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Abstract. I will investigate which numbers can be written as the sum of two

squares and in how many ways, providing enough basic number theory so even

the unacquainted reader can follow. Results regarding the sum of four squares
problem and Waring’s problem are cited with references for further reading.
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1. Introduction

We say that a positive integer n has a representation as a sum of two squares if
n = a2 + b2 for some nonnegative a, b ∈ Z. We deliberately include 0 as a possible
value for a or b so that squares themselves will fall into this category, e.g., since
4 = 22 +02. In this paper, we are interested not only in characterizing the numbers
that have a representation as the sum of two squares, but also recognizing which
numbers have more than one such representation and counting how many repre-
sentations these numbers have. For instance, notice that 25 = 52 + 02 = 32 + 42.

Naturally, the exploration of this problem inspires curiosity in similar questions,
for example: what numbers can be written as the sum of three squares? or four?
Is there a number k so that all numbers can be written as the sum of k squares?
What if we consider cubes, or fourth powers – is there some k so that all numbers
be written as the sum of k cubes? Supposing there is such a k, can we improve it
by contenting ourselves with finitely many outliers? A few of these questions are
examined at the end of the paper.
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2. Preliminaries

We begin with a brief introduction to divisibility and congruence, the fundamen-
tals of number theory. Readers with experience in number theory should feel free
to skip to Section 3.

2.1. Divisibility.

Theorem 2.1. (Division Algorithm) For all a, b ∈ Z, b 6= 0, there are unique
q, r ∈ Z, 0 ≤ r < |b|, such that a = bq + r.

See reference [2] for proof.

Definitions 2.2. For a, b ∈ Z, a is divisor of b if there exists an integer x such
that

ax = b.

We say that b is divisible by a and refer to b as a multiple of a. We write a | b (read
as “a divides b”), or if a is not a divisor of b, a - b.

Example 2.3. The divisors of 6 are −6,−3,−2,−1, 1, 2, 3, 6. We indicate this by
writing, for instance, −2 | 6.

Exercise 2.4. Let a, b, c, s, t ∈ Z. If a | b and a | c, then a | sb + tc.

Definitions 2.5. Notice that for any a ∈ Z, the following holds:
(1) 1 | a, −1 | a;
(2) a | a, −a | a.

With this in mind, we refer to −1, 1, a and −a as the trivial divisors of a. We also
call −1 and 1 units. Any other divisors of a are called proper divisors.

Definitions 2.6. A positive integer a is prime if a has no proper divisors. A
positive integer a is composite if a has proper divisors. If a is a positive integer,
then for primes p1, . . . , pk that satisfy p1 · p2 · · · pk = a, the product p1 · p2 · · · pk is
called the prime factorization of a.

Theorem 2.7. (Fundamental Theorem of Arithmetic) The prime factorization of
a ∈ Z, a > 1, is unique up to the order of the factors.

See reference [2] for proof.

Definition 2.8. We call a, b ∈ Z relatively prime if the only common divisors of a
and b are units.

Definition 2.9. Given a, b ∈ Z, we define the greatest common divisor (GCD) of
a and b, denoted by gcd(a, b), as some positive integer d such that:

(1) d | a and d | b;
(2) for all e such that e | a and e | b, e | d.

Remark 2.10. Note that if a, b are relatively prime, gcd(a, b) = 1.

Lemma 2.11. Let S ⊆ Z be given where S is a subgroup of Z under addition.
Then there exists d ∈ Z such that S = dZ, where dZ = {dz : z ∈ Z}.

Proof. Since S is a subgroup of Z, we know that given a, b ∈ S, a + b ∈ S. By
repeated addition of a to itself, we get that aZ ⊆ S. The proof proceeds in two
cases:
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(1) S = {0}.
Then choose d = 0, so that S = 0Z = {0}.

