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Abstract. This paper seeks to study standard Brownian motion and some
of its properties. We construct this stochastic process and demonstrate a few

properties including continuity and non-differentiability.
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1. Continuous Random Variables

Since this paper deals primarily with a stochastic process, a sequence of random
variables indexed by time, we are first going to need to know a little bit of the
machinery of probability in order to achieve any useful results. We assume that
the reader has some familiarity with basic (discrete) probability and measure the-
ory, particularly with respect to random variables. However since this paper deals
primarily with continuous random variables we will review their properties in some
detail.

Definition 1.1. We say a random variable X is continuous if there exists a non-
negative, integrable function f : R→ R such that for all measurable sets A

P{X ∈ A} =
∫
A

f(x)dx

We call this function f the probability density function (PDF ), or just the density,
of the random variable X.

Sometimes it is easier to instead define the probability that a random variable
is greater than, or less than, a given value. For this we have a new definition.

Definition 1.2. The cumulative distribution function (CDF ) for a random vari-
able X, denoted FX(a), is given by

FX(a) = P{X ≤ a}
In the case of a continuous random variable X we also have

FX(a) = P{X ≤ a} = P{X < a} =
∫ a

−∞
f(x)dx

where f(x) denotes the density as defined above.
1
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Proposition 1.3. Given a continuous random variable X if its cumulative dis-
tribution function is given by F and its probability density function is given by f
then

d

da
F (a) = f(a)

Proof. By definition

F (a) =
∫ a

−∞
f(x)dx

Differentiating both sides gives us the result. �

Definition 1.4. The expected value or mean of a continuous random variable X is
defined to be:

E[X] =:
∫ ∞
−∞

xf(x)dx

whenever the integral on the right hand side exists.

Definition 1.5. the Variance of a continuous random variable X is given by

V ar(X) =: E[(X − E[X])2]

again whenever the value on the right hand side exists.

These two values are of key importance when studying probability, but it is
important to note that they don’t necessarily exist for all random variables, one
example being the Caucy distribution. However when these values do exist one can
consider the expected value of a function of a random variable.

Lemma 1.6. For any continuous random variable Y with density fY :

E[Y ] =
∫ ∞

0

P{Y > y}dy −
∫ ∞

0

P{Y < −y}dy

Proof. We will show this equality directly. Consider∫ ∞
0

P{Y > y}dy−
∫ ∞

0

P{Y < −y}dy =
∫ ∞

0

∫ ∞
y

fY (x)dxdy−
∫ ∞

0

∫ −y
−∞

fY (x)dxdy

This equality holding simply by our definition of a probability density function. Now
if we exchange the order of integration in each of these double integrals, making
sure to keep the region of integration the same, we obtain

=
∫ ∞

0

∫ ∞
y

fY (x)dxdy −
∫ ∞

0

∫ −y
−∞

fY (x)dxdy

=
∫ ∞

0

∫ x

0

fY (x)dydx−
∫ 0

−∞

∫ −x
0

fY (x)dydx

=
∫ ∞

0

(∫ x

0

dy

)
fY (x)dx−

∫ 0

−∞

(∫ −x
0

dy

)
fY (x)dx

=
∫ ∞

0

xfY (x)dx+
∫ 0

−∞
xfY (x)dx

=
∫ ∞
−∞

xfY (x)dx

= E[Y ]

�
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Proposition 1.7. If Y is a continuous random variable with density fY (x), then
for any real-valued function g,

E[g(Y )] =
∫ ∞
−∞

g(x)fY (x)dx

Proof. By Lemma 1.4 we know that

E[g(Y )] =
∫ ∞

0

P{g(Y ) > y}dy −
∫ ∞

0

P{g(Y ) < −y}dy

=
∫ ∞

0

∫
g(x)>y

fY (x)dxdy −
∫ ∞

0

∫
g(x)<−y

fY (x)dxdy

=
∫
g(x)>0

(∫ g(x)

0

dy

)
fY (x)dx−

∫
g(x)<0

(∫ −g(x)
0

dy

)
fY (x)dx

=
∫
g(x)>0

g(x)fY (x)dx+
∫
g(x)<0

g(x)fY (x)dx

=
∫ ∞
−∞

g(x)fY (x)dx

�

Corollary 1.8. Given any constants a and b

E[aX + b] = aE[X] + b

Proposition 1.9. For any continuous random variable X with density f, and ex-
pected value E[X] <∞

V ar(X) = E[X2]− (E[X])2

Proof. By the definition of variance we know:

V ar(X) = E[(X − E[X])2]

and now we can apply Proposition 1.5 repeatedly to manipulate our equation.

