
AN INTRODUCTION TO LINEAR AND CYCLIC CODES

MICHAEL CALDERBANK

Abstract. We shall examine a small aspect of coding theory from an alge-
braic standpoint, examining the algorithms for decoding and encoding from

a theoretical perspective. We assume basic knowledge of finite fields, but we

shall introduce the theory of linear codes and built up to the machinery for
generating cyclic codes and efficiently encoding and decoding them.
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1. Preliminary Finite Field Results

We will not build up the entire structure of finite fields, but rather we will assume
some results without proof, upon which we base the rest of our study.

Definition 1.1. Let F be a field. The characteristic of F is the least positive
integer p such that p · 1 = 0, where 1 is the multiplicative identity of F . If no such
p exists, we define the characteristic to be 0.

Theorem 1.2. A finite field F of characteristic p contains pn elements for some
integer n ≥ 1.

Definition 1.3. Let F be a field. The set

F [x] :=

{
n∑
i=0

aix
i : ai ∈ F, n ≥ 0

}
is called the polynomial ring over F, and it is not hard to verify it is a ring with
the usual addition and multiplication.

Theorem 1.4. Let f(x) be a polynomial over a field F of degree ≥ 1. Then
F [x]/(f(x)) forms a ring, with addition and multiplication ( mod f(x)). Further-
more F [x]/(f(x)) is a field if and only if f(x) is irreducible.
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Lemma 1.5. For every element β of a finite field F with q elements, we have
βq = β.

This all builds up to the main characterization of finite fields:

Theorem 1.6. For any prime p and an integer n ≥ 1, there exists a unique finite
field of pn elements.

Henceforth, it makes sense to denote the finite field with q elements by Fq. Let
α be a root of f(x), where f(x) is an irreducible polynomial of degree n over a field
F . Then the field F [x]/(f(x)) can be represented as:

F [α] = {a0 + a1α+ · · ·+ an−1α
n−1 : ai ∈ F}

This avoids the confusion between an element of F [x]/(f(x)) and a polynomial over
F . Next, we introduce the concept of a primitive element in our field; it plays in
integral part later on when we want to construct codes.

Definition 1.7. An element α in a finite field Fq is called a primitive element (or
generator) of Fq if Fq = {0, α, α2, · · · , αq−1}.

Definition 1.8. The order of a nonzero element α ∈ Fq, denoted by ord(α), is the
smallest positive integer k such that αk = 1.

Lemma 1.9. (i) The order ord(α) divides q − 1 for every α ∈ F∗q , where F∗q is the
multiplicative group.
(ii) For two nonzero elements α, β ∈ F∗q , if gcd(ord(α), ord(β)) = 1, then ord(αβ)
= ord(α) × ord(β).

Proof. (i) Let m be a positive integer satisfying αm = 1. Write m = a·ord(α) + b
for some integers a ≥ 0 and 0 ≤ b < ord(α). Then

1 = αm = αa·ord(α)+b = (αord(α))a · αb = αb.

By the definition of ord(α), this forces b = 0; hence, ord(α) is a divisor of m. Since
αq−1 = 1, we have that ord(α)|(q − 1).
(ii) Let r = ord(α) × ord(β). By construction, αr = 1 = βr, since both ord(α) and
ord(β) are divisors of r. Thus (αβ)r = αrβr = 1. Therefore, ord(αβ) ≤ ord(α) ×
ord(β). Now, let t = ord(αβ). We have

1 = (αβ)t·ord(α) = (αord(α))tβt·ord(α) = βt·ord(α).

This implies that ord(β) divides t· ord(α) by the proof of part (i), and since ord(α)
is relatively prime to ord(β), we have that ord(β) divides t. Similarly, we can show
that ord(α) divides t. Together, these imply that ord(α) × ord(β) divides t. Thus,
ord(αβ)= t ≥ ord(α) × ord(β). Combined with the inequality above, we have our
desired result. �

Theorem 1.10. (i) A nonzero element of Fq is a primitive element if and only if
its order is q − 1.
(ii)Every finite field has at least one primitive element.

Proof. (i) If α ∈ F∗q has order q − 1, then we must have that all the elements
α, α2, . . . , αq−1 are distinct. This is equivalent to saying that
Fq = {0, α, α2, . . . , αq−1}
(ii) Let m be the least common multiple of the orders of the elements in F∗q . If rk is
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a prime power in the factorization of m, then rk|ord(α) for some α ∈ F∗q The order

of α
ord(α)
rk is rk. Thus if

m = rk11 · · · rknn
is the canonical factorization of m for distinct primes r1, . . . , rn, then for each
i = 1, . . . , n there exists βi ∈ F∗q with ord(βi) = rkii . Lemma 1.9(ii) implies that
there exists β ∈ F∗q with ord(β) = m. Now m|(q − 1) by Lemma 1.9(i), but on
the other hand, all the q − 1 elements of F∗q are roots of the polynomial xm − 1 by
construction, meaning that m ≥ q − 1. Hence, ord(β) = m = q − 1, and the result
follows from part (i). �

Note that a primitive element is hardly unique. In fact, it is not hard to show
that if α is a primitive element of Fq, then αi is also a primitive element so long
as gcd(i, q − 1) = 1. While we might not always have easy ways of expressing a
primitive root, the fact that it exists in our field is vital for our next section.