(2) S 6= {0}.
Let d be the smallest positive integer in S. We know that dZ ⊆ S. To
show that S ⊆ dZ, let s ∈ S. We will show that d | s, so that s ∈ dZ. By
the Division Algorithm, we know that s = dq + r where 0 ≤ r ≤ d − 1.
Notice that d ∈ S, so dq ∈ S and −s ∈ S. Since S is closed under addition,
dq +(−s) = r ∈ S. But because 0 ≤ r ≤ d−1, S ⊆ Z, and d is the smallest
positive integer in S, we know that r = 0. Thus s = dq so that d | s.

�

Theorem 2.12. Given a, b ∈ Z, gcd(a, b) exists and satisifes the expression

gcd(a, b) = ax + by

for some x, y ∈ Z.

Proof. Consider S = {ax + by : x, y ∈ Z}. Note that S ⊆ Z, {0} ⊆ S, and S is
closed under subtraction. Therefore we can apply Lemma 2.11 to conclude that
there exists a positive integer d such that S = dZ. First, we must show that d is
the GCD of a, b:

(1) d | a and d | b
Note that a ∈ S, since a = a ·1+b ·0. So for some z ∈ Z, dz = a =⇒ d | a.
For the same reason, d | b.

(2) for all e such that e | a and e | b, e | d
We know that d ∈ S, since S = dZ, so d = ax0 + by0. By Theorem 2.4,
since e | a and e | b, e | ax0 + by0 =⇒ e | d.

Since d ∈ S, for some x, y ∈ Z, d = ax + by. �

Theorem 2.13. If a, b, c ∈ Z are given such that a | bc and a is relatively prime to
b, then a | c.

Proof. Since a is relatively prime to b, we have that gcd(a, b) = 1 = ax + by for
some x, y ∈ Z. Now, multiply by c: c = acx + bcy. Now, we know a | ac and we are
given that a | bc, so by Theorem 2.4, a | acx + bcy. Thus a | c. �

2.2. Congruence.

Definition 2.14. Let a, b ∈ Z. We say that a is congruent to b modulo m (which
we abbreviate as mod m) if

m | a− b.

We write this as a ≡ b (mod m).

Remark 2.15. Notice that we can express m | a as a ≡ 0 (mod m).

Exercise 2.16. For any a ∈ Z, we have:
(1) a ≡ a (mod m);
(2) if a ≡ b (mod m), then b ≡ a (mod m);
(3) if a ≡ b (mod m) and b ≡ c (mod m), then a ≡ c (mod m).

If a ≡ b (mod m), then the following hold:
(1) a + c ≡ b + c (mod m);
(2) ac ≡ bc (mod m).
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If additionally c ≡ d (mod m), then we have:
(1) a + c ≡ b + d (mod m);
(2) ac ≡ bd (mod m).

Furthermore, if ac ≡ bc (mod m) and c,m are relatively prime, then a ≡ b (mod
m).

We can now categorize the integers into classes based on their congruence modulo
m, for some m > 1, by putting integers congruent to each other in the same class.
Each integer is assigned one and only one such class, and any pair x, y drawn
from the class will satisfy x ≡ y (mod m). These classes are called residue classes
modulo m, denoted by ām where a is an element of that class. A set that contains
exactly one element from each residue class may be written as Z/mZ. For example,
when m = 4, we may write that Z/4Z = {0, 1, 2, 3}. For certain operations, namely
addition, subtraction, multiplication, and exponentiation, any element of the class is
representative of the whole; that is, performing these operations on representatives
of two classes gives a residue class result that applies to any element of those two
classes. For other operations – greatest common divisor, for instance – this is not
the case.

Remark 2.17. Be aware that we will freely interchange between the congruence
expression and the algebraic expression of a number. In other words, the statement
that n is of the form 4k + 1 is equivalent to the statement that n ≡ 1 (mod 4).

Theorem 2.18. If m,n are relatively prime integers, then m has a multiplicative
inverse modulo n.