V ar(X) =
∫ ∞
−∞

(x− E[X])2f(x)dx

=
∫ ∞
−∞

(x2 − 2E[X]x+ E[X]2)f(x)dx

=
∫ ∞
−∞

x2f(x)dx− 2E[X] ·
∫ ∞
−∞

xf(x)dx+ E[X]2 ·
∫ ∞
−∞

f(x)dx

= E[X2]− 2E[X] · E[X] + E[X]2

= E[X2]− (E[X])2

�

Corollary 1.10. Given any constants a and b

V ar(aX + b) = a2V ar(X)

This corollary is fairly immediate, and is hence left to the reader.
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2. Jointly Distributed Random Variables

In addition to considering situations involving a single continuous random vari-
able it is many times necessary to consider multiple random variables at the same
time. Now we will lay out a few definitions involving the relationship between two
continuous random variables.

Definition 2.1. Two random variables X and Y are said to be jointly continuous
if there exists a function f(x, y), the joint probability density function of X and
Y , defined for all real x and y such that for all measurable sets A and B of real
numbers

P{X ∈ A, Y ∈ B} =
∫
B

∫
A

f(x, y)dxdy

Definition 2.2. We call random variables X and Y independent if for any two
measurable sets A and B of real numbers,

P{X ∈ A, Y ∈ B} = P{X ∈ A}P{Y ∈ B}

If f(x, y) is the joint probability density function of X and Y and fX(x) and fY (y)
are the probability density functions of X and Y respectively, then this is equivalent
to saying

f(x, y) = fX(x)fY (y),∀x, y

If random variables are not independent we call them dependent.

Definition 2.3. We call a collection of variables X1, ..., Xn independent if for any
measurable sets A1, ..., An

P{Xi ∈ Ai : 1 ≤ i ≤ n} =
n∏
i=1

P{Xi ∈ Ai}

We call a collection of variables pairwise independent if for any two variables Xi, Xj

and any two measurable sets Ai, Aj , i 6= j

P{Xi ∈ Ai, Xj ∈ Aj} = P{Xi ∈ Ai}P{Xj ∈ Aj}

Remark 2.4. While a collection of variables being independent clearly implies pair-
wise independence, the reverse is not necessarily so.

It’s also possible to consider the sum of two independent random variables. Given
two independent, continuous random variables X, Y and their corresponding dis-
tribution and density functions the CDF of their sum is given by:

FX+Y (a) = P{X + Y ≤ a}

=
∫ ∫

x+y≤a
fX(x)fY (y)dxdy

=
∫ ∞
−∞

∫ a−y

−∞
fX(x)dxfY (y)dy

=
∫ ∞
−∞

FX(a− y)fY (y)dy
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Then if we differentiate both sides of the equation, by proposition 1.3, we can obtain
the probability density function

fX+Y =
d

da

∫ ∞
−∞

FX(a− y)fY (y)dy

=
∫ ∞
−∞

d

da
FX(a− y)fY (y)dy(2.5)

=
∫ ∞
−∞

fX(a− y)fY (y)dy

With the framework we have now we can introduce random walk. In one di-
mension random walk is simply thought of as starting at the origin, then flipping a
coin and moving +1 if it lands heads, or −1 if it lands tails. Hence this process is
a simple example of discrete random motion. But to be clear we should state this
idea in mathematically.

Definition 2.6. A random walk is a stochastic process Sn with

Sn = X1 + ...+Xn

where the Xi are independent, identically distributed random variables taking on
values 1 and −1 each with probability 1

2 .

