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Abstract. The purpose of this paper is to introduce differential forms to

readers without a background in differential geometry. With the presumption
that the reader is experienced in advanced calculus, we provide motivation

for learning some of the most important concepts in differential geometry by

re-observing the theorems of vector calculus.
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1. Introduction and Overview

The attentive student has doubtlessly been puzzled by some aspect of vector
calculus in the past. This is inevitable, since some of the notation, such as the Pdx+
Qdy format of Green’s Theorem, is usually left unexplained. In addition, students
may fall under the impression that the significant operations of vector calculus (div,
grad, and curl) are unrelated. The goal of this paper is to elaborate on some of
the results of vector calculus, especially those results (such as the aforementioned)
that cannot be explained to their fullest in introductory courses.

This paper begins by introducing various concepts of differential geometry, so
that the reader may gain a firm grounding before embracing the goal of this expos-
itory piece. The proofs in this paper are admittedly presented in a rather unusual
fashion - I incorporate only the proofs that I think are beneficial to the reader.
For example, I omit the proofs of the set of criteria that uniquely define the wedge
product, since the proofs of these properties are lengthy, though not particularly
profitable to the reader since many tedious calculations are required. However, I
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prove the facts that d(dω) = 0 and that the differential operator is unique - this
is because such proofs offer the reader a better grasp of the usages of d. I have
also included the proofs of the Poincare Lemma and Stokes’ Theorem, as I believe
that any serious mathematician should have at least seen them. However, I believe
that if I had included the proof of every theorem, this paper would have become
cluttered and possibly disheartening to the beginner.

2. Tensor Analysis

We begin with a series of definitions, particularly that of the tensor, that are
employed throughout this paper. The axiomatic idea of a tensor is, in fact, not
difficult. The reader may initially think of the tensor as a generalization of a linear
transformation to copies of a vector space.

Definition 2.1. Let V be a vector space, and let V n = V × ... × V . Holding
v1, ..., vi−1, vi+1, ..., vn constant, let f(v1, ..., vi−1, v, vi+1, ..., vn) be linear. In this
case, f is said to be linear in the ith variable. If f is linear in the ith variable for
1 ≤ i ≤ n, then we say that f is a multilinear function.

Definition 2.2. Let ζ : V k → R be a function. We define ζ to be a (covariant)
k-tensor1 on V if ζ is multilinear.

A simple example of a 2-tensor is the inner product on a vector space V over
R, particularly the dot product on Rn. By definition of the inner product 〈, 〉, for
u, v, w ∈ V and α ∈ R, the following properties hold:

(1) 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉;
(2) 〈v, w〉 = 〈w, v〉;
(3) 〈αu, v〉 = α〈u, v〉;
(4) 〈u, u〉 ≥ 0; moreover, 〈u, u〉 = 0 iff u = 0.

The first and second properties guarantee the additive requirement of multi-
linearity, and the second and third properties guarantee the scalar multiplicative
requirement. We can, of course, drop the requirement of the 4th property and still
obtain a 2-tensor on V .

Definition 2.3. The set of all k-tensors on a vector space V is denoted T k(V ).
For ζ, η ∈ T k(V ), and c ∈ R, we then define

(ζ + η)(v1, ..., vk) = ζ(v1, ..., vk) + η(v1, ..., vk)
(cζ)(v1, ..., vk) = c(ζ(v1, ..., vk)).

With this definition, we can conclude that for k ∈ N, T k(V ) is a vector space. To
see this, one must simply check that T k(V ) with addition and scalar multiplication
satisfy the vector space axioms. The zero element of V is the function whose value
is zero on every k-tuple of vectors.

1There also exists a multilinear function on V called a contravariant tensor, which maps copies
of the dual space V ∗ of V into R. However, since we will not use contravariant tensors in this

paper, covariant k-tensors will always be referred to as simply k-tensors.
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T 1(V ) is the dual space V ∗, the set of all linear transformations T : V → R. We
make the convention that T 0(V ) = R.

The next theorem tells us that tensors are uniquely determined by their values
on basis elements.

Lemma 2.4. Let b1, ..., bn be a basis for a vector space V . Let ζ, η : V k → R
be k-tensors on V satisfying ζ(bi1 , ..., bik) = η(bi1 , ..., bik) for every k-tuple I =
(i1, ..., ik), where 1 ≤ im ≤ n. Then ζ = η.

Proof. Let vi =
∑n
j=1 cijbj . Then, using the fact that ζ and η are multilinear,

we expand ζ and observe that ζ(v1, ..., vk) =
∑
c1j1c2j2 · · · ckjkζ(bj1 , ..., bjk). An

expansion of η results in the same formula. Hence, ζ = η if the values of ζ and η
are equal on all combinations of basis elements. �

Theorem 2.5. Let b1, ..., bn be a basis for a vector space V . Let I = (i1, ..., ik) be
a k-tuple of integers, where 1 ≤ im ≤ n. There exists a unique k-tensor θI on V
such that for every k-tuple J = (j1, ..., jk) satisfying 1 ≤ jm ≤ n,

θI(bj1 , ..., bjk) = δIJ .

Proof. Let k = 1. From linear algebra, we know that we can determine a 1-tensor
θi : V → R by giving it arbitrary values on its basis elements. Then define:

θi(bj) = δij

These work as the unique 1-tensors stated in the theorem. If k > 1, define

(2.6) θJ(b1, ..., bk) =
k∏
i=1

θji(bi).

These tensors easily satisfy the restrictions placed upon them in the theorem.
Uniqueness follows from Lemma 2.4, and the proof is complete. �

The θI are often called elementary k-tensors. This set of elementary tensors is,
in fact, vital to the development of the rest of this paper. They play a substantial
role in the following chapters, primarily because of the following theorem.

Theorem 2.7. The k-tensors θI form a basis for T k(V ).

Proof. Let ζ be a k-tensor on V . Given a k-tuple I = (i1, ..., ik), let cI = ζ(bi1 , ..., bik).
Since T k(V ) is a vector space, we can define a k-tensor η =

∑
I dIθI , where J spans

over all k-tuples of integers from {1, ..., n}.
By definition, θI(bj1 , ..., bjk) = 0 except when I = J , in which case θJ equals 1.