2. Minimal Polynomials and Cyclotomic Cosets

Definition 2.1. A minimal polynomial of an element α ∈ Fqm with respect to Fq
is a nonzero monic polynomial f(x) of the least degree in Fq[x] such that f(α) = 0.

Theorem 2.2. (i) The minimal polynomial of an element of Fqm with respect to
Fq exists, is unique, and it is also irreducible over Fq.
(ii) If a monic irreducible polynomial M(x) ∈ Fq[x] has α ∈ Fqm as a root, then it
is the minimal polynomial of α with respect to Fq.

Proof. It’s simply a matter of using the division algorithm for polynomials and the
definition of minimal polynomial. We omit the details. �

Now for something a little different:

Definition 2.3. Let n be relatively prime to q. The cyclotomic coset of q modulo
n containing i is defined by:

Ci = {(i · qj( mod n)) ∈ Zn : j = 0, 1, . . .}.
A subset {i1, . . . , it} of Zn is called a complete set of representatives of cyclotomic

cosets of q modulo n if Ci1 , . . . , Cit are distinct and
t⋃

j=1

Cij = Zn.

Example 2.4. Consider the cyclotomic cosets of 2 modulo 15:

C0 = {0}, C1 = {1, 2, 4, 8}, C3 = {3, 6, 9, 12},
C5 = {5, 10}, C7 = {7, 11, 13, 14}

We have C1 = C2 = C4 = C8, and similarly for other cosets. Also, the set
{0, 1, 3, 5, 7} is a complete set of representatives of cyclotomic cosets of 2 modulo
15.

The next theorem relates our two previous definitions:

Theorem 2.5. Let α be a primitive element of Fqm . Then the minimal polynomial
of αi with respect to Fq is

M (i)(x) :=
∏
j∈Ci

(x− αj),
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where Ci is the unique cyclotomic coset of q modulo qm − 1 containing i.

Proof. (i) First of all, it is clear that αi is a root of M (i)(x) as i ∈ Ci.
(ii) Let M (i)(x) = a0 +a1x+ · · ·+arx

r, where ak ∈ Fqm and r = |Ci|. Raising each
coefficient to its qth power, we obtain:

aq0 + aq1x+ · · ·+ aqrx
r =

∏
j∈Ci

(x− αqj) =
∏
j∈Cqi

(x− αj) =
∏
j∈Ci

(x− αj) = M (i)(x)

Note: We obtained the first product by using the fact that (a + b)q = aq + bq in
our finite field (Truly a student’s dream expansion), and for the third product, we
uesd the fact that Ci = Cqi.

Hence, ak = aqk for all 0 ≤ k ≤ r; which means that ak are all elements of Fq.
This means that M (i)(x) is a polynomial over Fq.
(iii) Since α is a primitive element, we have αj 6= αk for two distinct elements j, k
of Ci. Hence, M (i)(x) has no multiple roots. Construct f(x) such that f(x) ∈ Fq[x]
and f(αi) = 0. Let f(x) = f0 + f1x+ · · ·+ fnx

n for some fk ∈ Fq. Then, for any
j ∈ Ci, there exists an integer l such that j ≡ iql( mod qm − 1). Hence,

f(αj) = f(αiq
l

) = f0 + f1α
iql + · · ·+ fnα

niql = fq
l

0 + fq
l

1 α
iql + · · ·+ fq

l

n α
niql

= (f0 + f1α
i + · · ·+ fnα

ni)q
l

= f(αi)q
l

= 0.

This implies that M (i)(x) is a divisor of f(x).

Altogether, (i), (ii), (iii) show that M (i)(x) is the minimal polynomial of αi �

Lastly, we have the final theorem that will be useful when we study cyclic codes:

Theorem 2.6. Let n be a positive integer with gcd(q, n) = 1. Suppose that m is
a positive integer satisfying n|(qm − 1). Let α be a primitive element of Fqm and
let M (j)(x) be the minimal polynomial of αj with respect to Fq. Let {s1, . . . , st}
be a complete set of representatives of cyclotomic cosets of q modulo n. Then the
polynomial xn− 1 has the factorization into monic irreducible polynomials over Fq:

xn − 1 =
t∏
i=1

M (
(qm−1)si

n )(x).

Proof. Let r = (qm − 1)/n. Then αr is a primitive nth root of unity, and thus all
the roots of xn−1 are 1, αr, α2r, . . . , α(n−1)r. Thus, by the definition of the minimal
polynomial, the polynomials M (ir)(x) are divisors of xn − 1, for all 0 ≤ i ≤ n− 1.
As a result, we have:

xn − 1 = lcm(M (0)(x),M (r)(x),M (2r)(x), . . . ,M ((n−1)r)(x)).

