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Abstract. In his 1948 paper “A mathematical theory of communication”,

Shannon establishes a method for quantifying information. His focus was on
an information source as a Markov process that produces symbols by moving

from states to state based on probabilities. Since he believes that a commu-

nication system must be ready to handle any incoming message, so a primary
concern of the theory was how uncertain the receiver is of the next incoming

symbol. To measure this uncertainty, he created a measure he termed “en-

tropy.” This measure can then be used to quantify the dependency between
two random variables. This measure, termed the mutual information between

two random variables, quantifies the amount of information one random vari-

able gives about the other.
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1. Communication Systems and Strings

A communication system consists of an information source, a transmitter, a
channel, a receiver, and a destination. Information sources produce messages or a
sequence of messages. The transmitter then encodes the message into a signal that
is suitable for transmission over the channel, which serves as the medium between
the transmitter and the receiver. Assuming all is right with the world, the receiver
will have the ability to decode the signal and recover the original message. I will
focus here on communication systems that operate using binary strings to encode
messages that pass through a noiseless channel.

Definition 1.1 (String). Let X be some finite or countable set. Then let X ∗ denote
the set of finite strings or sequences over X . Further, let ε denote the empty string
or word.
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Binary strings are the elements of {0, 1}∗ = {ε, 0, 1, 00, 01, 10, 11, 000, . . .}. Each
letter of a string is called a bit, short for binary digit.

Definition 1.2 (Length). The length of a string x ∈ {0, 1}∗, denoted l(x), is the
number of bits in the binary string x.

For example, l(1010) = 4 and l(ε) = 0. From here we can establish a standard
correspondence between the elements of N and the elements of {0, 1}∗; we will use
this correspondence throughout the paper.

(0→ ε), (1→ 0), (2→ 1), (3→ 00), (4→ 01), (5→ 10), . . .

If x ∈ {0, 1}∗ is represented as its corresponding natural number, then l(x) =
blog(x+1)c. (Throughout this paper, log refers to the logarithm with base of two.)

Definition 1.3 (Probability Mass Function (p.m.f.)). LetA be a finite or countable
set, called the sample space. A function f : A → [0, 1] is a probability mass function
if
∑

a∈A f(a) = 1. If A is a random variable associated with A, then we obtain a
probability distribution P over A by setting P (A = a) = f(a). A subset A ⊆ X is
called an event.

We can use probability mass functions to model communication systems. Every
“word” the system is capable of transmitting has a certain probability of being
used; this can be modeled by a p.m.f.

2. Codes

2.1. Preliminaries. As stated earlier, we are considering messages sent from a
transmitter to a receiver. The information being sent is an element of sampl space
A, and our system operates by encoding this message into binary strings. Upon
receiving the encoded message, the receiver will employ a decoding function, D :
{0, 1}∗ → A, to recover the message, where D(s) = a means that “the string s
codes for the word a”.

Definition 2.1 (Codeword). The elements of subset D−1(X ) ⊆ {0, 1}∗ are called
codewords.

It is important that this relation be a function so that each received string has
only one interpretation. From here, we can intuitively define an encoding relation
that is the preimage of the decoding function, E = D−1, where for any x ∈ A,
E(x) = D−1(x) = {a ∈ {0, 1}∗|D(a) = x}. E is not necessarily a function.

For each decoding function D, we can define a length function LD : A → N, such
that LD(x) = min{l(y)|D(y) = x}. If there exists l0 s.t. l0 = l(y) for all y ∈ X ,
then D is said to be a fixed-length code. For a fixed-length binary code over a finite
set X , 2l0 ≥ |X | for each string to to have a unique interpretation, so l0 ≥ log |X |.

As an example, consider the code:

D : {0, 1}∗ → {words of the sentence “The quick brown fox jumped over the lazy dog”},

where D(0) =the, D(1) =quick, D(00) =brown, etc. Now, suppose you recieve the
string 0100011011000001010 over the channel and want to decode it to recover the
message. You may parse it as

D(0)D(1)D(00)D(01)D(10)D(11)D(000)D(001)D(010)
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and get the intended message “The quick brown fox jumped over the lazy dog”.
However, you may instead parse the string as

D(010)D(00)D(11)D(01)D(10)D(00)D(000)D(10)D(10)

to recover the nonsensical message “dog brown over fox jumped brown the jumped
jumped”.