Therefore, η(bj1 , ..., bjk) = cI = ζ(bj1 , ..., bjk). Lemma 2.4 implies that ζ = η and
that this representation is unique. �

As a result, given a k-tensor ζ, we can always write ζ =
∑
I cIθI , where θI are

the elementary k-tensors, and cI are scalars. Hence, T k(V ) has dimension nk.
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To see what tensors actually look like, we might resort to looking at the case
V = Rn. Let e1, ..., en denote the standard basis for Rn, and let θ1, ..., θn be the
basis for T 1(Rn). Then if x = x1e1 + · · · + xnen, we have θi(x) = θi(x1e1 + · · · +
xnen) = x1θi(e1) + · · ·+ xnθi(en) = xi.

Therefore, the basis vectors for 1-tensors on Rn are projection functions, and
it follows that 1-tensors represent functions of the form ζ(x) =

∑n
i=1 cixi, where

ci ∈ R. Similarly, the basis vectors for 2-tensors on Rn are of the form θJ(x1, x2) =
θj1(x1) ·θj2(x2) so that the 2-tensor on Rn looks like ζ(x, y) =

∑n
i,j=1 cijxiyj , where

cij are scalars.

We now advance to a special kind of tensor that will play a key role in the theory
of differential forms. We begin with some preliminary work in algebra.

Definition 2.8. A permutation σ of a set A is a bijection from A to itself. The
set of all permutations of {1, . . . , k} is denoted by Sk.

The intuitive way to think about permutations is in terms of order: the operation
of a permutation is essentially to alter the order of the elements of the set.

Definition 2.9. A transposition γ is a permutation of {a1, ..., am} such that there
exist i, j ∈ {1, ...,m}, i 6= j, with γ(aj) = ai, γ(ai) = aj , and γ(ak) = ak for k 6= i, j.

A transposition, in easier terms, swaps two elements and leaves the others alone.
A transposition γ is always its own inverse. If A is a set, then γ(γ(A)) = A because
the first action swaps two terms, and the second action swaps them back into their
original positions.

Notation 2.10. Hereinafter, for σ ∈ Sk, the notation fσ(x1, ..., xn) = f(xσ(1), ..., xσ(n))
will be used. This will greatly simplify notation in the remainder of the text.

Some nice properties of fσ are exhibited in the following two theorems.

Theorem 2.11. For σ ∈ Sk, the transformation f → fσ is linear..

Proof. It should be proved that (af+bg)σ = afσ+bgσ, which is straightforward. �

Theorem 2.12. For σ, τ ∈ Sk, the equation fσ◦τ = (fσ)τ holds.

Proof.

(fσ◦τ )(v1, . . . , vk) = f(vσ(τ(1)), . . . , vσ(τ(k))) =

fσ(vτ(1), . . . , vτ(k)) = (fσ)τ (v1, . . . , vk).

�

We now define the fundamental idea that lies behind the differential form.

Definition 2.13. Let V be a set. A function ζ : V n → R is said to be alternating
if, given any transposition γ on {1, ..., n}, f = −fγ .

The set of all alternating k-tensors on a vector space V is denoted by Λk(V ).
In fact, the set Λk(V ) is a vector space. Because T 1(V ) is trivially alternating,
T 1(V ) = Λ1(V ). We also use the convention that T 0(V ) = Λ0(V ) = R.
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In terms of bases, the alternating tensor has many of the same features as the
tensor. There is a bit of a quirk, however. The bases are defined over all ascending
elements of a given k-tuple I.

Lemma 2.14. Every permutation σ can be written as a composition of transposi-
tions. That is, σ = γ1◦· · ·◦γn, where γk is a transposition. Although the number of
transpositions used in such a decomposition is not unique, the parity is well-defined.

Definition 2.15. Let σ = γn ◦ · · · ◦ γ1. Then we define sgn σ = (−1)n.

By Lemma 2.14, sgn σ is a well-defined function. In addition, the equation
sgn(σ ◦ τ) = sgn σ · sgn τ holds.

Theorem 2.16. If f is alternating, then fσ = (sgn σ)f . Moreover, if f is alter-
nating with vp = vq (p 6= q), then f(v1, ..., vk) = 0.

Proof. Let σ = γm ◦ · · · ◦ γ1. Then, because f is alternating, fσ = fγm◦···◦γ1 =
(−1)mf = (sgn σ)f . Now let vp = vq, with p 6= q. Let γ be the transposition
switching p and q. Then we have fγ(v1, ..., vk) = f(v1, ..., vk) since vp = vq, and
fγ(v1, ..., vk) = (sgn γ)f(v1, ..., vk) = −f(v1, ..., vk). Hence, f(v1, ..., vk) = 0. �

It is also trivially true that if fσ = (sgn σ)f , f is alternating. Now we can begin
our study of the bases of Λk(V ).

Lemma 2.17. Let b1, ..., bn be a basis for V . If ρ, ξ ∈ Λk(V ) and if ρ(bi1 , ..., bik) =
ξ(bi1 , ..., bik) for every ascending k-tuple I = (i1, ..., ik), where 1 ≤ im ≤ n, then
ρ = ξ.

Proof. It is sufficient to prove that ρ and ξ are equal on every arbitrary k-tuple of
basis elements. The result will then follow from Lemma 2.4.

Let J = (j1, ..., jk). If jp = jq for some p, q with p 6= q, then by Theorem
2.16, ρ = ξ = 0. If all indices are distinct, let σ be a permutation of {1, ..., k}
such that I = (jσ(1), ..., jσ(k)) is ascending. Then we have that ρ(bi1 , ..., bik) =
ρσ(bj1 , ..., bjk) = (sgn σ)ρ(bj1 , ..., bjk), since ρ is alternating. Similarly, we have
ξσ(bi1 , ..., bik) = (sgn σ)ξ(bj1 , ..., bjk), and so agreement on ascending basis vectors
amounts to agreement on all basis vectors. �

Theorem 2.18. Let V be a vector space, and let b1, ..., bn form a basis for V .
Let I = (i1, ..., ik) be an ascending k-tuple, where 1 ≤ im ≤ n. There exists a
unique alternating k-tensor θ̃I defined on V such that for every ascending k-tuple
J = (j1, ..., jk) (with 1 ≤ jm ≤ n),

(2.19) θ̃I(bj1 , ..., bjk) = δIJ

.