In order to factorize xn − 1, it suffices to determine all of the distinct polynomi-
als among M (0)(x),M (r)(x),M (2r)(x), . . . ,M ((n−1)r)(x). By Theorem 2.5 and the
definition of cyclotomic coset, we know that M (ir)(x) = M (jr)(x) if and only if ir
and jr are in the same cyclotomic coset of q modulo qm − 1 = rn; This is equiv-
alent to saying that i and j are in the same cyclotomic coset of q modulo n. This
implies that M (s1r)(x),M (s2r)(x), . . . ,M (str)(x) are all the distinct polynomials
among M (0)(x),M (r)(x),M (2r)(x), . . . ,M ((n−1)r)(x). �

We have the following corollary:
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Corollary 2.7. Let n be a positive integer with gcd(q, n) = 1. Then the number
of monic irreducible factors of xn − 1 over Fq is equal to the number of cyclotomic
cosets of q modulo n.

We give an example to clarify all the new language and symbols:

Example 2.8. Consider the polynomial x21 − 1 over F2. After a few calculations,
we see that {0, 1, 3, 5, 7, 9} is a complete set of representatives of cyclotomic cosets
of 2 modulo 21. Since 21 is a divisor of 26− 1, we consider the field F64. Let α be a
root of 1 + x+ x6. We verify that α is indeed a primitive root of F64 (by checking
α3 6= 1, α7 6= 1, α9 6= 1, α21 6= 1). In our case, we have q = 2, m = 6, n =21. Thus,
r = qm−1

n = 3 in our case. Hence, we list the cyclotomic cosets of 2 modulo 63
containing multiples of 3:

C0 = {0}, C3 = {3, 6, 12, 24, 48, 33}, C9 = {9, 18, 36}
C15 = {15, 30, 60, 57, 51, 39}, C21 = {21, 42}, C27 = {27, 54, 45}.

From this, and a few expansions and simplifications later, we obtain:

M (0)(x) = 1 + x

M (3)(x) =
∏
j∈C3

(x− αj) = 1 + x+ x2 + x4 + x6

M (9)(x) =
∏
j∈C9

(x− αj) = 1 + x2 + x3

M (15)(x) =
∏
j∈C15

(x− αj) = 1 + x2 + x4 + x5 + x6

M (21)(x) =
∏
j∈C21

(x− αj) = 1 + x+ x2

M (27)(x) =
∏
j∈C27

(x− αj) = 1 + x+ x3

By Theorem 2.6, we obtain the factorization of x21−1 over F2 into monic irreducible
polynomials:

x21 − 1 = M (0)(x) ·M (3)(x) ·M (9)(x) ·M (15)(x) ·M (21)(x) ·M (27)(x) =

(1+x)(1+x+x2 +x4 +x6)(1+x2 +x3)(1+x2 +x4 +x5 +x6)(1+x+x2)(1+x+x3).

3. Linear Codes: The Basics

Definition 3.1. A linear code C of length n over Fq is a subspace of Fnq . The
dimension of the linear code C is the dimension of C as a vector space over Fq.

In this manner, we can think of the codewords in C as n-dimensional vectors
in Fnq . These are ’words’ using the elements of Fq as an alphabet. The codes we
refer to are not the stuff of secret agents and spies, but they are error-correcting
codes. Simply, if we know that part of the message is going to garbled en route
(through a noisy channel), then we would like an encoding and decoding system
that protects the original message from the inevitable errors. We need a bit more
machinery first:



6 MICHAEL CALDERBANK

Definition 3.2. Let x and y be two elements of Fnq . (Alternatively, x and y are
two words of length n over the alphabet Fq). The (Hamming) distance from x to
y, denoted by d(x,y) is defined to be the number of places at which x and y differ.
If x = x1 · · ·xn and y = y1 · · · yn, then

d(x,y) = d(x1, y1) + . . .+ d(xn, yn),

where xi and yi are elements of Fq (words of length 1), and

d(xi, yi) = {1 if xi 6= yi 0 if xi = yi}.
For a code C containing at least two words, the (minimum) distance of C, denoted
by d(C), is

d(C) = min{d(x,y) : x,y ∈ C,x 6= y}.

Remark 3.3. It is easy to see that this definition of distance satisfies non-negativity,
symmetry, and the triangle inequality, so our code C is living in a metric space.

Definition 3.4. Let x be a word in Fnq . The (Hamming) weight of x, denoted by
wt(x), is defined to be the number of nonzero coordinates in x; i.e., wt(x) = d(x,0),
where 0 is the zero word.

Now, suppose that codewords from a code C are being sent over a noisy channel.
If we receive x, then we will want to decode that to the nearest possible codeword;
this is our minimum distance decoding rule. Simply, x will decode to cx if d(x, cx) =
min
c∈C

d(x, c).

Now it is clear that if our word undergoes ≥ d(C) errors in the noisy chanel,
then our decoding rule flat out fails, because we could decode to an entirely different
codeword. If there is a bound v to the errors our code C can handle, then we say
that C is v-error-correcting. We have the following proposition, whose proof we
leave as an exercise:

Proposition 3.5. A code C is v-error-correcting if and only if d(C) ≥ 2v + 1;
equivalently, a code C with distance d is an exactly bd−1

2 c-error-correcting code.