2.2. Prefix Codes. As shown by the previous example, for any given code, it is
not always obvious where one codeword ends and the next begins. However, this
problem is solved if no codeword is entirely contained in another. In other words,
if no allowed string is a prefix of another.

Definition 2.2 (Prefix and Prefix-Free). A binary string x is a proper prefix of
another string y if there exists z 6= ε such that y = xz. A set A ⊆ {0, 1}∗ is
prefix-free if for all pairs of distinct elements of A, neither is a proper prefix of the
other. A code D : A ⊆ {0, 1}∗ → X is a prefix code if A is prefix-free.

We can construct a prefix code if for all strings x = x1x2 . . . xn we let

x = 11 . . . 1︸ ︷︷ ︸
n times

0x1x2 . . . xn.

This defines a prefix code, D : {0, 1}∗ → X , since we can tell when a codeword
finishes without having to back up. Note, however, that ; (x) = 2n+1, which shows
that this code is prefix free at the price of having codewords that are twice as long.
We can apply a similar construction applied to l(x) as opposed to x. To do this, let
x′ = l(x)x, where l(x) is interpreted using its corresponding string. Then D(x′) = x
is a prefix code since ({0, 1}∗)′ is prefix-free. Further, for a string x = x1x2 . . . xn,
l(x′) = n+ 2 log n+ 1.

It makes intuitive sense that in a prefix code, shorter codewords are more “ex-
pensive”: the shorter the codewords used, the fewer such codewords can be used.
This notion is formalized in Kraft’s Inequality.

Theorem 2.3 (Kraft’s Inequality). Let `1, `2, . . . , `n be a sequence of natural num-
bers. There is a prefix-code with this sequence as lengths of its binary codewords
iff ∑

i

2`i ≤ 1

Proof. Any given prefix code can be represented by a binary tree where the root
is the empty word ε, each branch represents a choice from one of the two “letters”
in the binary alphabet {0, 1}, and each codeword i is a path to a node at depth `i.
It follows that the node at which the path of a codeword ends must be a leaf since
if it were not then any nodes attached to it would form codewords with prefixes.
Then for any leaf in this code tree, let Ai represent the set of descendants that this
leaf would have in a full binary tree at a depth of `n, where `n is the length of the
longest codeword. For i 6= j, Ai ∩ Aj = ∅, and further, |Ai| = 2`n−`i . Given that
the number of nodes at a depth of `n is 2`n , then

∑
i 2`n−`i ≤ 2`n . Dividing both

sides by 2`n , we get the result ∑
i

2`i ≤ 1
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Conversely, given a set of lengths `1, `2, . . . , `n consider a full binary tree of depth
`n, where `n is the largest of the `i. For each li, choose a node at depth `i and
remove all of its descendants, �

3. Entropy Intro

When we consider an information source, you can imagine it producing the mes-
sage symbol by symbol. Each subsequent letter or symbol is chosen according
to some probabilities, based both on the probability distribution on the symbols
themselves and on the symbols already chosen. A process that carries out ac-
tions according to the probabilities of the possible actions is called a stochastic,
or Markov, process. We can imagine an information source moving from state to
state as it produces its message symbol by symbols, where each of these states has
a different set of allowed symbols.

Once we know the probabilities associated with a Markov process, then there
should be a way to quantify how uncertain we are of the next symbol the Markov
process will produce. Such a measure is motivated from two points of view: the
axiomatic approach and the coding approach. For a probability distribution P on
X = {1, 2, . . . , n}, H(X ) = H(P ) = H(p1, p2, . . . , pn) denotes the uncertainty, or
entropy, of the distribution on the finite sample space X . The axiomatic approach
postulates that such a measure of uncertainty have certain properties:

(1) H be continuous in the pi

(2) If for all i, pi = 1
n , then H should be a monotonic increasing function of

n. The intuitive justification is that as the number of equiprobable events
increases, the more uncertain we are of the outcome.