Proof. We start by defining

(2.20) θ̃I =
∑
σ∈Sk

(sgn σ)(θI)σ.

Now, let τ be a permutation. Then
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(θ̃I)τ =
∑
σ

(sgn σ) ((θI)σ)τ =
∑
σ

(sgn σ)(θI)τ◦σ =
∑
σ

(
sgn (τ−1 ◦ τ ◦ σ)

)
(θI)τ◦σ.

Now, using the facts that sgn (τ−1) = sgn τ and sgn (σ ◦ τ) = (sgn σ)(sgn τ),
this is equal to

(sgn τ)
∑
σ (sgn (τ ◦ σ)) (θI)τ◦σ = (sgn τ)θ̃I .

This proves that θ̃I is alternating. To see that θ̃I has the desired values, write
θ̃I(bj1 , ..., bjk) =

∑
σ(sgn σ)θI(bjσ(1) , ..., bjσ(k)). By definition of θI , the only non-

zero term in this sequence is the term for which σ is the identity permutation, i.e.,
the permutation σ∗ : I → I s.t. σ∗(i) = i ∀i ∈ I. Since sgn σ∗ = 1, we have
θ̃I = δIJ . Uniqueness follows from Lemma 2.17. �

Theorem 2.21. The k-tensors θ̃I form a basis for Λk(V ).

Proof. We shall show that, given ρ ∈ Λk(V ), ρ can be written uniquely as a linear
combination of the k-tensors θ̃I . Now, letting I = (i1, ..., ik) (with 1 ≤ im ≤ n), let
cI = f(bi1 , ..., bik).

Define ξ ∈ Λk(V ) to be ξ =
∑
<J>

cJ θ̃J , where we use < J > to denote the set

of ascending k-tuples of {1, . . . , n}. If I = {i1, ..., ik} is an ascending k-tuple, then
ξ(bi1 , ..., bik) = cI . But we also have that ρ(bi1 , ..., bik) = cI . It follows that ρ = ξ,
and uniqueness follows from Lemma 2.17. �

Therefore, the dimension of Λk(V ) is
(
n
k

)
. From here, we observe some important

functions on T k(V ) and Λk(V ). The first two functions, the alternating projection
and the tensor product, are not themselves important for our purposes, but they
combine to form the wedge product, which is the single most important operation
in this paper.

Definition 2.22. Let ζ be a k-tensor on a vector space V . We define a linear
transformation Alt: T k(V )→ Λk(V ), called the alternating projection, as follows:

(2.23) Alt(ζ) =
1
k!

∑
σ∈Sk

(sgn σ)(ζσ)

Theorem 2.24. There are several desirable properties that Alt possesses:

(1) Given ζ ∈ T k(V ), Alt(ζ) ∈ Λk(V ).

(2) If ρ ∈ Λk, then Alt(ρ) = ρ. In fact, ρ is alternating iff Alt(ρ) = ρ.

(3) If ζ ∈ T k, then Alt(Alt(ζ)) = Alt(ζ).
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Proof.

(1) Let σi,j be the transposition that switches i and j and leaves all other numbers
fixed. If σ is a permutation, let σ∗ = σ ◦ σi,j . Then we have

Alt(ζ)σi,j =
1
k!

∑
σ

(sgn σ)ζσ
∗

=
1
k!

∑
σ∗

(−sgn σ∗)ζσ
∗

= −Alt(ζ).

(2) Let ρ ∈ Λk(V ). By property (1), for any permutation σ, we have ρσ =
(sgn σ)ρ. Therefore,

Alt ρ =
1
k!

(
∑
σ

sgn σ)ρσ =
1
k!

∑
σ

(sgn σ)(sgn σ)ρ = ρ,

since there are k! elements of Sk, and (sgn σ)2 = 1 for any σ ∈ Sk. Hence, the
second property follows from the first.

(3) This is an immediate corollary of properties (1) and (2).
�

Definition 2.25. Let ζ ∈ T k(V ), η ∈ T l(V ) be tensors on a vector space V . We
define a new operation, ζ ⊗ η : T k+l(V )→ R, called the tensor product, by

(2.26) ζ ⊗ η(v1, ..., vk+l) = ζ(v1, ..., vk)η(vk+1, ..., vk+l).

The importance of the tensor product is simply that it carries k- and l-tensors
into (k + l)-tensors. Also, consider the following crucial fact. From Theorem 2.5,
we found that the elementary k-tensors for T k(V ) take the form θJ(b1, ..., bk) =∏k
i=1 θji(bi). By definition of the tensor product, these elementary k-tensors can

be written as

(2.27) θJ = θj1 ⊗ θj2 ⊗ · · · ⊗ θjk .

We have now come to the introduction of a very important operation, one that
will appear substantially in the remainder of this paper.

Definition 2.28. Let ρ ∈ Λk(V ) and ξ ∈ Λl(V ). We define the wedge product of ρ
and ξ to be the alternating (k + l)-tensor

(2.29) ρ ∧ ξ =
(k + l)!
k!l!

Alt(ρ⊗ ξ).

The coefficient in the definition is for the sole purpose of allowing associativity to
work. The importance of the wedge product is similar to that of the tensor product:
the wedge product turns two alternating k- and l-tensors into an alternating (k+ l)-
tensor.
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The formula for the wedge product itself isn’t terribly important. What is im-
portant is that it is the unique operation satisfying the desirable properties stated
in the following theorem.

Theorem 2.30. Let ξ, ρ, ψ be alternating tensors of arbitrary rank (unless oth-
erwise specified). The wedge product is the unique operation with the following
properties:

(1) ξ ∧ (ρ ∧ ψ) = (ξ ∧ ρ) ∧ ψ

(2) If c ∈ R, (cξ) ∧ ρ = c(ξ ∧ ρ) = ξ ∧ (cρ)

(3) If ξ and ρ have the same rank, then (ξ + ρ) ∧ ψ = ξ ∧ ψ + ρ ∧ ψ and
ψ ∧ (ξ + ρ) = ψ ∧ ξ + ψ ∧ ρ

(4) If ξ ∈ Λk(V ) and ρ ∈ Λl(V ), then ρ ∧ ξ = (−1)klξ ∧ ρ.