Before we can delve into the matter of encoding and decoding, we must first
introduce the concept of duality; it will be essential when we try to decode:

Definition 3.6. The dual code of C is C⊥, the orthogonal complement of the
subspace C of Fnq .

Theorem 3.7. If we let C be a linear code of length n over Fq, then C⊥ is a linear
code and dim(C) + dim(C⊥) = n.

4. Encoding and Decoding of Linear Codes

Just like all vector spaces, once we know a basis for the code, then we can do all
sorts of heavy work:

Definition 4.1. (i) A generator matrix for a linear code C is a matrix G whose
rows form a basis for C. A generator matrix of the form (Ik|X) is said to be in
standard form.
(ii) A parity-check matrix H for a linear code C is a generator matrix for the dual
code C⊥. A parity-check matrix of the form (Y |In−k) is said to be in standard
form.
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Theorem 4.2. If G = (Ik|X) is the standard form generator matrix of a code C
with dimension k and length n and distance d (an [n, k, d] code for short), then a
parity-check matrix for C is H = (−XT |In−k).

Proof. In order for H to be a generator matrix for the dual code C⊥, if G is a
generator matrix for C, then we must have HGT = 0. Our choice of H satisfies
this, and by considering the last n − k coordinates, it is clear that the rows of H
are linearly independent. Hence, H satisfies all the criteria and we are done. �

Now, set G as the generator matrix of C whose ith row is the vector ri in the
chosen basis for G. Recall that C has dimension k and length n. Then, given a
vector u = (u1, . . . , uk) ∈ Fkq , it is clear that

v = uG = u1r1 + · · ·+ ukrk
is a codeword in C. Conversely, any v ∈ C can be written uniquely as v = uG,
where u = (u1, . . . , uk) ∈ Fkq . Hence, every word u ∈ Fkq can be encoded as v = uG.

Remark 4.3. (i) If a linear code C has a generator matrix G in standard form:
G = (I|X), then we have an equally simple form for the parity-check matrix H for
C: H = (−XT |I).

(ii) It is trivial to recover the message u from the codeword v = uG, since
v = uG = u(I|X) = (u,uX). In other words, the first k digits in the codewod
v = uG give the message u; they are called the message digits. The remaining
n − k digits are called check digits. These check digits are redundant and they
protect the message against noise.

Now, a code is only of practical significance if there is an efficient decoding
scheme. For this, we need some concepts from group theory:

Definition 4.4. Let C be a linear code of length n over Fq, and let u ∈ Fnq
be any vector of length n; we define the coset of C determined by u to be the
setC + u = {v + u : v ∈ C} = u + C.

This coset coincides with the usual notion from group theory, if we consider Fnq
as a finite abelian group under addition and a linear code C of length n over Fq
as a subgroup of Fnq . We have the following proposition about cosets, the proof
consists of a few lines for each part and is easily supplied by the reader:

Proposition 4.5. Let C be an [n, k, d] linear code over the finite field Fq. Then,
(i) every vector of Fnq is contained in some coset of C;
(ii) for all u ∈ Fnq , |C + u| = |C| = qk;
(iii) for all u, v ∈ Fnq ,u ∈ C + v implies that C + u = C + v;
(iv) two cosests are either identical or they have the same intersection
(v) there are qn−k different cosets of C;
(vi) for all u, v ∈ Fnq ,u− v ∈ C if and only if u and v are in the same coset.

The last part of the proposition is crucial to decoding. Assuming that the code-
word v is transmitted and the word w is received, the resulting error pattern
e = w − v ∈ w + C. So by Proposition 4.5(vi), we have that e and w are in the
same coset. Now, since error patterns of small weight are most likely, we choose a
word e of least weight in the coset w + C and conclude that v = w − e was the
codeword transmitted. Now, this decoding scheme works great for small n, but it
gets cumbersome as n gets larger. Instead, we shall make use of syndromes here
and for the cyclic codes later.
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Definition 4.6. Let C be an [n, k, d]-linear code over Fq, and let H be a parity-
check matrix for C. For any w ∈ Fnq , the syndrome of w is the word SH(w) =
wHT ∈ Fn−kq .

For simplicity of notation, we will assume that the parity-check matrix H is in
standard form, and thus we can drop the suffix H from the syndrome when there
is no risk of ambiguity. We have the following proposition, whose proof is similar
to the previous proposition

Proposition 4.7. Let C be an [n, k, d]-linear code over Fq and let H be a parity-
check matrix for C. For u, v ∈ Fnq , we have
(i) S(u + v) = S(u) + S(v);
(ii) S(u) = 0 if and only if u is a codeword in C;
(iii) S(u) = S(v) if and only if u and v are in the same coset of C.

Remark 4.8. The proposition above asserts that we can identify a coset by its
syndrome; conversely, all the words in a given coset yield the same syndrome. Thus,
there is a one-to-one correspondence between the cosets and the syndromes. Since
the syndromes are in Fn−kq , there are at most qn−k syndromes. By Proposition
4.5(v), we know that there are qn−k cosets, so there must be qn−k corresponding
(distinct) syndromes. As a result, all the vectors in Fn−kq appear as syndromes.