Proof. Since m,n are relatively prime, gcd(m,n) = 1 = am + bn by Theorem 2.12.
Consider this equation modulo n:

1 ≡ am + bn (mod n)

1 ≡ am + 0 ≡ am (mod n).

Thus m has a multiplicative inverse modulo n. �

For p prime, Fp=Z/pZ is a field, meaning that the nonzero integers modulo p
form a multiplicative group F∗p. The crucial properties of these algebraic structures
for the purposes of this paper are the following:

• Since F∗p = {1, 2, . . . , p− 1} is a multiplicative group, for each a ∈ F∗p there
is exactly one a−1 ∈ F∗p so that a · a−1 ≡ 1 (mod p).

• For a ∈ F∗p, a2 ≡ 1 (mod p) if and only if a ≡ 1 (mod p) or a ≡ p− 1 (mod
p). The proof of this fact follows:

Assume first that a2 ≡ 1 (mod p). Then p | a2 − 1 = (a + 1)(a − 1).
Now, since p is prime, p | a + 1 or p | a− 1. If p | a + 1, then since a ∈ F∗p,
a ≡ p− 1 (mod p). If p | a− 1, then a ≡ 1 (mod p).

Assume now that a ≡ 1 (mod p). Then a2 ≡ 1 (mod p). If a ≡ p − 1
(mod p), then a2 ≡ p2 − 2p + 1 ≡ 1 (mod p).

3. Sum of Two Squares Problem

We begin our efforts to characterize which positive integers can be written as
the sum of two squares by examining some evidence.
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Example 3.1. The following are the possible representations of the first 20 integers:
1 = 12 + 02 11 is not the sum of two squares
2 = 12 + 12 12 is not the sum of two squares
3 is not the sum of two squares 13 = 32 + 22

4 = 22 + 02 14 is not the sum of two squares
5 = 12 + 22 15 is not the sum of two squares
6 is not the sum of two squares 16 = 42 + 02

7 is not the sum of two squares 17 = 42 + 12

8 = 22 + 22 18 = 32 + 32

9 = 32 + 02 19 is not the sum of two squares
10 = 32 + 12 20 = 22 + 42.

The above example illustrates the difficulty of the problem. Can the reader see
any pattern above in which numbers can or cannot be represented? To characterize
which n can be written as the sum of two squares, we will first tackle the case when
n is prime. In the example above, notice that the primes 2, 5, 13, and 17 can be
written as the sum of two squares.

Theorem 3.2. (Wilson’s Theorem) Let p be prime. Then (p− 1)! ≡ −1 (mod p).

Proof. As discussed above, since F∗p forms a field, each element a ∈ {1, 2, . . . , p−1}
has a unique multiplicative inverse such that a = a−1 if and only if a = 1 or
a = p − 1. If p = 2, then notice that (p − 1)! = 1! = 1 ≡ −1 (mod 2). If p > 2,
then we can rearrange the product 1 · 2 · · · (p− 1) so that each a ∈ {2, 3, . . . , p− 2}
is adjacent to its multiplicative inverse. We can then simplify to get (p − 1)! =
1 · 1 · 1 · · · 1 · (p− 1) = p− 1 ≡ −1 (mod p). �

Definition 3.3. We define the greatest integer function to be the function [−] :
R → Z such that for x ∈ R, [x] = max{z : z ∈ Z, z ≤ x}.

Example 3.4. For instance, [3.4] = [π] = [3] = 3. Notice also that [−3.4] = −4.
We leave it to the reader to show that the greatest integer function satisfies the
inequality [x] ≤ x < [x] + 1.

Remark 3.5. Thue’s Theorem below relies on the pigeonhole principle, also called
the Dirichlet box principle, which states that if more than n objects are distributed
between n holes, then one of the holes must contain more than one object.

Theorem 3.6. (Thue’s Theorem) Let p be prime. For any integer a such that
p - a, there exist x, y ∈ {1, 2, . . . , [

√
p]} such that ax ≡ y (mod p) or ax ≡ −y (mod

p).