Given this definition one can then study the properties of a random walk, such as
the average distance one has moved after a given number of steps, and the frequency
with which one will visit any given point. However we will not be studying this
process here and will instead move on to define normal random variables, which we
will use to create Brownian motion, essentially a continuous random walk.

3. Normally Distributed Random Variables

Definition 3.1. We will say a variableX has a normal distribution with parameters
µ and σ2 if its probability density function is given by:

f(x) =
1√
2πσ

e
−(x−µ)2

2σ2 −∞ < x <∞

We will denote this by writing X ∼ N(µ, σ2)

In order to consider such a variable X we must first make sure that the function
f actually is a probability density function. We will do this, and consider the
expected value and variance of X ∼ N(µ, σ2) with the following theorem.

Theorem 3.2. If a continuous random variable X has a normal distribution with
parameters µ and σ2, and probability density function denoted f(x) then:

(1)
1√
2πσ

∫ ∞
−∞

e
−(x−µ)2

2σ2 dx = 1

(2) E[X] = µ
(3) V ar(X) = σ2

Proof. (1)
1√
2πσ

∫ ∞
−∞

e
−(x−µ)2

2σ2 dx =
1

2π

∫ ∞
−∞

e
−y2

2 dy
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By letting y = (x − µ)/σ. Now it only needs to be shown that I =∫∞
−∞ e−y

2/2 =
√

2π. To do this consider I2:

I2 =
(∫ ∞
−∞

e
−x2

2 dx

)(∫ ∞
−∞

e
−y2

2 dy

)
=
∫ ∞
−∞

e
−(x2+y2)

2 dy

This integral can then be easily evaluated by switching to polar coordi-
nates, letting x = r cos θ, y = r sin θ, and dxdy = rdθdr.

I2 =
∫ ∞

0

∫ 2π

0

re
−r2

2 dr

= 2π
∫ ∞

0

re
−r2

2 dr

= 2π
[
−e

−r2
2

∣∣∣∣∞
0

]
= 2π

(2)

E[X] =
1√
2πσ

∫ ∞
−∞

xe
−(x−µ)2

2σ2 dx

=
1√
2πσ

∫ ∞
−∞

(x− µ)e
−(x−µ)2

2σ2 dx+
1√
2πσ

∫ ∞
−∞

µe
−(x−µ)2

2σ2 dx

=
1√
2πσ

∫ ∞
−∞

ye
−y2

2σ2 dy + µ

∫ ∞
−∞

f(x)dx

Hence by considering x = (x − µ) + µ we can see that the first term
integrates to 0 due to symmetry when we replace y = (x − µ), and the
second term is simply µ since f(x) is indeed a probability density function,
as we showed in (1). Hence we have shown that E[X] = µ, as desired.

(3)

V ar(X) = E[(X − E[X])2 = E[(X − µ)2] =
1√
2πσ

∫ ∞
−∞

(x− µ)2e
−(x−µ)2

2σ2 dx

Luckily this formula works out nicely since, as we already calculated, E[x] =
µ. Now we can just let y = (x− µ) and begin integrating:

V ar(X) =
1√
2πσ

∫ ∞
−∞

y2e
−y2

2σ2 dy

=
1√
2πσ

(
σ2ye

−y2

2σ2

∣∣∣∣∞
−∞
−
∫ ∞
−∞
−σ2e

−y2

2σ2 dx

)
Integration by Parts

= σ2

∫ ∞
−∞

1√
2πσ

e
−y2

2 dx

= σ2
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Since again by part (1) the final integral evaluates to 1, V ar(X) = σ2 as
claimed.

�

It’s also interesting, and useful, to consider what happens to normal random
variables when they are added together. In particular we will consider what happens
to the expected value and variance when two normal random variables are added
together.

Lemma 3.3. Let X and Y be two independent random variables with X ∼ N(0, σ2)
and Y ∼ N(0, 1). Then X + Y ∼ N(0, 1 + σ2).