(5) Let V be a vector space. If θi is the basis for T 1(V ) = Λ1(V ) and θ̃I is
a basis element of Λk(V ), where I = (i1, ..., ik) is an ascending k-tuple
satisfying 1 ≤ im ≤ n, then θ̃I = θi1 ∧ · · · ∧ θik .

By Equation 2.27 and property 5 of the preceding theorem, we have now found

simple representations for the bases of T k(V ) and Λk(V ). This is very convenient
for our purposes, and should also give the reader a better handle on the spaces T k

and Λk once he becomes better acquainted with the tensor and wedge products.
Theorem 2.30 leads us to a very important result.

Corollary 2.31. Let ρ ∈ Λk(V ). If k is odd, then ρ ∧ ρ = 0.

Proof. By property (4), ρ∧ρ = (−1)k
2
ρ∧ρ = −(ρ∧ρ). Hence, ρ∧ρ must be 0. �

This fact is vital, as one of the most important objects in differential geometry,
the 1-form dx, which assigns to each point x ∈ Rn a particular alternating 1-tensor,
must follow the rule dx ∧ dx = 0. This is essential to intuition, as well as to many
necessary results of vector calculus such as Green’s Theorem.

3. The Determinant

Since the determinant is not defined in vector calculus courses, we do so here.
What sometimes appears to be a complex algorithm actually comes out to be a
rather concise definition.

Let e1, ..., en be the standard basis for Rn. By the preceding section, we know
that the space Λn(Rn) of alternating n-tensors on Rn has dimension

(
n
n

)
=1, as it

is spanned by its sole elementary basis vector θ̃{1,...,n} = θ1 ∧ · · · ∧ θn.

Definition 3.1. Let X = [x1 · · ·xn] be an n× n matrix. The determinant of X is
defined to be

(3.2) det(X) = θ̃{1,...,n}(x1, ..., xn).
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In rigorous linear algebra courses, the determinant is often defined over an n×n
matrix A as the unique function F with the following properties:

(1) If B is a matrix obtained by switching two columns of A, F (B) = −F (A);
(2) F is multilinear with respect to columns;
(3) If In denotes the n× n identity matrix, F (I) = 1.

By definition, θ̃{1,...,n} satisfies these three properties.

As is apparent in any elementary vector calculus course, the determinant plays
an important role in the calculation of volumes. Such is the case in differential forms
as well, and we will need its properties often. Here, some of the determinant’s most
significant properties will be presented. We start by defining a parallelepiped, with
which we shall do much of our work with determinants.

Definition 3.3. Let v1, ..., vk be a set of vectors in a vector space V . We define
the parallelepiped spanned by v1, ..., vk to be the set t1 · v1 + · · ·+ tk · vk, where ti
takes values from the set [0, 1]. We denote this set by P(v1, ..., vk).

We know from linear algebra that the determinant calculates the volume of a
parallelepiped in 2 and 3 dimensions by considering the spanning vectors as column
vectors of a matrix. However, this only works if, for example, we’re given 2 vectors
in R2 or 3 vectors in R3. How would we find the volume of a parallelepiped spanned
by 2 vectors in R3? To perform this operation, we would ideally like a function
V to accomplish this, while simultaneously preserving some elements of intuition
that accompany our idea of volume. We first review some facts about orthogonal
transformations.

Definition 3.4. An n × n matrix A is called an orthogonal matrix if the column
vectors of A form an orthonormal set in Rn. This is equivalent to requiring A to
satisfy the relation AT ·A = In, where AT denotes the transpose of A. We let O(n)
denote the set of all n × n orthogonal matrices. An orthogonal transformation is
simply multiplication by an orthogonal matrix.

Theorem 3.5. If P is a parallelepiped composed of n vectors in Rn, then the
volume of P is invariant under orthogonal transformations.

It is reasonable to expect that our ideal function V be invariant under orthogonal
transformations of k vectors in Rn. It is also reasonable and intuitive to require
that if the parallelopiped were to lie in Rk×0 of Rn, it would have the same volume
as if it were lying in Rk. These are the only two requirements we place on our new
concept of volume. In fact, as we now prove, there exists a function V satisfying
these two requirements, and moreover, it is unique. First, we recall an elementary
theorem from linear algebra.

Lemma 3.6. Let A be a k-dimensional subspace of Rn. Then there exists an
orthogonal transformation h : Rn → Rn that takes A onto Rk × 0.
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Theorem 3.7. There exists a unique function V that assigns to every k-tuple
(v1, ..., vk) of elements in Rn a non-negative number satisfying the following prop-
erties:

(1) If g : Rn → Rn is an orthogonal transformation, then V (g(v1), ..., g(vk)) =
V (v1, ..., vk)

(2) Let c1, ..., ck ∈ Rk × 0, i.e., let each ci be of the form ci = [di 0], where
di ∈ Rk. Then V (c1, ..., ck) = |det[d1 · · · dk]|.

Proof. Let X = (v1, . . . , vk). For conciseness, we denote the volume of X by V (X).
Define W (X) = det(XT ·X). We shall show that V (X) = W (X)1/2 is the function
that satisfies the restrictions of the theorem.

Let g : Rn → Rn be an orthogonal transformation, and write g(x) = A · x, with
A ∈ O(n). Then W (A · X) = det

(
(A ·X)T · (A ·X)

)
= det

(
AT ·XT ·A ·X

)
=

det(A ·AT ) ·det(X ·XT ) = det(In) ·det(X ·XT ) = det(X ·XT ) = W (X). Therefore,
V is invariant under orthogonal transformations.

Next, let C = (D, 0). By this, we mean that C is an array of k numbers in
Rn, where zero occupies the last (n − k) places of each n-tuple. Therefore, D is

like an array of k numbers in Rk. Then we have W (C) = det
(

[DT 0] ·
[
D
0

])
=

det(DT ·D) = (detD)2. Therefore, V (C) = detD, and so condition 2 is satisfied.
We also see that on Rk × 0, V is non-negative. By Lemma 3.6 and property 1 of
the theorem, V is non-negative everywhere, and the proof is complete. �

It is worth noting that V (X) = 0 if and only if the vectors x1, ..., xk are depen-
dent. We now concisely state the definition of the volume of a k-tuple in Rn.