Proof. We define

S = {0, 1, 2, . . . , [
√

p]} × {0, 1, 2, . . . , [
√

p]},
so that S consists of ([

√
p]+1)2 ordered pairs. Given that

√
p < [

√
p]+1, by squaring

both sides we get p < ([
√

p]+1)2, so S has more than p elements. Suppose a ∈ Z is
given so that p - a. As (x, y) varies over S, there are more than p expressions of the
form ax−y. Notice that ax−y is an integer, and every integer is congruent modulo
p to exactly one of Fp = {0, 1, . . . , p − 1}. There are p elements in Fp, and more
than p expressions ax−y, so by the pigeonhole principle there must be at least two
expressions ax−y that are congruent modulo p. Take these pairs (x1, y1) 6= (x2, y2)
such that ax1−y1 ≡ ax2−y2 (mod p). We can simplify to get a(x1−x2) ≡ y1−y2
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(mod p). Let x = |x1 − x2|, y = |y1 − y2| so that (x, y) ∈ S. We want to exclude
the possibility that x = 0 or y = 0, so that x, y ∈ {1, 2, · · · , [

√
p]}.

Suppose first that x = |x1 − x2| = 0 so that x1 = x2. Then a(x1 − x2) = 0 ≡
y1 − y2 (mod p). Since y1, y2 ∈ {0, 1, . . . , [

√
p]}, we know that y1 < p and y2 < p.

Then we must have that y1 = y2, contradicting (x1, y1) 6= (x2, y2).
Suppose now that y = |y1 − y2| = 0 so that y1 = y2. Then a(x1 − x2) ≡ 0 (mod

p). Since p - a, by Exercise 2.16, x1 − x2 ≡ 0 (mod p). Using the same logic as
above, we conclude that x1 = x2, contradicting (x1, y1) 6= (x2, y2).

Thus we have ax ≡ ±y (mod p), as desired. �

Theorem 3.7. If the equation a2 + 1 ≡ 0 (mod p) is solvable for some a, then p
can be represented as a sum of two squares.

Proof. Take a as a solution to the equation a2 + 1 ≡ 0 (mod p). Then p - a,
because if p | a, then a2 ≡ 0 (mod p), and a2 + 1 ≡ 1 (mod p). Thus we can apply
Thue’s Theorem: there exist x, y ∈ {1, 2, . . . , [

√
p]} such that ax ≡ ±y (mod p).

Now, multiplying a2 + 1 ≡ 0 (mod p) by x2 results in a2x2 + x2 ≡ y2 + x2 ≡ 0
(mod p), which means that x2 + y2 = kp for some k ∈ Z. Since x2 + y2 ≥ 2, we
have k > 0. We will show that in fact, k = 1. Remember that x, y ≤ [

√
p], so

x2, y2 ≤ ([
√

p])2 < (
√

p)2 = p, so x2 +y2 < 2p. We’ve shown above that p | x2 +y2.
Thus k = 1, so that x2 + y2 = p. �

Theorem 3.8. A prime number p > 2 is a sum of two squares if and only if p ≡ 1
(mod 4).

Proof. • Suppose p = x2 + y2 for nonnegative integers x, y.
The result follows from two key properties of the ring Z/4Z. Notice first
that any odd integer is congruent to either 1 (mod 4) or 3 (mod 4). Further-
more, any square is congruent to 0 (mod 4) or 1 (mod 4) for the following
reason: as described above, any element of a residue class is representative
in that arithmetic performed on that element gives a result for the entire
class. Thus, we can consider each element of Z/4Z = {0, 1, 2, 3} squared:
02 ≡ 0 (mod 4), 12 ≡ 1 (mod 4), 22 ≡ 0 (mod 4), and 32 ≡ 1 (mod 4). So
(Z/4Z)2 = {0, 1}. Now, consider p = x2 + y2 (mod 4). Since x2, y2 ∈ {0, 1}
(mod 4), we know that p ≡ x2 + y2 ∈ {0, 1, 2} (mod 4). But p is prime
greater than 2, so p is odd. Thus p ≡ 1 (mod 4).

n.b. This proof actually shows that if n is any odd integer that can be
represented as the sum of two squares, then n ≡ 1 (mod 4).