Proof. By equation (2.3) we can write

fX+Y (a) =
∫ ∞
−∞

fX(a− y)fY (y)dy

=
∫ ∞
−∞

1√
2πσ

e
−(a−y)2

2σ2 · 1√
2π
e
−y2

2 dy

=
1

2πσ

∫ ∞
−∞

e
−(a2−2ay+y2)

2σ2 e
−y2

2 dy

=
1

2πσ
e
−a2

2σ2

∫ ∞
−∞

e
1+σ2

2σ2

(
y2−2y a

1+σ2

)
dy

Now for simplicity let us let c = 1+σ2

σ2 . Then by completing the square we obtain

fX+Y (a) =
1

2πσ
e
−a2

2σ2 e
(1+σ2)(a2)

(2σ2)(1+σ2)2

∫ ∞
−∞

e
− c2 (y− a

1+σ2 )2
dy

=
1

2πσ
e

−a2

2(1+σ2)

∫ ∞
−∞

e
−cx2

2 dx

=
1√

2πσc
e

−a2

2(1+σ2)

√
c√

2π

∫ ∞
−∞

e
−cx2

2 dx

=
1√

2π(1 + σ2)
e

−a2

2(1+σ2)

Which is precisely the density of a normal random variable with mean 0 and variance
1 + σ2. �

Proposition 3.4. If X1, X2, ..., Xn are independent continuous random variables
each Xi ∼ N(µi, σ2

i ), 1 ≤ i ≤ n, then
n∑
i=1

Xi ∼ N(
n∑
i=1

µi,

n∑
i=1

σ2
i )

Proof. We will prove this by induction. If n = 1 there is nothing to prove. Now
consider first the case for n = 2. We can write

X1 +X2 = σ2(
X1 − µ1

σ2
+
X2 − µ2

σ2
) + µ1 + µ2

Here the random variable X1−µ1
σ2

∼ N(0, σ2
1/σ

2
2), and the random variable X2−µ2

σ2
∼

N(0, 1) so that we can apply Lemma 3.3. Hence X1−µ1
σ2

+ X2−µ2
σ2

is normal with
expected value 0 and variance (1+(σ1/σ2)2), and by corollaries 1.8 and 1.10 X1+X2

is normal with mean 0 + µ1 + µ2 and variance σ2
2(1 + (σ1/σ2)2.
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Now if we assume the result holds up to n− 1 we can then write
n∑
i=1

Xi =
n−1∑
i=1

Xi +Xn

Then by our inductive hypothesis
∑n−1
i=1 Xi ∼ N(

∑n−1
i=1 µi,

∑n−1
i=1 σ

2
i ), and applying

the result for n = 2 we gain the desired result. �

4. Brownian Motion

Now we finally get to the meat of this paper. Brownian motion attempts to define
a continuous analogue of random walk to, in a sense, model purely random motion.
In particular we would like Brownian motion to satisfy the following definition:

Definition 4.1. A (standard) Brownian motion is a stochastic process, Wt 0 ≤
t ≤ ∞ satisfying:

(1) W0 = 0
(2) Independent normal increments: If s < t, then Wt −Ws ∼ N(0, t− s) and

is independent of Wr 0 ≤ r ≤ s
(3) The function t 7→Wt is continuous.

The reason we call this particular definition standard Brownian motion is simply
due to the normalization of the random variables. We could just as easily, with the
proper scaling factors, construct Brownian motion such that Wt−Ws ∼ N(0, 2(t−
s)). For simplicity this definition is set up so that W1 ∼ N(0, 1). But before we
can consider this process, we need to be sure that Brownian motion as we defined
it exists, and there are a couple of key problems in doing this. First we are going
to need to find a set of random variables that will actually satisfy condition (2) on
any set of numbers, let alone R. Then given the random variables, there is still no
guarantee that our map t 7→Wt will be continuous. So to start we will attempt to
define such a process on a tameable beast: the Dyadic Rationals.

Definition 4.2. Let Dn = { k2n |k = 0, 1, 2, ...}. Then we will denote the Dyadic
Rationals by:

D =
∞⋃
0

Dn

Making sure our definition satisfies condition (1) of Brownian Motion is easy:
we will define W0 = 0. Now if we import condition (2) into D we just need for each
n, the random variables:

Wk/2n −W(k−1)/2n , k = 1, 2, ...

to be independent, with mean 0 and variance 2−n. But for simplification we intro-
duce the following notation.