Definition 3.8. Let v1, ..., vk be a set of independent vectors in Rn. The k-
dimensional volume of the parallelepiped P(v1, ..., vk) is defined to be the positive
number V (v1, ..., vk) =

(
det(XT ·X)

)1/2.

Let’s examine what we have just done and how we will apply it later. Let
f : Rk → Rn be a differentiable function. Then Df , the Jacobian of f , can be
represented as an n × k matrix, and we can therefore take its volume. This will
be the significant property of V that we will use when we establish a theory of
integration on differential forms, a subject to which we now divert.

4. Differential Forms

Definition 4.1. Let x ∈ A ⊂ Rn. The tangent space at x, written Tx(A), is defined
to be the set {(x, v) : v ∈ Rn}.2

Definition 4.2. Let A ⊂ Rn be open. A tensor field on A is a continuous function
that sends each point x ∈ A to a tensor ω on the tangent space of x.

2This can also be written as TxA, or even TxRn. This text will use all 3 notations.
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We now take a moment to briefly discuss what ’continuous’ means in the context
of the above definition.

Let A ⊂ Rn be open, and define TA = {(a, v) : a ∈ A, v ∈ Rn} = A × Rn. We
give TA the subspace topology, and define a function π : TA→ A by π(a, v) = a.

Definition 4.3. A continuous vector field is a function s : A → TA satisfying
π(s(a)) = a. In this case, we define s to be a section of π : TA→ A.

Now, let A ⊂ Rk be open. We define T k(A) =
∐
x∈A T

k(TxA). Similar to the
above situation, we have a function π : T k(A) → A that takes k-tensors on the
tangent space of a ∈ A to a. We can finally rigorously define a continuous tensor
field.

Definition 4.4. A k-tensor field is a continuous map ϕ : A → T k(A) satisfying
π ◦ ϕ(x) = x for all x ∈ A. We say that ϕ is continuous if for all continuous vector
fields s1, . . . , sk on A, the map x 7→ ϕ(x) ((x; s1(x)), . . . , (x; sk(x))) is continuous
as a function from A to R. We can similarly define a smooth k-tensor field if we
replace all instances of ’continuous’ with ’smooth’.

The alternating tensor field is similarly defined, and we are finally able to define
a differential form.

Definition 4.5. A differential k-form ω is an alternating k-tensor field. The space
of differential k-forms on a vector space V is denoted by Ωk(V ).

Following in the footsteps of the preceding sections, we would like to find a kind
of basis for Ωk(Rn), the set of all k-forms on Rn. We start with the following
definition.

Definition 4.6. The elementary 1-forms on Rn are defined by the equation

(4.7) ψi(x)(x; ej) = δij .

If I = (i1, ..., ik) is ascending, we define the elementary k-forms ψI on Rn by the
equation ψI = ψi1 ∧ · · · ∧ ψik .

Let’s see what the elementary k-forms on Rn look like geometrically. For a solid
example, let k = 2 and n = 3. Then if v = (v1, v2, v3) and w = (w1, w2, w3) are

vectors in R3, ψ{1,3}(v, w) = det
[
v1 v3
w1 w3

]
, by definition of the determinant.

This is simply the area of the parallelogram generated by the projection of v and w
onto the xz-plane. This should greatly simplify the geometric idea of the elementary
differential form. The next theorem shows us that knowing the structure of the
elementary k-forms gives us a good idea of the structure of arbitrary k-forms.
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Proposition 4.8. Given ω ∈ Ωk(Rn), ω can be expressed as a linear combination
of elementary k-forms. That is,

(4.9) ω =
∑
<I>

fIψI ,

where fI : Rn → R.

Proof. This follows directly from our knowledge of alternating tensors. Take an
arbitrary point x ∈ Rn. Then by definition, ω(x) is an alternating k-tensor on
Tx(Rn). We know that we can write ω(x) =

∑
<J> cJ θ̃J , where cJ ∈ R. Define

fJ(x) = cj . This defines a function fJ : Rn → R.

The elementary k-form ψI simply assigns to each point x ∈ Rn the elementary
alternating k-tensor θ̃I . Therefore, by construction,

(4.10) ω(x) =
∑
<J>

fJ(x)ψI(x)

. �

Finally, we would like to establish that, given an open subset A ⊂ Rn, Ω0(A) =
{f : A → R : f is smooth}. There is actually a great deal of logic behind this
convention. We have Λ0(A) =

∐
x∈A R, which is topologically A× R, the graph of

functions from A→ R.

Before moving on, we would like to extend the tensor and wedge products to
fields and forms (respectively) by the following definition.

Definition 4.11. If ϕ and ψ are tensor fields, then (ϕ ⊗ ψ)(x) = ϕ(x) ⊗ ψ(x). If
ω and η are forms, then (ω ∧ µ)(x) = ω(x) ∧ µ(x).

With this brief introduction to differential forms, we may progress to a general-
ization of a familiar concept.

5. The Differential Operator

Note on Notation: From here, we will be using differentiation quite a bit. As
we noted before, Df will denote the Jacobian of f . Dif will signify the ith partial
derivative of f .

The reader has undoubtedly seen the symbol dx from calculus and dxdy from
multivariable calculus. In elementary calculus, this ’notation’ is employed in inte-
grals as a representation of the small intervals being summed over. In advanced
calculus, this notation is dropped, and the notation

∫
f is used instead. The dx

in the integral is actually a rigorously-defined mathematical object. When we use
the notation

∫
fdx, we are actually integrating over a differential form instead of a

function.

The differential operator3 d is an operation on forms similar to the derivative of
ordinary functions (i.e., 0-forms). In general, d is a linear transformation that takes
k-forms to (k + 1)-forms. We will begin by considering the differential operator on
0-forms.

3This is sometimes called the exterior derivative.
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Recall that a 0-form on an open set A ⊂ Rn is a smooth function f on A. We
want d to be a linear transformation that takes f to a 1-form. We have already
seen such a function: the derivative.

Definition 5.1. Let A ⊂ Rn be open, and let f : A → R be smooth. We define
the 1-form df on A to be:

(5.2) df(x)(x; v) = Df(x) · v.

The 1-form df is called the differential of f . It is C∞ as a function of x and v.