• Suppose p ≡ 1 (mod 4).
We will show that a2 + 1 ≡ 0 (mod p) is solvable for some a, so that
applying Theorem 3.7 above, we get that p is a sum of squares. First, we
will examine the factors in (p− 1)!:

(p− 1)! = 1 · 2 · · ·
(

p− 1
2

)
·
(

p + 1
2

)
· · · (p− 2) · (p− 1).

The last (p− 1)/2 factors in the product can be paired with the negatives
of the first (p − 1)/2 factors in the following way: (p − 1) ≡ −1 (mod p);
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(p− 2) ≡ −2 (mod p); . . . ; p+1
2 ≡ −p−1

2 (mod p). The factorial becomes:

(p− 1)! ≡ 1 · 2 · · ·
(

p− 1
2

)
· −

(
p− 1

2

)
· · · − 2 · −1 (mod p)

≡ (−1)(p−1)/2

(
1 · 2 · · ·

(
p− 1

2

))2

(mod p)

Wilson’s Theorem tells us that (p− 1)! ≡ −1 (mod p), so we can write:

−1 ≡ (−1)(p−1)/2

(
1 · 2 · · ·

(
p− 1

2

))2

(mod p)(
1 · 2 · · ·

(
p− 1

2

))2

≡ (−1)(p+1)/2 (mod p)

Now, we know that p ≡ 1 (mod 4), so p = 4k + 1 for some k ∈ Z. Then
p+1
2 = 4k+1+1

2 = 2k + 1, which is odd. Thus, we have that (−1)(p+1)/2 =
(−1)2k+1 = −1 and(

1 · 2 · · ·
(

p− 1
2

))2

+ 1 ≡ 0 (mod p).

Let a = 1 · 2 · · ·
(

p−1
2

)
, so that we have

a2 + 1 ≡ 0 (mod p).

We can now apply Theorem 3.7 to conclude that p is a sum of squares.
�

Having solved the sum of two squares problem when n is prime, we now consider
the case when n is not prime. The following theorems are required to prove the
Two Squares Theorem.

Theorem 3.9. (Fermat’s Little Theorem) If p is prime and a is a positive integer
such that p - a, then ap−1 ≡ 1 (mod p).

Proof. Consider the p−1 integers a, 2a, . . . , (p−1)a. Notice first that none of these
integers are divisible by p: if p | ja for 1 ≤ j ≤ p− 1, then because p - a, we would
have p | j, which contradicts 1 ≤ j ≤ p−1. Notice also that no two of these integers
are congruent to each other modulo p: if ja ≡ ka (mod p) for 1 ≤ j < k ≤ p − 1,
then because p is prime and p - a, gcd(p, a) = 1, so we can write j ≡ k (mod p).
Again, this contradicts that 1 ≤ j < k ≤ p− 1.

Since these integers a, 2a, . . . , (p − 1)a are a set of p − 1 pairwise-incongruent
integers such that none are congruent to 0 modulo p, we can say the following:

a · 2a · · · (p− 1)a ≡ 1 · 2 · · · (p− 1) (mod p)

ap−1(p− 1)! ≡ (p− 1)! (mod p)

Since (p− 1)! and p are relatively prime, by Exercise 2.16,

ap−1 ≡ 1 (mod p).