Our next step is to construct a syndrome look-up table. The table matches words
of least weight in a given coset (coset leaders) with their syndrome. There is more
than one way to construct this table, but if we know the distance d of the code C,
then we generate all the error patterns e with wt(e) ≤ bd−1

2 c. From the definition
of distance, and Proposition 4.5, we know that these error patterns e have to be
coset leaders, so then we simply compute the syndrome S(e) for each of these error
patterns. Using this table, decoding is very simple:

Decoding procedure using Syndromes:

Step 1: For the received word w, compute the syndrome S(w).
Step 2: Find the coset leader u next to the syndrome S(w) =S(u) in the syndrome
look-up table.
Step 3: Decode w as v = w− u.

We give an example to illustrate this process:

Example 4.9. Let q = 2 and let C = {0000, 1011, 0101, 1110}. First, we construct
a parity-check matrix H. This is not hard at all, since the 2nd and 3rd codewords
in C constitute a basis for C. Hence

G = (I|X) =
(

1 0 1 1
0 1 0 1

)
H = (−XT |I) =

(
1 0 1 0
1 1 0 1

)
Next, we construct our syndrome look-up table for C:

(4.10)

Coset leader u Syndrome S(u)
0000 00
0001 01
0010 10
1000 11
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Now, say that we wanted to decode w = 1101. The syndrome is S(w) = wHT = 11.
From our syndrome look-up table, we see that the coset leader is 1000. Hence
1101− 1000 = 0101 was the most likely codeword sent.

5. Cyclic Codes

Linear codes are nice to study and implement, because they have algebraic struc-
tures that ensure easy encoding and decoding. However, we can do more to simplify
the implementaion of codes if we require a cyclic shift of a codeword in C to still
be a codeword. This requirement smells like a combinatorial structure, but we
shall combine the works of the previous section to show that this has an algebraic
structure.

Definition 5.1. A subset S of Fnq is cyclic if (an−1, a0, a1, . . . , an−2) ∈ S whenever
(a0, a1, . . . , an−1) ∈ S. A linear code C is called a cyclic code if C is a cyclic set.
The word (un−r, . . . , un−1, u0, u1, . . . , un−r−1) is said to be obtained from the word
(u0, . . . , un−1) ∈ Fnq by cyclically shifting r positions.

In order to convert the combinatorial structure of cyclic codes into an algebraic
one, we consider the following map:

(5.2) π : Fnq → Fq[x]/(xn − 1), (a0, a1, . . . , an−1) 7→ a0 + a1x+ · · ·+ an−1x
n−1.

It is clear that this is bijective, and from now on we will sometimes identify Fnq
with Fq[x]/(xn − 1), and a codeword u = (u0, u1, . . . , un−1) with the polynomial

u(x) =
n−1∑
i=0

uix
i. Note that by 1.4, we know that Fq[x]/(xn − 1) is a ring.

Definition 5.3. Let R be a commutative ring. For simplicity’s sake, we shall
assume that all rings that we mention are commutative; we will not delve into
noncommutative rings. A nonempty subset I of R is called an ideal if
(i) both a+ b and a− b belong to I, for all a, b ∈ I.
(ii) r · a ∈ I, for all r ∈ R and a ∈ I.

Definition 5.4. An ideal I of a ring R is called a principal ideal if there exists an
element g ∈ I such that I =< g >, where

< g >:= {gr : r ∈ R}.
The element g is called a generator of I and I is said to be generated by g. A ring
R is called a principal ideal ring if every ideal of R is principal.

Example 5.5. In the ring F2[x]/(x3 − 1), the subset

I := {0, 1 + x, x+ x2, 1 + x2}
is an ideal. In fact, it is a principal ideal, with I =< 1 + x >:

0 · (1 + x) = 1 + x3 = 0 = (1 + x+ x2)(1 + x)

1 · (1 + x) = 1 + x = (x+ x2)(1 + x)

x · (1 + x) = x+ x2 = (1 + x2)(1 + x)

x2 · (1 + x) = 1 + x2 = (1 + x)(1 + x)

We note that the zero trivial ideal is clearly principal; non-zero ideals are much
more interesting:
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Theorem 5.6. Let I be a nonzero ideal in Fq[x]/(xn−1) and let g(x) be a nonzero
monic polynomial of the least degree in I. Then g(x) is a generator of I. In other
words, Fq[x]/(xn − 1) is a principal ideal ring. Also, g(x) divides xn − 1.

Proof. For any polynomial f(x) of I, we have f(x) = s(x)g(x) + r(x) for some
polynomials s(x), r(x) ∈ Fq[x] with deg(r(x)) < deg(g(x)). This forces r(x) = 0,
since r(x) = f(x) − s(x)g(x) ∈ I and g(x) has the lowest degree. Hence I =<
g(x) > . The second part of the theorem follows if we substitute xn − 1 for f(x).
(Note: we can do this, since xn − 1 is the zero-element of Fq[x]/(xn − 1). �

Now, we are ready for the main theorem connecting cyclic codes and ideals, it
will form the backbone of our further work:

Theorem 5.7. Let π be the linear map defined in Equation 5.2. Then a nonempty
subset C of Fnq is a cyclic code if and only if π(C) is an ideal of Fq[x]/(xn − 1).