Theorem 5.3. Let ψ1, ..., ψn be the set of elementary 1-forms in Rn. Let πi : Rn →
R be the projection onto the ith term; that is, πi(x1, ..., xn) = xi. Then dπi = ψi.

Proof. Let v = v1e1+· · · vnen be a vector in Rn. We have dπi(x)(x; v) = Dπi(x)·v =

[0 · · · 0 1 0 · · · 0] ·

 v1
...

vn

 = vi.

Now, consider a point x ∈ Rn. Then, by definition we have ψi(x)(x; v) =
vi · ψ(x)(x; e1) = vi. Thus, given x ∈ Rn, dπi(x)(x; v) = ψi(x)(x; v). Therefore,
the two are equal. �

Notation 5.4. At this point, it is appropriate to introduce a ubiquitous abuse of
notation. Instead of writing the ith elementary 1-form as dπi, we write it as dxi.
This is the dx we see when we integrate in calculus.

Therefore, from the results of the previous section, any k-form ω can be written
as
∑
<J> fJdxJ for some scalar functions fJ . We will use this notation to represent

k-forms rather often.

As we will soon see when we define the general differential operator, it would
be ideal to find a nice representation for differentials of 0-forms. In fact, such
representation does exist, by the following theorem.

Theorem 5.5. Let A ⊂ Rn be open, and let f ∈ Ω0(A). Then

(5.6) df = (D1f)dx1 + · · ·+ (Dnf)dxn.

Proof. By definition,

df(x)(x; v) = Df(x) · v =
n∑
i=1

Dif(x)vi.

But by the proof of Theorem 5.3, vi = dπi(x)(x; v), so

n∑
i=1

Dif(x)vi =
n∑
i=1

Dif(x)dxi(x)(x; v).

Hence, df = (D1f)dx1 + · · ·+ (Dnf)dxn. �
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Let’s diverge from our notation for a moment and consider Leibnitz notation. In
Leibnitz notation, this theorem takes the form

df =
∂f

∂x1
dx1 + · · ·+ ∂f

∂xn
dxn.

This equation often appears in calculus books, so the reader may be more com-
fortable with this notation. We are finally ready to define the differential operator
on arbitrary k-forms.

Definition 5.7. Let A ⊂ Rn be open, and write ω ∈ Ωk(A) as ω =
∑
<I> fIdxI .

We define the linear transformation d : Ωk(A)→ Ωk+1(A) by the equation

(5.8) dω =
∑
<I>

dfI ∧ dxI .

Like the wedge product, the actual formula of the differential operator is insignif-
icant in comparison to the properties it possesses.

Theorem 5.9. Let A ⊂ Rn be open. The differential operator d : Ωk(A) →
Ωk+1(A) satisfies the following properties:

(1) d is a linear transformation;

(2) If f ∈ Ω0(A), df(x)(x; v) = Df(x) · v;

(3) If ω ∈ Ωk(A) and µ ∈ Ωl(A), then d(ω ∧ µ) = dω ∧ µ+ (−1)kω ∧ dµ.

These properties result in one of the most important characteristics of the dif-
ferential operator.

Theorem 5.10. For every differential form ω, d(dω) = 0.

Proof. We begin by considering the case for 0-forms.

Let f be a 0-form. Then

d(df) = d

(
n∑
i=1

Difdxi

)
=

n∑
j=1

d(Djf) ∧ dxj =
n∑
i=1

n∑
j=1

DjDifdxj ∧ dxi.

Since dxi are 1-forms, dxi ∧ dxi = 0. Hence, we can extract all terms with i = j.
If i > j, then the terms with dxi ∧ dxj and dxj ∧ dxi will both be terms in the
altered summation. The sum of these two terms will be

(DjDif)dxj ∧ dxi + (DiDjf)dxi ∧ dxj = (DjDi −DiDj)fdxj ∧ dxi,

which equals 0 by commutativity of partial derivatives. Summing over all such
combinations yields a summation over all non-deleted terms, and thus

d(df) =
∑
i>j

(DjDif −DiDjf)dxj ∧ dxi = 0.
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Now we will expand this result to k-forms, with k > 0. Since d is a linear transfor-
mation, we can without loss of generality consider the case ω = fdxI . By property
3, d(dω) = d(df ∧ dxI) = d(df) ∧ dxI − df ∧ d(dxI). We have already shown that
d(df) = 0 when f is a 0-form, and d(dxI) = d(1) ∧ dxI = 0, since d(1) = 0 by
Theorem 5.5. It follows that d(dω) = 0. �

Theorem 5.11. The differential operator is the only operation on k-forms satis-
fying the criteria of Theorems 5.9 and 5.10.

Proof. We start with a preliminary result. We want to show (for reasons apparent
later) that for any forms ω1, ..., ωk, d(dω1 ∧ · · · ∧ dωk) = 0. If k = 1, this is a direct
result from Theorem 5.10. We proceed by induction. Assume the equation works
for k − 1 terms. Using property 3, we have

d(dω1 ∧ · · · ∧ dωk) = d(dω1) ∧ (dω2 ∧ · · · ∧ dωk)± dω1 ∧ d(dω2 ∧ · · · ∧ dωk).

The first term is zero by Theorem 5.10, and the second also vanishes because
d(dω2 ∧ · · · ∧ dωk) = 0 by the induction hypothesis.

Now, let ω be an arbitrary k-form. By Property 2, d is uniquely determined for
0-forms. Expressing ω as

∑
fIdxI , we will show that dω is uniquely determined

by the fI . Since d is a linear transformation, we can consider the case ω = fdxI
without loss of generality. We have dω = d(f∧dxI) = df∧dxI+f∧d(dxI) = df∧dxI ,
since d(dxI) = 0 by the lemma just proven. Thus, dω is uniquely determined by
the value of d on the 0-form f . It follows that d is the unique operation satisfying
the criteria of Theorems 5.9 and 5.10. �

Before we progress any further, we introduce a function on forms called a pull-
back, which allows us to create a form on a set A ⊂ Rk if we are given a form on a
set B ⊂ Rn. We introduce it here because of its relation to d and the fact that it
is greatly used in Section 8.