(3) When a choice is broken down into a two-step process, the entropy of P
should be equal to the sum of the entropy of the probabilities of the first
step of the generation process plus the weighted sum of the entropies in the
second step of the generation process. As an example, consider H( 1

2 ,
1
3 ,

1
6 ),

which is a choice among three. We can instead break this up so that we
choose between two choices each with probability 1

2 , H( 1
2 ,

1
2 ), and then

one of these choices leads to a second choice between two options with
probabilities 1

3 and 2
3 , H( 1

3 ,
2
3 ). Then H( 1

2 ,
1
3 ,

1
6 ) = H( 1

2 ,
1
2 ) + 1

2H( 1
3 ,

2
3 ).

The only function that satisfies all of these criteria is H(X ) =
∑n

i=1 pi log 1
pi

.

Definition 3.1. The function H(P ) = H(X ) =
∑n

i=1 pi log 1
pi

describes the en-
tropy of the probability distribution P over the finite sample space X .

For an information source with the probability distribution P over its set of
symbols, H is a measure of how uncertain we are of the outcome of the Markov
process operating under P . This is equivalent to the average amount of information
we gain by observing an outcome of this Markov process. For a sample space X ,
H maximizes when the probability distribution over X is the uniform distribution,
which makes intuitive sense since we are most uncertain of the outcome when every
outcome is equally likely.

Theorem 3.2. Let X be finite s.t. |X | = n. Then for a uniform probability
distribution over X , H(X ) = log n. Moreover,, the uniform distribution maximizes
H(X ).
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Proof. Consider the uniform distribution over the elements of X . Then

H(X ) =
n∑

i=1

1
n

log n = n(
1
n

log n) = log n.

Claim 3.3. For all x, log x ≤ x− 1 and equality holds iff x = 1.

By definition, log x =
∫ x

1
1
t dt. Further, x =

∫ x

1
dt+1, which means x−1 =

∫ x

1
dt.

Consider x > 1. The function 1
t is decreasing function since for all t ≥ 1, 1

t ≤ 1.
This implies that

∫ x

1
1
t dt ≤

∫ x

1
dt for x ≥ 1 since

∫ x

1
1
t dt >

∫ x

1
dt would require there

to be t ≥ 1 for which 1
t > 1, which is impossible. For 0 < t < 1, then 1

t > 1 for
all such t. Thus,

∫ 1

x
1
t dt >

∫ 1

x
dt. This implies that

∫ x

1
1
t dt <

∫ x

1
dt for all such x.

Therefore, for all positive x,
∫ x

1
1
t dt ≤

∫ x

1
dt, which implies that log x ≤ x− 1.

If x = 1, then
∫ 1

1
1
t dt =

∫ x

1
dt = 0. If log x = x− 1, then log x− x+ 1 = 0. x = 1

is a solution since log 1 − 1 + 1 = 0. Assume there exists another solution y such
that log y − y + 1 = 0 and y 6= 1. y > 0 since the log function is undefined for
x ≤ 0. If y > 1, then by Rolle’s theorem, there exists z ∈ (1, y) s.t. 1

z − 1 = 0.
However, this implies that z = 1, which is a contradiction since z must be between
1 and y. An analogous proof shows that no such 0 < y < 1 can exist. Thus, if
log x = x− 1, then x = 1.

Claim 3.4. For a probability distribution P and a (sub)probability distribution
Q over n events (that is,

∑n
i=1 pi = 1 and

∑n
i=1 qi ≤ 1) then

∑n
i=1 pi log 1

pi
≤∑n

i= pi log 1
qi

and equality holds iff pi = qi for all i.

By the properties of logarithms, log qi

pi
= log qi− log pi for any i. Using the above

claim, log qipi ≤ qi

pi
− 1 for all i. Transitively, log qi− log pi ≤ qi

pi
− 1, which implies

that pi log qi − pi log pi ≤ qi − pi. By properties of logarithms, pi log qi − pi log pi =
pi log 1

pi
− pi log 1

qi
. It follows that

pi log
1
pi
− pi log

1
qi
≤ qi − pi, for all i, therefore

n∑
i=1

pi log
1
pi
−

n∑
i=1

pi log
1
qi
≤

n∑
i=1

qi −
n∑

i=1

pi ≤ 0

Thefore,
∑n

i=1 pi log 1
pi
≤
∑n

i=1 pi log 1
qi
.