�

Lemma 3.10. Let a, b be positive integers such that both a and b can be written as
a sum of squares. Then the product ab can be written as a sum of squares in two
ways.
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Proof. Let a = x2 + y2 and b = z2 + t2 where x, y, z, t ∈ Z. Then we have the
following:

ab = (x2 + y2)(z2 + t2)

= x2z2 + x2t2 + y2z2 + y2t2

= (x2z2 + 2xyzt + y2t2) + (x2t2 − 2xyzt + y2z2)

ab = (xz + yt)2 + (xt− yz)2

ab = (xz − yt)2 + (xt + yz)2.

�

Remark 3.11. A composite number for which every factor can be written as a sum
of squares can also be written as a sum of squares. Now, we know that any number
that is composed of prime factors only of the form 4k+1 can be written as the sum
of squares. As we will see in the Two Squares Theorem, a number can be written
as the sum of two squares while including prime factors of the form 4k + 3 as long
as those prime factors are raised to an even power.

Definition 3.12. We call a positive integer a square free if n2 - a for any n >
1, n ∈ N. For instance, a = 1 is a square free integer. An arbitrary a is square free
when a = p1p2 · · · pk where p1, p2, . . . , pk are distinct primes.

Theorem 3.13. (Two Squares Theorem) A positive integer n is the sum of two
squares if and only if each prime factor p of n such that p ≡ 3 (mod 4) occurs to
an even power in the prime factorization of n.

Proof. Let n = s2m for some s,m ∈ Z, where m is square free.

• Suppose that each prime factor p ≡ 3 (mod 4) occurs to an even power in
the prime factorization of n.

Since for each prime factor p of n such that p ≡ 3 (mod 4), p occurs
to an even power, p - m. Thus each prime p0 > 2 that divides m satisfies
p0 ≡ 1 (mod 4), so by Theorem 3.8, each p0 > 2 can be written as the
sum of two squares. We know that 2 can be written as the sum of two
squares: 2 = 12 + 12. By Lemma 3.10, the product of integers that can be
written as the sum of two squares, m, can also be written as the sum of
two squares. Thus m = x2 + y2 for some x, y ∈ Z. We can now express as
n = s2(x2 + y2) = (sx)2 + (sy)2, so n is the sum of two squares.

• Suppose that n = x2 + y2.
If m = 1, then n = s2, so each prime p in the factorization of n such

that p ≡ 3 (mod 4) occurs to an even power. Now, assume m > 1. We will
show that for every odd prime p such that p | m, p ≡ 1 (mod 4). Observe
that x, y can be written as follows: x = dx1 and y = dx2, where x1, x2 are
relatively prime and d = gcd(x, y). Then we have that:

n = d2(x2
1 + x2

2)
n

d2
= x2

1 + x2
2

s2m

d2
= x2

1 + x2
2.
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Since m is square free, d2 | s2, with s2 = t · d2 for some t ∈ Z, so

tm = x2
1 + x2

2.

Then, we know that p | m, so p | tm = x2
1+x2

2. Thus we have the congruence
x2

1 + x2
2 ≡ 0 (mod p), so x2

1 ≡ −x2
2 (mod p). We will show that p ≡ 1 (mod

4).
Assume for contradiction that p = 4k + 3 for k ∈ Z. Then notice that

p− 1 = 4k + 2 = 2(2k + 1), so we have:

x2
1 ≡ −x2

2 (mod p)

(x2
1)

2k+1 ≡ (−1)2k+1(−x2
2)

2k+1 (mod p)

xp−1
1 ≡ −xp−1

2 (mod p).

Now, notice first that since x1, x2 are relatively prime, p cannot divide
both x1 and x2. Suppose p | x1. Then p | x2

1. We know that p | tm, so
p | tm − x2

1 = x2
2 by Theorem 2.4. Since p is prime, p | x2, contradicting

gcd(x1, x2) = 1. Thus p - x1 and p - x2. Applying Fermat’s Little Theorem,
we have xp−1

1 ≡ xp−1
2 ≡ 1 (mod p), so we get that 1 ≡ −1 (mod p),

contradicting p > 2. Thus, p ≡ 1 (mod 4).
�

4. Counting Representations

As we have seen in Section 3, certain numbers can be represented as the sum
of two squares, some in more than one way. So far, we have considered only those
representations produced by nonnegative integers, and have disregarded the order
of the summands in the representation. In this section, for n = a2 + b2, we will
consider the representations n = (±a)2 + (±b)2 = (±b)2 + (±a)2 as eight trivial
variations on a basic representation.

