and let α be algebraic over k with
minimal polynomial p. Let f(x) = a0 + a1x

1 + . . . + anxn and g(x) = b0 + b1x
1 +

. . . + bmxmand define β in k(α) so that

β =
f(α)
g(α)

.

Let J = 〈p, gy − f〉 be an ideal in k[x, y]. Then the minimal polynomial of β over
k is the monic polynomial generating the ideal J ∩ k[y].

Proof. First, note that the monic polynomial generating J ∩ k[y] is uniquely deter-
mined, since k[y] is a PID.
Since k[x]/〈p〉 is a field and g(α) is non-zero, there is some ` such that g`− 1 ≡ 0
(mod <)p >. Let h = f` and note that h(α) = β. Let φ is the composition of
homomorphisms such that

φ : k[y] → k[x]/〈p〉 →∼= k(α)
y 7→ h+ < p > 7→ β.

Since q is in kerφ if and only if q(β) = 0, it suffices to find the generator of kerφ,
since this will by definition divide all other elements in kerphi. By the previous
lemma, kerφ = 〈p, y − h〉 ∩ k[y]. We need to show

〈p, y − h〉 = 〈p, gy − f〉.
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First, y − h = y − fl by definition and

y − fl ≡ l(gy − f) (mod 〈p〉).

Then y − h is an element of 〈p, gy − f〉. Conversely,

gy − f ≡ g(y − fl) = g(y − h),

so gy − f is an element of 〈p, y − h〉. �

Not all elements β can be expressed in terms of a single α, however. The following
theorem is a quick analog of the previous one, but generalized to the case of multiple
variables.

Notation 4.4. Let K = k(α1, . . . , αn), i = 2, . . . , n, and p a polynomial in
k(α1, . . . , αi − 1)[xi], we define

p̄(α1, . . . , αi − 1, xi) = p.

Theorem 4.5. Let K = k(α1, . . . , αn) and let pi be the minimal polynomial for αi

over k. Let β be an element of k(α1, . . . , αn) such that if f and g are polynomials
in k[x1, . . . , xn] then

β =
f(α1, . . . , αn)
g(α1, . . . , αn)

.

Then the minimal polynomial of β over k is the monic polynomial generating the
ideal J ∩ k[y], where J = 〈p̄1, . . . , p̄n, gy − f〉.

Proof. As in the proof of the previous theorem, it is clear that

k[x1, . . . , xn]/〈p̄1, . . . , p̄n〉 ∼= k(α1, . . . , αn)

under the map

φ : k[x1, . . . , xn] → k(α1, . . . , αn)
xi 7→ αi.

We now need to show that kerφ = 〈p̄1, . . . , p̄n〉. If n = 1, this is clearly true. Then,
inducting on n, note that p̄1, . . . , p̄n are in φn. Let f such that f(α1, . . . , αn) = 0
and define h(x) = f(α1, . . . , α(n − 1), x). Since pn is the minimal polynomial of
αn and h(αn) = 0 by construction, pn divides h. Then there exists `n such that
h = pn`n. Let g in k[x1, . . . , xn−1] be such that

f − p̄n
¯̀
n =

∑
j

gj(x1, . . . , xn−1)xj
n.

For all j, gj = 0 since

(f − p̄n
¯̀
n)(α1, . . . , α(n− 1), xn) = h− p̄n

¯̀
n = 0.

Thus gj(x1, . . . , xn−1) is in kerφn−1 and also in < p̄1, . . . , p̄n−1 > by induction.
This means that f − p̄n

¯̀
n is in 〈p̄1, . . . , p̄n−1〉 and f is in 〈p̄1, . . . , p̄n〉, so kerφ =

〈p̄1, . . . , p̄n〉.
The remainder of the proof is now similar to the proof of the previous theorem. �

Example 4.6. We want to compute the minimal polynomial of
√

2 +
√

3 + 3
√

5
over Q. Let p1 = x2

1 − 2, p2 = x2
2 − 3, and p3 = x3

3 − 5. Note that the pi satisfy
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the condition for p̄i. Since β =
√

2 +
√

3 + 3
√

5 we write g(x1, x2, x3) = 1 and
f(x1, x2, x3) = x1 + x2 + x3, so

β =
f(α1, α2, α3)

g(α1, α2,
.

Then our ideal is

I =< p1, p2, p3, gy − f >

=< x2
1 − 2, x2

2 − 3, x3
3 − 5, y − (x1 + x2 + x3).

If we calculate the reduced Gröbner basis for this ideal under the term ordering
x1 > x2 > x3 > y, we obtain

y12−30y10−20y9+303y8−910y6−2760y5+2553y4+8300y3+8220y2−4560y−23624

as the only polynomial in the intersection I ∩ k[y], and thus it is the minimal
polynomial of β =

√
2 +

√
3 + 3

√
5.

This is only a sampling of the tremendous variety of applications of Gröbner
bases to problems in many different areas of mathematics. With computers to
simplify the often messy calculations, the practicality of using Gröbner bases has
increased since their introduction in the middle of the 20th century, and the scope
of their usefulness has increased correspondingly.
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[W] Wang, D. (1998): Gröbner Bases Applied to Geometric Theorem Proving
and Discovering