Definition 5.12. Let A ⊂ Rm, and let f : A→ Rn be smooth. Let B ⊂ Rn be an
open set containing f(A). We define the pullback f∗ : Ωk(B) → Ωk(A) as follows:
Given a k-form ω on B with k ≥ 1, we define a k-form f∗ω on A by the equation

(5.13) (f∗ω)(x)(x; v1, ..., vm) = ω(f(x))(Df(x) · v1, ..., Df(x) · vm).

If g : B → R is a 0-form on B, we define a 0-form f∗g on A by the equation
(f∗g)(x) = g(f(x)) for x ∈ A.

The pullback itself is very useful, but when combined with the differential op-
erator, it has many serious ramifications. We will use the following proposition in
the proof of Stokes’ Theorem and, indeed, it is almost ubiquitous in differential
geometry.

Proposition 5.14. Let B ⊂ Rk be open, and let f : B → Rn be a smooth function.
If the l-form ω is defined on some open set containing f(B), then on B, we have

(5.15) f∗(dω) = d(f∗ω).
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Let us look at an example of how this works. Let f : R2 → R be defined by
f(θ) = (sin θ, cos θ), and let ω ∈ Ω1(R2) be defined by ω(x1, x2) = −x2dx1 +x2dx2.
Then

f∗ω = −(π2 ◦ f)d(π1 ◦ f) + (π1 ◦ f)d(π2 ◦ f) = −(sin θ)d(cos θ) + (cos θ)d(sin θ)

= (sin2 θ)dθ + (cos2 θ)dθ = dθ.

It follows from Theorem 5.10 that d(f∗ω) = 0. It is also clear that dω = 0, so
that f∗(dω) = 0, and Equation 5.15 holds.

6. Grad, Curl, and Div - As Differential Operators

We start this section by reviewing the important operators of vector calculus.
The reader should be somewhat comfortable with all of them, so we will not review
their properties. If the reader would prefer to do so, he is referred to [4].

Definition 6.1. Let f : R3 → R be a differentiable function. The gradient is the
vector field in R3 given by

(6.2) grad(f) = ∇f =
∂f

∂x
i +

∂f

∂y
j +

∂f

∂x
k.

Definition 6.3. Let F be the vector field given by F = f1i + f2j + f3k. We define
the curl of F to be the vector field in R3 given by

(6.4) curl(F) = ∇× F =
(
∂f3
∂y
− ∂f2

∂z

)
i +
(
∂f1
∂z
− ∂f3

∂x

)
j +
(
∂f2
∂x
− ∂f1

∂y

)
k.

Definition 6.5. Let F be the vector field given by F = f1i + f2j + f3k. Then the
divergence of F is the scalar function f : R3 → R given by

(6.6) div(F) = ∇ · F =
∂f1
∂x

+
∂f2
∂y

+
∂f3
∂z

.

One of the goals of this paper is to explain these three operations rigorously.
There exists a close relationship between div, grad, curl, and the differential oper-
ator, which we exhibit in the following theorem.

Definition 6.7. Let V,W be vector spaces, and let T : V → W be a linear
transformation. If T is also a bijection between V and W , then T is said to be a
linear isomorphism.

Theorem 6.8. Let A ⊂ R3 be open. There exist linear isomorphisms βi according
to the following chart:
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Scalar Function
β0 //

∇
��

Ω0(A)

d

��
Vector Field

β1 //

∇×
��

Ω1(A)

d

��
Vector Field

β2 //

∇·
��

Ω2(A)

d

��
Scalar Function

β3 // Ω3(A)

In fact, this diagram is commutative, as these linear isomorphisms satisfy the
following equations:

d ◦ β0 = β1 ◦ (∇F )

d ◦ β1(F ) = β2 ◦ (∇× f)

d ◦ β2(F ) = β3 ◦ (∇ · F )

Proof. We begin the proof by explicitly defining βi:

Let f be a scalar function on A, and let F = f1i + f2j + f3k be a vector field on
A. We define:

β0f = f .

β1F = f1dx1 + f2dx2 + f3dx3.

β2F = f1dx2dx3 − f2dx1dx3 + f3dx1dx2.

β3f = fdx1 ∧ · · · ∧ dxn.

By Proposition 4.6, we have that the βi are linear isomorphisms. Therefore, it is
sufficient to consider the formulas, whose proofs are merely calculations. We prove
the first formula only – the second and third proofs are similar and just as simple,
yet more tedious.

For the first formula, note that d ◦ β0f = df . We also have

β1 ◦ ∇(f) = β1(
∂f

∂x1
i +

∂f

∂x2
j +

∂f

∂x3
k) =

∂f

∂x1
dx1 +

∂f

∂x2
dx2 +

∂f

∂x3
dx3 = df ,

and so the equality is proven. For the other two cases, just expand both sides of
the equation. For example, one proves that both d ◦ β1(F ) and β2(∇× F ) equal(

∂f2
∂x1
− ∂f1
∂x2

)
dx1 ∧ dx2 +

(
∂f3
∂x1
− ∂f1
∂x3

)
dx1 ∧ dx3 +

(
∂f3
∂x2
− ∂f2
∂x3

)
dx2 ∧ dx3

�



18 JONATHAN EMBERTON

We can, in fact, generalize this result to Rn, although we cannot use curl in
this diagram, as the two vector fields on the left column cannot be connected via a
single operation. We can only draw 4 rows in this diagram, since scalar and vector
fields are the only 3-dimensional analogs we have.

Theorem 6.9. Let A ⊂ Rn be open. There exist linear isomorphisms βi such that
the following diagram commutes:

Scalar Field
β0 //

∇
��

Ω0(A)

d

��
Vector Field

β1 // Ω1(A)

Vector Field
βn−1 //

∇·
��

Ωn−1(A)

d

��
Scalar Field

βn // Ωn(A)

Proof. We must prove that the additional equation d ◦ βn−1F = βn ◦ (∇ · F ) is
satisfied. In addition to the equations used in the previous theorem, we define

βn−1F =
∑n
i=1(−1)i−1fidx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn

and

βnf = fdx1 ∧ · · · ∧ dxn.

The method of proof is similar to Theorem 6.8. �

Up to now, our work seemed to be without application, but with this new theo-
rem connecting the differential operator to the three primary operations of vector
calculus, motivation is certainly provided to the reader to master the previous con-
tent of this paper.