The motivation for this lies in the geometric underpinning of Theorem 4.4, which
gives a formula for the number of representations of any positive integer. The proof
of this theorem, which is beyond the scope of this paper, uses the complex numbers,
commonly represented as the plane R2. If we regard n = a2 + b2 to be the integer
solution (a, b) to the equation of the circle n = x2 + y2 in R2, a circle of radius√

n centered at the origin, then n = (−a)2 + b2, for instance, is a distinct integer
solution to this equation: (−a, b). Thought of in terms of points, (a, b) and (−a, b)
obviously differ.

Notation 4.1. Define r2(n) to be the number of representations of n as a sum of
two squares of integers. In standard notation, rk(n) is the number of representations
of n as the sum of k squares.

Example 4.2. Since 1 = 12 + 02 = (−1)2 + 02 = 02 + 12 = 02 + (−1)2, r2(1) = 4.
It is left to the reader to show that r2(5) = 8 and r2(25) = 12.

Theorem 4.3. Let p be prime. Then r2(p) ≤ 8.

Proof. If p = 2, then notice that r2(2) = 4. Now assume p > 2. Suppose for
contradiction that p = x2 + y2 = z2 + t2 for positive integers x, y, z, t, so that
r2(p) > 8. We may assume that x > z > t.

We may also assume that gcd(x, y) = gcd(z, t) = 1, for the following reason: let
d = gcd(x, y). Then p = x2 +y2 = (da)2 +(db)2 = d2(a2 +b2). Then p

d2 = a2 +b2 ∈
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Z, so either d2 = 1 or d2 = p. But d2 6= p, since then d | d2 = p, contradicting p
prime. Thus d = 1. The same argument holds for the pair z, t.

Moreover, we know that each of x, y, z, and t is relatively prime to p, since p is
prime. As shown in Lemma 3.10, we can write p2 as:

p2 = (x2 + y2)(z2 + t2)

= (xz + yt)2 + (xt− yz)2

= (xz − yt)2 + (xt + yz)2.

Furthermore,

(xz + yt)(xt + yz) = x2zt + xyz2 + xyt2 + y2zt

= (x2 + y2)zt + xy(z2 + t2)
= pzt + pxy

= p(xy + zt),

so that p | (xz + yt) or p | (xt + yz). Suppose p | (xz + yt), so that xz + yt = kp
for some k ∈ Z. Then since p | p, by Theorem 2.4, p | p2 − (xz + yt)2 = (xt− yz)2.
Since p is prime, p | (xt− yz) so xt− yz = jp for some j ∈ Z. Then, we have

p2 = k2p2 + j2p2

1 = k2 + j2.

Now, we know that xz + yt > 0 and p > 0, so k > 0. Since j2 ≥ 0, we must have
k = 1 and j = 0, meaning that xt− yz = 0 so that xt = yz. We know that x, y are
relatively prime, so x | z, contradicting x > z. A similar argument can be made for
the case p | (xt + yz). Thus r2(p) ≤ 8. �

Theorem 4.4. Let n be a positive integer, written as n = 2cn1n3, where

n1 =
∏

p≡1 (mod 4)

ps = ps1
1 ps2

2 · · · psk

k

and

n3 =
∏

q≡3 (mod 4)

qt

where p and q range over the prime divisors of n, and s, t vary with p, q respectively.
If one of the t is odd, then r2(n) = 0. If all t are even, then r2(n) = 4(s1 + 1)(s2 +
1) · · · (sk + 1).