Let

(4.3) J(k, n) = 2n/2[Wk/2n −W(k−1)/2n ]

Then we need for each n the random variables:

J(1, n), J(2, n), J(3, n), ...

to be independent with J(k, n) ∼ N(0, 1) ∀k
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Now with this requirement in mind we can begin our search for a way of defining
these J(k, n) so as to satisfy (2). In order to do this we’re first going to need a way
to take two independent random variables and make new random variables. Hence
we will state the following proposition without proof, for a proof see Lawler in the
references.

Proposition 4.4. Suppose X and Y are independent random variables, X,Y ∼
N(0, 1), and we let:

Z =
1√
2
X +

1√
2
Y

Z̃ =
1√
2
X − 1√

2
Y

Then Z, and Z̃ are independent random variables, also with Z, Z̃ ∼ N(0, 1).

In order to actually define our Brownian Motion on the Dyadics we will assume
that we have a countable set of independent random variables Z1, Z2, ... such that
Zq ∼ N(0, 1),∀q. We’ll also assume that, since D is a countable set, they can be
indexed by Zq q ∈ D. Now to define our Brownian Motion on D we will begin by
defining

J(k, 0) = Zk, k = 1, 2, ...

Now assuming we have J(k, n) for all k using only Zq : q ∈ Dn such that each
J(k, n) ∼ N(0, 1) and independent. Then we will define

J(2k − 1, n+ 1) =
1√
2
J(k, n) +

1√
2
Z(2k+1)/2n+1

J(2k, n+ 1) =
1√
2
J(k, n)− 1√

2
Z(2k+1)/2n+1

By applying Proposition 4.4 we see that for each k the J(k, n+1) are independent
N(0, 1) random variables. Then we just define our Wk/2n by

Wk/2n = 2−n/2
k∑
j=1

J(j, n)

So as to satisfy equation 4.3 above.
Now we’re getting somewhere. We’ve defined Brownian Motion fairly successfully

on D, but the downside is, we’re missing uncountably many points, and we still
haven’t gotten to condition (3), continuity. Luckily all we actually need to do is
prove that our current definition of Brownian Motion, in fact, already defines a
uniformly continuous map on any closed subset of R intersect D, and we get a
continuous extension to R for free, since D is a dense subset of R. Consider the
following proposition:

Proposition 4.5. Let D be a dense subset of R, and f : D → R be a uniformly con-
tinuous function on every closed subset of R∩D. Then we can define a continuous
extension of f to R s.t. f is continuous on R.

Proof. For any t ∈ [0,∞) ∃T > 0 such that t ∈ [0, T ], and there is a sequence
{tn ∈ D} with limn→∞ tn = t. Hence {tn} is a cauchy sequence, and since f is
uniformly continuous on [0, T ] the corresponding sequence {f(tn)} is also a cauchy
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sequence, and has a unique limit since [0, T ] is a compact set. So we can uniquely
define the extension of f to be

f̃(t) = lim
n→∞

f(tn).

To see that f̃ is a uniformly continuous function on [0, T ] it is enough to show
that f̃ is continuous, since the domain is a closed and bounded interval. We know
that for all s ∈ [0, T ] ∀ε > 0 ∃δ > 0 such that for all q ∈ D if |q − s| < δ, then
|f(q)− f(s)| < ε/2. Also if we instead consider any t ∈ [0, T ] such that |t− s| < δ
then we know that

|f̃(t)− f̃(s)| ≤ sup{|f(q)− f(s)| : q ∈ D} ≤ ε/2 < ε

Hence f̃ is continuous on [0, T ] and uniform continuity follows. �

Unfortunately showing that our Brownian Motion defined on D is uniformly
continuous won’t be so easy. To do this we will simply show that our Brownian
Motion on the Dyadics is continuous on the interval [0, 1], but an analagous proof
easily follows for all positive t. But before we begin this let us consider a couple of
Lemmata integral to probability.