Proof. Suppose that π(C) is an ideal of Fq[x]/(xn − 1). Then for any α, β ∈ Fq ⊂
Fq[x]/(xn − 1) and a,b ∈ C, we have απ(a) + βπ(b) is an element of π(C); i.e.,
π(αa + βb) ∈ π(C), hence αa + βb is a codeword of C. This shows that C is a
linear code.

Now let c = (c0, c1, . . . , cn−1) be a codeword of C. The polynomial

π(c) = c0 + c1x+ · · ·+ cn−2x
n−2 + cn−1x

n−1

is an element of π(C). Since π(C) is an ideal, the element

xπ(c) = c0x+ c1x
2 + · · ·+ cn−2x

n−1 + cn−1x
n

= cn−1 + c0x+ c1x
2 + · · ·+ cn−2x

n−1 + cn−1(xn − 1)
= cn−1 + c0x+ c1x

2 + · · ·+ cn−2x
n−1

is in π(C); so (cn−1, c0, c1, . . . , cn−2) is a codeword of C. This means that C is
cyclic.

Conversely, suppose that C is a cyclic code. Then, we know that Definition 5.3(i)
is satisfied automatically. For any polynomial

f(x) = f0 + f1x+ · · ·+ fn−2x
n−2 + fn−1x

n−1 = π(f0, f1, . . . , fn−1)

of π(C) with (f0, f1, . . . , fn−1) ∈ C, the polynomial

xf(x) = fn−1 + f0x+ f1x
2 + · · ·+ fn−2x

n−1

is also an element of π(C) since C is cyclic. Thus x2f(x) = x(xf(x)) is an element
of π(C). By induction, we know that xif(x) belongs to π(C) for all i ≥ 0. Since
π(C) is a linear code and π a linear transformation, π(C) is a linear space over Fq.
Hence, for any g(x) = g0 + g1x+ · · ·+ gn−1x

n−1 ∈ Fq[x]/(xn − 1), the polynomial

g(x)f(x) =
n−1∑
i=0

gi(xif(x))

is an element of π(C). Therefore, π(C) is an ideal of Fq[x]/(xn−1) since Definition
5.3(ii) is also satisfied. �

It is clear that we must have a unique monic polynomial g(x) of the least degree
in every nonzero ideal I, and by Theorem 5.7, we have that g(x) is a generator of
I. Thus, the following definition makes sense:
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Definition 5.8. The unique monic polynomial of the least degree in I of Fq[x]/(xn−
1) is called the generator polynomial of I. For a cyclic code C, the generator poly-
nomial of π(C) is also called the generator polynomial of C.

It is easy to see that each monic divisor of xn− 1 is the generator polynomial of
some cyclic code C in Fnq . From Theorem 5.7 we have the following corollary:

Corollary 5.9. There is a one-to-one correspondence between the cyclic codes in
Fnq and the monic divisors of xn − 1 ∈ Fq[x].

Remark 5.10. We can even specify the dimension of the cyclic code easily. If
we let g(x) be the generator polynomial of an ideal of Fq[x]/(xn − 1), then the
corresponding cyclic code has dimension k if the degree of g(x) is n− k.

Now, using Theorem 2.6, we factorize xn−1 over Fq, and we can generate cyclic
codes from each of the monic divisors of xn − 1. Now we see why we went to all
the trouble to define cyclotomic cosets: we get cyclic codes for free!

Example 5.11. Based on the factorization: x7−1 = (1+x)(1+x2+x3)(1+x+x3) ∈
F2[x], we know that there are only two binary [7, 3] cyclic codes:

< (1 + x)(1 + x2 + x3) > = {0000000, 1110100, 0111010, 0011101,
1001110, 0100111, 1010011, 1101001}

and

< (1 + x)(1 + x+ x3) > = {0000000, 1011100, 0101110, 0010111,
1001011, 1100101, 1110010, 0111001}

6. Encoding and Decoding of Cyclic Codes

We have seen that a cyclic code is determined by its generator polynomial, so
such a code should also have generator matrices determined by this polynomial.

Theorem 6.1. Let g(x) = g0 + g1x+ · · ·+ gn−kx
n−k be the generator polynomial

of a cyclic code C in Fnq with deg(g(x)) = n− k. Then the matrix

G =


g(x)
xg(x)

·
·
·

xk−1g(x)

 =


g0 g1 · · · gn−k 0 0 0 · · 0
0 g0 g1 · · · gn−k 0 0 · · 0
· ·
· ·
· ·
0 0 · · · g0 g1 · · · · gn−k


is a generator matrix of C.

Proof. It is sufficient to show that g(x), xg(x), . . . , xk−1g(x) form a basis of C. Well,
it is clear that they are linear independent over Fq, and since we know dim(C) = k,
we are done. �

From our study of linear codes, we know that we can find a parity-check matrix
of a cylic code C by manipulating the generator matrix of C (See 4.2). However,
since the dual-code (3.6) C⊥ is also a cyclic code, we should be able to leapfrog the
step of finding a generator matrix and go straight from the generator polynomial
of C to a generator polynomial of C⊥.
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Definition 6.2. Let h(x) =
k∑
i=0

aix
i be a polynomial of degree k(ak 6= 0) over Fq.