We omit the proof of Theorem 4.4, which is highly technical and relies on al-
gebraic facts about Z[i], the ring of Gaussian integers. The full proof is given in
reference [7].

Example 4.5. We know from previous exercises that that r2(25) = 12. We will
confirm this using Theorem 4.4: 25 = 2cn1n3 = 20 · (52) · 1, so r2(25) = 4(s1 +1) =
4(2 + 1) = 12.
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5. Looking Ahead

5.1. Sum of Multiple Squares. Having proved that only certain numbers are
representable as the sum of two squares, one may wonder whether there is a number
n for which all numbers are representable as the sum of n squares. We know that
all numbers are not representable as the sum of three squares: 7, for instance, and
47, cannot be represented as such.

All numbers are representable as the sum of four squares. Fermat is thought to
be the first to prove this, using his favorite method of infinite descent, but he never
published it. After significant contributions to the problem by Euler, Lagrange
published the solution in 1770. The sum of four squares result relies on an algebraic
identity similar to Lemma 3.10, namely that if x and y can be represented as the
sum of four squares, then xy can be represented as the sum of four squares. The
remaining work is to show that every prime is the sum of four squares. See reference
[6] for the proof.

5.2. Waring’s Problem. Around 1770, Waring considered an interesting general-
ization of the sum of squares problem: given a positive integer k, can we determine
g(k), where g(k) is the least value of s such that every positive integer can be repre-
sented as the sum of s kth powers of nonnegative integers? For example, g(2) = 4,
since Lagrange has shown that every positive integer can be represented as the sum
of 4 squares, and no smaller a number than 4 squares can be used to represent
every positive integer. For instance, 7 is not representable by 3 squares. What
would such a function g look like?

In 1909, Hilbert showed that for every k, g(k) exists. However, his proof did not
construct a formula for g(k). A few known results are:

g(2) = 4;

g(3) = 9;

g(4) ≥ 19;

g(5) = 37;

and for 6 ≤ k ≤ 471600000,

g(k) =
3
2

k

+ 2k − 2.

Consider k = 3, for which g(k) = 9. Research has shown that it is likely that
only two numbers, 23 = 2 · 23 + 7 · 13 and 239 = 2 · 43 + 4 · 33 + 3 · 13, require as
many as 9 cubes to express, so that (almost) all numbers can be written as the sum
of 8 cubes. In fact, perhaps only 15 numbers, the largest of which is 8042, require
a full 8 cubes. All sufficiently large numbers, by which we mean all numbers 8043
onwards, can be expressed in terms of a sum of 7 cubes. It is obvious, then, that 9
is not the crucial number in this problem. Rather, the numbers which need 9 cubes
only do so because of insignificant properties of particular numbers – as Hardy
says, an “arithmetical fluke.” The more challenging problem is determining G(k),
the least value of s for which all sufficiently large numbers, that is, all numbers
with a finite number of exceptions, can be represented by a sum of s kth powers.
Obviously,

G(k) ≤ g(k)
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for all k ∈ N. We will prove that G(2) = 4.

Theorem 5.1. Let n ∈ Z such that n ≡ 7 (mod 8). Then n cannot be represented
by 3 squares.

Proof. A few simple calculations similar to those in Theorem 3.8 show us that
(Z/8Z)2 = {0, 1, 4}. If x, y, z ∈ Z/8Z, then x2 + y2 + z2 = {0, 1, 2, 3, 4, 5, 6}, but no
sum of 3 squares yields n ≡ 7 (mod 8). �

Theorem 5.2. (Dirichlet’s Theorem) Let h, k be relatively prime integers. Then
there are infinitely many primes congruent to h (mod k).

Since 7 and 8 are relatively prime integers, Dirichlet’s Theorem says there are
infinitely many primes congruent to 7 (mod 8). By Theorem 5.1, none of these
primes can be represented by 3 squares, so G(2) = 4.

To read more about Waring’s problem, see references [2], [3], and [6].
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