For all i, pi log 1
pi
− pi log 1

qi
≤ qi − pi follows bidirectionally from log qi

pi
≤

qi

pi
− 1. Then for all i, log qi

pi
= qi

pi
− 1 iff qi

pi
= 1 ⇒ qi = pi. Thus for all i,

pi log 1
pi
− pi log 1

qi
= qi − pi = 0 iff pi = qi. And from there it follows that∑n

i=1 pi log 1
pi
−
∑n

i=1 pi log 1
qi

= 0, so therefore
∑n

i=1 pi log 1
pi

=
∑n

i=1 pi log 1
qi

iff
pi = qi for all i.

Claim 3.5.
∑n

i=1 pi log 1
pi
≤ log n.

By previous claim, for any two probability distributions P andQ,
∑n

i=1 pi log 1
pi
≤∑n

i= pi log 1
qi

and equality holds iff pi = qi for all i. If Q is the uniform distribution,
then

∑n
i=1 pi log 1

pi
≤
∑n

i= pi log n.
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n∑
i=

pi log n = (log n)
n∑

i=1

pi

= log n

Therefore, for any probability distribution P ,
∑n

i=1 pi log 1
pi
≤ log n. Further, the

previous claim states that equality holds iff pi = qi for all i. So
∑n

i=1 pi log 1
pi

=
log n iff P is also the uniform distribution. Therefore, the uniform distribution
maximizes entropy in the finite case. �

4. Mutual Information

Consider two sample spaces X ,Y with associated random variables X and Y .
How much does an outcome X = x tell us about which value Y will take? Let U
be the set of possible events (X = x, Y = y) that consist of the joint occurrence
of events X = x and Y = y. If U is not the whole set X × Y, then there must be
some dependency between X and Y . We can extend the definition of entropy from
one random variable to a joint entropy for two.

Definition 4.1. Let H(X,Y ) denote the joint entropy of random variables X and
Y . If f is a joint probability mass function, where f(x, y) denotes the probability
of the event (X = x, Y = y), then

H(X,Y ) =
∑
x,y

f(x, y) log
1

f(x, y)

When dealing with two random variables, then we can define the probabilities
of an event in one random variable in terms of the other.

Definition 4.2. We can define the probability of an event X = x occurring in the
following way:

f1(x) =
∑

y

(x, y)

and the probability that an event Y = y occurs in the following way:

f2(y) =
∑

x

(x, y)

From this, we can extend to a definition of conditional probability.

Definition 4.3. For events X = x, Y = y, the conditional probability of Y = y
given X = x, denoted f(y|x), is given by

f(y|x) =
f(x, y)∑
y f(x, y)

=
f(x, y)
f1(x)

,

and analogously, the conditional probability of X = x given that Y = y, denoted
f(x|y), is given by

f(x|y) =
f(x, y)∑
x f(x, y)

=
f(x, y)
f2(y)

.

Further, two events are independent if either f(y|x) = f2(y) or f(x|y) = f1(x), and
thus f(x, y) = f1(x)f2(y).
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We can also define conditional entropy, which measures the uncertainty in one
random variable once we have knowledge of the other.

Definition 4.4 (Conditional Entropy). For random variables X and Y , the con-
ditional entropy of Y given that X = x is defined as

H(Y |X = x) =
∑

y

f(y|x) log
1

f(y|x)

Further, we can define the conditional entropy of Y given X as the average of
the conditional entropies of Y for each possible outcome of X weighted by the
probability of that outcome. Formally,

H(Y |X) =
∑

x

f1(x)H(Y |X = x)

It makes intuitive sense that the joint entropy of two random variables should
not exceed the sum of their individual entropies, and we can check this.

Lemma 4.5. Suppose we reformulate the definition of entropies of X and Y so
that H(X) =

∑
x f1(x) log 1

f1(x) and H(Y ) =
∑

y f2(y) log 1
f2(y) . Then H(X,Y ) ≤

H(X) +H(Y ) and equality holds if X and Y are independent.

Proof. We know by definition that H(X,Y ) =
∑

x,y f(x, y) log 1
f(x,y) . Since sum-

ming over all pairs x and y is equivalent to summing over x and then summing over
y. Therefore, H(X,Y ) =

∑
y

∑
x f(x, y) log 1

f(x,y) .