Lemma 4.6. (Borel-Cantelli Lemma). Suppose E1, E2, ... is a collection of events
such that

∞∑
n=1

P{En} <∞.

Then with probability one at most finitely many of the events occur.

Proof. Let A denote the event that infinitely many of the events, En occur. And
let AN denote the event that at least one of the events, EN , EN+1, ... occurs. Then
for all N

P{A} ≤ P{AN} = P{
∞⋃
n=N

En} ≤
∞∑
n=N

P{En}

But since we know
∑
P{En} <∞, we also know that the tail of the series goes to

zero as n→∞. Hence P{A} = 0. �

Lemma 4.7.

P{max{Wk/2n : k = 1, ..., 2n} > a} ≤ 2P{W1 > a}

Proof. To show this, first fix an n and denote Ek be the event such that

Wk/2n > a,Wj/2n ≤ a, j = 1, ..., k − 1

Each of these events is mutually exclusive (Ek ∩Ej = ∅,∀k 6= j) and their union is
the right side of the statement of the lemma. Also for each k the event Ek depends
on the random variables Wj/2n , 1 ≤ k, but the random variable W1 − Wk/2n is
independent of the event Ek. So we can write:

P{Ek ∩ {W1 > a} ≥ P{Ek ∩ {W1 −Wk/2n > 0}
= P{Ek}P{W1 −Wk/2n > 0}

≥ 1
2
P{Ek}
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The last inequality holding by the reflection principle since W1−Wk/2n is a normal
random variable, and hence symmetric. Now we can say

P{W1 > a} = P{
2n⋃
k=1

(Ek ∩ {W1 > a})}

=
2n∑
k=1

P{Ek ∩ {W1 > a}}

≥ 1
2

2n∑
k=1

P{Ek}

=
1
2
P{max{Wk/2n : k = 1, ..., 2n} > a}

This establishes the Lemma. �

Theorem 4.8. If Wt is a brownian motion on the Dyadics, then with probability
one t 7→Wt is a uniformly continuous function on [0, 1] ∩ D

Before we begin the proof of this theorem, let us lay down some notation to make
things simpler. Let

Mn = sup{|Wt −Ws| : |t− s| ≤ 2−nt, s ∈ D ∩ [0, 1]}

So that we have Wt is uniformly continuous on [0, 1] ⇔ limn→∞Mn = 0. Clearly
this statement is true, but its not so clear how to deal with this quantity. Hence
we’ll define an easier quantity to deal with. Let

Kn = max
k=0,...,2n−1

{sup{|Wt −W k
2n
| : k

2n
≤ t ≤ k + 1

2n
, t ∈ D}}

Also we will let Yk,n = sup{|Wt −W k
2n
| : k

2n ≤ t ≤
k+1
2n , t ∈ D} so that

Kn = max
k=0,...,2n−1

{Yk,n}

Clearly Kn ≤Mn but by the triangle inequality it can also be seen that

|Wt −Ws| ≤ |Wt −W k−1
2n
|+ |W k−1

2n
−W k

2n
|+ |W k

2n
−Ws| ≤ 3Kn,∀s, t

Hence Mn ≤ 3Kn and it suffices to show that limn→∞Kn = 0. That is we need to
show that for all a > 0 for N large enough P{Kn > a} = 0, ∀n ≥ N . But by the
Borel-Cantelli Lemma, if we can show that

∞∑
n=1

P{Kn > a} <∞

Then with probability one Kn > a only finitely many times, and hence for N large
enough Kn ≤ a, ∀n ≥ N .