We define the reciprocal polynomial hR(x) of h(x) by

hR(x) := xkh(1/x) =
k∑
i=0

ak−ix
i.

Theorem 6.3. Let g(x) be the generator polynomial of a q-ary [n, k]-cyclic code
C. Put h(x) = (xn − 1)/g(x). Then h−1

0 hR(x) is the generator polynomial of C⊥,
where h0 is the constant term of h(x).

Proof. Let g(x) =
n−1∑
i=0

gix
i and let h(x) =

n−1∑
i=0

hix
i. Then

hR(x) =
1

xn−k−1

n−1∑
i=0

hn−i−1x
i,

where k = deg(h(x)). Now, consider the product

0 ≡ g(x)h(x)
≡ (g0h0 + g1hn−1 + · · ·+ gn−1h1) + (g0h1 + g1h0 + · · ·+ gn−1h2)x+

(g0h2 + g1h1 + · · ·+ gn−1h3)x2 + · · ·+
(g0hn−1 + g1hn−2 + · · ·+ gn−1h0)xn−1( mod xn − 1)

By construction, each coefficient of each power of x in the last line above must be
zero. Looking at these coefficients, we obtain gi · (hn−1, hn−2, . . . , h1, h0) = 0, for
all i = 0, 1, . . . , n − 1, where gi is the vector obtained from (g0, g1, . . . , gn−1) by
cyclically shifting i positions. Therefore, (hn−1, hn−2, . . . , h1, h0) is a codeword of
C⊥ since {g0,g1, . . . ,gn−1} generates C by Theorem 6.1.

By cyclically shifting the vector (hn−1, hn−2, . . . , h1, h0) by k + 1 positions, we
obtain the vector corresponding to hR(x). This implies that hR(x) is a codeword
since C⊥ is cyclic.

Since deg(hR(x) =deg(h(x)) = k, the set {hR(x), xhR(x), . . . , xn−k−1hR(x)} is
a basis of C⊥. Hence, C⊥ is generated by hR(x). Thus, the monic polynomial
h−1

0 hR(x) is the generator polynomial of C⊥. �

A quick corollary allows to construct the parity-check matrix for C directly from
the generator polynomial g(x):

Corollary 6.4. Let C be a [n, k, d]-cyclic code with generator polynomial g(x). Put
h(x) = (xn − 1)/g(x). Let h(x) = h0 + h1x+ · · ·+ hkx

k. Then the matrix

H =


hk hk−1 · · · h0 0 0 0 · · 0

0 hk hk−1 · · · h0 0 0 · · 0
· ·
· ·
· ·
0 0 · · · hk hk−1 · · · · h0


is a parity-check matrix of C
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Although the parity-check matrix is not in standard-form, a few row manipula-
tions will yield a parity-check matrix of the form H = (In−k|A). When we decode,
we shall assume that the parity-check matrix is in standard form.

Theorem 6.5. Let H = (In−k|A) be a parity-check matrix of a cyclic code C over
Fq. Let g(x) be the generator polynomial of C. Then the syndrome of a vector
w ∈ Fnq is equal to w(x)( mod g(x)), where w(x) is the corresponding polynomial of
w.

Proof. For each column vector of A, we can associate a polynomial of degree at
most n− k − 1 and write A as

A = (a0(x), a1(x), . . . , ak−1(x)).

By duality, we know that G = (−AT |Ik) is a generator matrix for C. Therefore,
xn−k+i − ai(x) is a codeword of C. Put xn−k+i − ai(x) = qi(x)g(x) for some
qi(x) ∈ Fq[x]/(xn − 1); so

ai(x) = xn−k+i − qi(x)g(x)

Suppose w(x) = w0 + w1x + · · · + wn−1x
n−1. For the syndrome s = wHT of w,

the corresponding polynomial s(x) is

s(x) = w0 + w1x+ · · ·+ wn−k−1x
n−k−1 + wn−ka0(x) + · · ·+ wn−1ak−1(x)

=
n−k−1∑
i=0

wix
i +

k−1∑
j=0

wn−k+j(xn−k+j − qj(x)g(x))

=
n−1∑
i=0

wix
i −

k−1∑
j=0

wn−k+jqj(x)

 g(x)

≡ w(x)( mod g(x)).

As the polynomial s(x) has degree at most n− k − 1, we are done. �

Remark 6.6. Theorem 6.5 shows that w(x)− s(x) is a codeword, where s(x) is the
syndrome of w(x). Now, if wt(s(x)) ≤ bd(C)−1

2 c, then we can safely decode w(x)
to w(x) − s(x), since there is no ambiguity. Unfortunately, this is not always the
case, and so we will need a bit more machinery.

Lemma 6.7. Let C be a q-ary [n, k]-cyclic code with generator polynomial g(x).

Let s(x) =
n−k−1∑
i=0

six
i be the syndrome of w(x). Then the syndrome of the cyclic

shift xw(x) is equal to xs(x)− sn−k−1g(x).