H(X,Y ) =
∑

y

∑
x

f(x, y) log
1

f(x, y)

=
∑

y

∑
x

f2(y)f(x|y) log
(

1
f2(y)f(x|y)

)
=

∑
y

f2(y)
∑

x

f(x|y)
(

log
1

f2(y)
+ log

1
f(x|y)

)
=

∑
y

f2(y) log
1

f2(y)

∑
x

f(x|y) +
∑

y

f2(y)
∑

x

f(x|y) log
1

f(x|y)

=
∑

y

f2(y) log
1

f2(y)

∑
x

f(x, y)
f2(y)

+
∑

y

f2(y)H(X|Y = y)

Since f2(y) =
∑

x f(x, y), then
∑

x
f(x,y)
f2(y) = 1

f2(y)

∑
x f(x, y) = 1. Further, H(X|Y ) =∑

y f2(y)H(X|Y = y), so therefore∑
y

f2(y) log
1

f2(y)

∑
x

f(x, y)
f2(y)

+
∑

y

f2(y)H(X|Y = y) = H(Y ) +H(X|Y )

Therefore, H(X,Y ) = H(Y ) +H(X|Y ). We know that H(X|Y ) ≤ H(X) since the
knowledge of Y can never increase our uncertainty of the outcome of X. Further,
H(X) = H(X|Y ) iff X and Y are independent. Therefore,

H(Y ) +H(X|Y ) ≤ H(Y ) +H(X)

and so
H(X,Y ) ≤ H(X) +H(Y )
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and equality holds if and only if X and Y are independent. �

If these two random variables are dependent in any way, then knowledge of one
can give us knowledge about the outcome of the other. We can quantify this using
the concept of information.

Definition 4.6 (Information). For two random variables X and Y , the information
in the outcome X = x about Y is defined as

I(X = x : Y ) = H(Y )−H(Y |X = x)

This definition makes intuitive sense since it measures the change in the uncer-
tainty about Y that occurs with the knowledge of the outcome X = x. From here,
we can also see that I(X = x : X) = H(X) since H(X|X = x) = 0 since all
uncertainty is removed. We can see that I(X = x : Y ) and I(Y = y : X) are not
directly comparable, but we can however directly compare their expected values.

E(I(X = x : Y )) =
∑

x

f1(x)I(X = x : Y )

E(I(Y = y : X)) =
∑

y

f2(y)I(Y = y : X)

Claim 4.7. E(I(X = x : Y )) = E(I(Y = y : X))

Proof. We know E(I(X = x : Y )) =
∑

x f1(x)I(X = x : Y ) and that I(X = x :
Y ) = H(Y )−H(Y |X = x). Therefore,

E(I(X = x : Y )) =
∑

x

f1(x)(H(Y )−H(Y |X = x))

∑
x

f1(x)(H(Y )−H(Y |X = x)) = H(Y )
∑

x

f1(x)−
∑

x

f1(x)H(Y |X = x)

= H(Y )−H(Y |X)

We know H(X,Y ) = H(X)+H(Y |X), which implies H(X,Y )−H(X) = H(Y |X).
Therefore,

H(Y )−H(Y |X) = H(Y )− (H(X,Y )−H(X)) = H(X) +H(Y )−H(X,Y )

We also know E(I(Y = y : X)) =
∑

y f2(y)I(Y = y : X) and that I(Y = y : X) =
H(X)−H(X|Y = y). Therefore,

E(I(X = x : Y )) =
∑

y

f2(y)(H(X)−H(X|Y = y))

= H(X)
∑

y

f2(y)−
∑

y

f2(y)H(X|Y = y)

= H(X)−H(X|Y )
= H(X)− (H(X,Y )−H(Y ))
= H(X) +H(Y )−H(X,Y )

Therefore, by transitivity E(I(X = x : Y )) = E(I(Y = y : X)). �
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Definition 4.8 (Mutual Information). We define the mutual information between
random variables X and Y as the common value

I(X;Y ) = E(I(X = x : Y )) = E(I(Y = y : X))

. Further,

I(X;Y ) = H(X) +H(Y )−H(X,Y )
= H(X)−H(X|Y )
= H(Y )−H(Y |X)

=
∑

x

∑
y

f(x, y) log
f(x, y)

f1(x)f2(y)
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