Proof. We need to show that
∑
P{Kn > a} < ∞, so let us first consider the

individual P{Kn > a}. First note that Kn is the maximum of a collection of 2n

identically distributed random variables, and the probability that the maximum is
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greater than some value is no more than the sum of the probabilities that each
individual random variable is greater than that value. Hence we can write

P{Kn > a} ≤
2n∑
j=1

P{Yj,n > a} = 2nP{Y1,n > 1}

Then since Y1,n ∼ N(0, 2n), by the scaling property of expected value and variance
explored earlier in this paper(Cor 1.8, 1.10) 2n/2Y1,0 ∼ N(0, 2n), so we can consider
this value instead, giving us

P{Kn > a} ≤ 2nP{Y1,0 > 2n/2a}

= 2nP{sup{|Wt| : t ∈ D ∩ [0, 1]} > 2n/2a}

= 2n lim
m→∞

{max{|Wt| : t ∈ Dm ∩ [0, 1]} > 2n/2a}

= 2 · 2n lim
m→∞

{max{Wt : t ∈ Dm ∩ [0, 1]} > 2n/2a}

The last inequality holding by symmetry. Now using Lemma 4.7 we can say that

P{Kn > a} ≤ 2 · 2n lim
m→∞

{max{Wt : t ∈ Dm ∩ [0, 1]} > 2n/2a}

≤ 4 · 2nP{W1 > a2n/2}
Now we can simply use the fact that this last probability is given by a normal
distribution, and hence we can say

4·2nP{W1 > a2n/2} =
2n+2

√
2π

∫ ∞
a2n/2

e
−x2

2 dx ≤ 2n+1

∫ ∞
a2n/2

e
−x(a2n/2)

2 dx =
2n+2

a2n/2
e
−a22n

2

In particular if we take a = 2
√
nn−2/n we obtain that

∞∑
n=1

P{Kn > 2
√
n2−n/2} ≤

∞∑
n=1

2√
n

(2/e2)n <∞

Hence with probability one Kn ≤ 2
√
n2−n/2 holds for all n sufficiently large, and

limn→∞Kn = 0 �

Theorem 4.9. With probability one, there is no t ∈ (0, 1) at which Wt is differen-
tiable.

Proof. Suppose that there is a t ∈ (0, 1) at which Wt is differentiable. Then we
know that the limit

lim
ε→0

|Ws −W ′s|
ε

, s, s′ ∈ [t− ε, t+ ε]

exists, and is hence bounded above by some constant B <∞. In particular we can
say that ∃B <∞ such that ∀ε > 0

|Ws −W ′s| ≤ Bε
For simplicity define the following values

M(k, n) = max{|Wk/n −Wk−1/n|, |Wk+1/n −Wk/n|, |Wk+2/n −Wk+1n|}

Mn = min{M(1, n), ...,M(n, n)}
Then again, supposing that Wt is differentiable at some point t ∈ (0, 1), ∃C < ∞
and an N <∞ such that for all n ≥ N , Mn ≤ C/n. To see this just let ε = 3/n in
the previous consideration, then for at least one of the M(k, n) the three intervals
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fall completely in the interval [t − 3/n, t + 3/n] and hence Mn ≤ 3B/n but since
3B <∞ we can just let C = 3B.

Now for all k, n we know that M(k, n) is the maximum of three identically
distributed, indepedent, normal random variables, each with the same distribution
as W1/n ∼ N(0, 1/n). Hence we can say the following for all C < ∞ and for all
k, n,

P{M(k, n) ≤ C/n} ≤ [P{W1/n ≤ C/n}]3

=

[ √
n√
2π

∫ C/n

−C/n
e
−nx2

2 dx

]3

≤

[ √
n√
2π

∫ C/n

−C/n
e
−n(0)2

2 dx

]3

=
[ √

n√
2π

2C
n

]3
=

[√
2
π

C√
n

]3

Since this inequality holds for all k, n it also holds for the minimum giving us

lim
n→∞

P{Mn > C/n} = 1− lim
n→∞

P{Mn ≤ C/n} ≥ 1−

[√
2
π

C√
n

]3

= 1

And since P{Mn ≥ C/n} can never be greater than 1 we must have that

lim
n→∞

P{Mn > C/n} = 1

Hence with probability one Mn > C/n. By our previous argument this implies also
that with probability one Wt is not differentiable at any point t ∈ (0, 1). �

We have now constructed Brownian motion, and presented a few of its character-
istics. Now with the foundations we can use this process to model things beleived
to be governed by continuous random motion, most notably heat flow. For more
information on the uses of Brownian motion see Lawler in the references.
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