Proof. By Theorem 6.5, it is sufficient to show that xs(x) − sn−k−1g(x) is the
remainder of xw(x) divided by g(x). Let w(x) = q(x)g(x) + s(x). Then

xw(x) = xq(x)g(x) + xs(x) = (xq(x) + sn−k−1)g(x) + (xs(x)− sn−k−1g(x)).

Since deg(xs(x)− sn−k−1g(x)) < n− k =deg(g(x)). �

Now, we can generalize this to see that the syndrome of the cyclic shift xiw(x) of
a word w(x) can be computed through the syndrome of the cyclic shift xi−1w(x).
Thus, the syndromes of w(x), xw(x), x2w(x), . . . can be computed inductively.

Before we begin our theorem for syndrome decoding of cyclic codes, we have one
more definition related to error patterns:
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Definition 6.8. A cyclic run of 0 of length l of an n-tuple is a succession of l
cyclically consecutive zero components.

Note that: e = (0, 0, 1, 2, 0, 0, 0, 1, 0, 0) has a cyclic run of 0 of length 4.

Decoding algorithm for Cyclic Codes

Let C be a q-ary [n, k, d]-cyclic code with generator polynomial g(x). Let w(x)
be a received word with error pattern e(x), where wt(e(x)) ≤ bd−1

2 c and e(x) has
a cyclic run of 0 of length at least k. The goal is to determine e(x).

Step 1: Compute the syndromes of xiw(x), for i = 0, 1, 2, . . . , and denote by
si(x) the syndrome (xiw(x)( mod g(x)).

Step 2: Find m such that wt(sm(x)) ≤ bd−1
2 c.

Step 3: Compute the remainder e(x) of xn−msm(x) divided by xn − 1. Decode
w(x) to w(x)− e(x).

Proof. First of all, we show that such an m in Step 2 exists. By assumption, we
know that there exists an error pattern e(x) such that e(x) has a cyclic run of 0 of
length at least k. Thus, there exists an integer m ≥ 0 such that the cyclic shift of
the error pattern e(x) through m positions has all its non-zero coefficients within
the first n−k positions. Note that this cyclic shift of the error pattern e(x) through
m positions is in fact (xmw(x)( mod xn−1)) = sm(x). Since the weight is invariant
under a cyclic shift, we have our m that works.

The word t(x) := (xn−ms(x)( mod xn − 1) is a cyclic shift of (sm,0) through
n −m positions, where sm is the vector of Fn−kq corresponding to the polynomial
sm(x) It is clear that the weight of t(x) is the same as the weight of sm(x). Hence
wt(t(x)) ≤ bd−1

2 c. As

xm(w(x)− t(x)) ≡ xm(w(x)− xn−msm(x))
≡ xmw(x)− xnsm(x)
≡ sm(x)− xnsm(x)
≡ (1− xn)sm(x) ≡ 0( mod g(x))

and xm is co-prime to g(x), we have that w(x)− t(x) is divisible by g(x); in other
words, w(x)− t(x) is a codeword. As t(x) and e(x) are in the same coset, because
of their weights we must have that e(x) = t(x) = (xn−msm(x)( mod xn − 1). �

Example 6.9. Consider the binary [15, 7]-cyclic code generated by g(x) = 1 +
x4 + x6 + x7 + x8. We can check from the parity-check matrices that the minimum
distance is 5. An error pattern with weight at most 2 must have a cyclic run of 0 of
length at least 7. Thus, we can correct such an error pattern using what we have
proven above. Now, consider the received word:

w(x) = 110011101100010 = 1 + x+ x4 + x5 + x6 + x8 + x9 + x13.
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We can compute the syndromes si(x) of xiw(x) until wt(si(x)) ≤ 2:

(6.10)

i sm(x)
0 1 + x2 + x5 + x7

1 1 + x+ x3 + x4 + x7

2 1 + x+ x2 + x5 + x6 + x7

3 1 + x+ x2 + x3 + x4

4 x+ x2 + x3 + x4 + x5

5 x2 + x3 + x4 + x5 + x6

6 x3 + x4 + x5 + x6 + x7

7 1 + x5

Then we decode w(x) = 110011101100010 to w(x)− x8s7(x) = w(x)− x8 − x13 =
1+x+x4+x5+x6+x9 = 110011100100000. Note that we only used the parity-check
matrix to check for distance; it was not specifically used in the decoding procedure.

7. Conclusion

After establishing some well-known results of finite fields, we proceeded to define
cyclotomic cosets so that we could obtain a formula for factoring xn−1 over a finite
field. Then, we proceeded to lay the background for linear codes and coding theory
in general. While these two sections seem to be unrelated, when we defined cyclic
codes later, we were able to see that each of the monic factors of xn−1 generated a
cyclic code that we could use to correct errors. In fact, the encoding and decoding
process is simplified due to the pleasing algebraic structures of cyclic codes. The
area of cyclic codes is very rich, and while we only looked at the general codes to
correct random errors, there is a whole other set of codes if we have some more
information about the error pattern.
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