7. Manifolds and Orientation

The concept of orientation is a very complex topic in differential geometry, and
many introductory texts devote at least a chapter to it. Instead of taking this path,
we only develop the components of orientation necessary to comprehend the results
of Section 10, the culmination of this paper.

Let us first observe the concept of orientation as presented in vector calculus
courses. The concepts of orientation of a curve and orientation of a surface are
often expressed separately, even though they are the same idea, as we shall see
here. Intuitively, the orientation of a curve is the direction that it follows as it
traces out its path. Does it start at a and end at b, or does it begin with b, tracing
out the same path as before, and terminate at a? As we know, the integral of
the first path is equal to the negative of the integral of the second path. This has
nothing to do with the action of the integral itself, but with the way we choose an
orientation of the curve.
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Next we come to the idea of orientation of surfaces. A surface is called orientable
if it is possible to choose a unit normal vector n at each point of the surface such
that these vectors vary continuously from point to point. Each point of a smooth
surface will have two unit normal vectors: one that points inward and one that
points outward.

We can easily come up with examples of surfaces that are not orientable – the
prototypical example is the Mobius strip. Start at a point P of a Mobius strip, and
without loss of generality, assume that the unit normal nP at P points inward. If
we then take the unit normal of each point as we go around the strip, we will end
up back at P , and the unit normal vector needed to make the variation continuous
will have to point in the opposite direction of the chosen unit normal n, i.e., it will
have to be outward-pointing. Hence, a Mobius strip is non-orientable.

It should be clear that every curve has 2 orientations, and the same applies to
surfaces. We will now generalize this result to a mathematical abstraction called a
manifold.

Definition 7.1. Let A, B be topological spaces. We say that A is locally homeo-
morphic to B if for each a ∈ A, there exists a neighborhood of a that is homeomor-
phic to an open subset of B. Given a ∈ A, a homeomorphism α : U → V satisfying
this relation, where U ⊂ B and a ∈ V ⊂ A, is called a coordinate chart around a.

Definition 7.2. An n-manifold (without boundary) M is a 2nd countable Hausdorff
space that is locally homeomorphic to Rn for some n ∈ N.

Note that if M is locally homeomorphic to Rn at x ∈ M , it cannot be locally
homeomorphic to Rk, for k 6= n. The reason for this is that Rk is not homeomorphic
to Rn. However, we might have two subsets of M , say M1 and M2, such that M1

is locally homeomorphic to Rk, whereas M2 is locally homeomorphic to Rn. It can
be proven that if this is the case, M1 and M2 are not connected. Therefore, as we
can easily fix this quirk if it were to occur, we ignore it and instead simply use a
manifold where each point x ∈M is locally homeomorphic to Rn.

Sometimes we would like to relax some of the restrictions we put on the manifold
(without boundary) so that boundary points are allowed. This can make a solid
definition slightly more difficult, as we would have to change Rn to something
that itself has boundary points. This becomes possible with the upper half-space
Hn = {(x1, ..., xn) : xn ≥ 0}.

Definition 7.3. An n-manifold (with boundary) M is a 2nd countable Hausdorff
space that is locally homeomorphic to Hn for some n ∈ N.

It is significant that a manifold is an abstract topological space, and therefore
does not a priori come embedded in an ambient space. However, we will only deal
with manifolds that are subsets of Rn in this paper. Fortunately, by a result called
Whitney’s Embedding Theorem, we lose no generality with this assumption.

It is now appropriate to generalize the concept of orientation to manifolds in Rn.
We will start at an unexpected place: vector spaces.

Let’s first consider the easiest example of a vector space: R. Here, orientation’s
intuitive interpretation would be a choice of preferred direction of the real line.
This would be determined by the basis, and so choosing the basis e1 would yield
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one orientation of the line, whereas −e1 would yield the other. Similarly, in R2, the
most natural orientation would be one in which we choose the 2nd basis vector to
be in the counterclockwise direction of the 1st. For example, {e1, e2} would belong
to this natural orientation, as well as {−e1,−e2}. The orientations belonging to
the opposite orientation would be {e1,−e2} and {−e1, e2}. If we look at R3, the
natural orientation would consist of the ’right-handed’ bases - that is, the bases
with the property that when the fingers of your right hand curl from e1 to e2, your
thumb points to e3.

It should be clear from the previous examples that orientation is actually simply
a choice of basis. We have a set of bases that represent the ’natural orientation’,
and all bases that do not belong to this group belong to the opposite orientation.
However, a new problem arises here. Firstly, how do we separate the bases of vector
spaces that don’t have a intuitively natural orientation? Secondly, how can we find
the orientation that a given basis belongs to? The following definition answers both
questions.

Definition 7.4. Let B = {b1, ..., bn} and C = {c1, ..., cn} be two ordered bases
for a vector space V of dimension n. It is a well-known result of linear algebra
there there exists a unique linear transformation T : V → V carrying bi to ci for
1 ≤ i ≤ n. We say that B and C are consistently oriented (or have the same
orientation) if det(T ) > 0. If det(T ) < 0, then B and C are oppositely oriented.

Now that such questions have been handled, we define what we mean by the
orientation of a manifold. The previous discussion was intended to give the reader
a reasonable geometric grasp of the concept of orientation of vector spaces. Orien-
tations of manifolds, though axiomatically similar, are more difficult to visualize.

Definition 7.5. A bijection f : M → N , where M ⊂ Rn and N ⊂ Rk, such that
both f and f−1 are smooth, is called a diffeomorphism.

Definition 7.6. Let A,B ⊂ Rn, and let g : A → B be a diffeomorphism. Then g
is said to be orientation-preserving if detDg > 0 on A and orientation-reversing if
detDg < 0 on A.

It is important to note that, by the chain rule, detDg can never be 0.

Definition 7.7. Let M ⊂ Rn be a k-manifold. Let αi : Ui → Vi on M for i = 0, 1
be coordinate charts. If V0 ∩ V1 6= ∅, we say that α0 and α1 overlap. It is said
that they overlap positively if the function α−1

1 ◦ α0 is orientation-preserving. If
M can be covered by a collection of coordinate charts, with each pair overlapping
positively, then we say that M is orientable. Otherwise, M is non-orientable.

Definition 7.8. Let M ⊂ Rn be an orientable k-manifold. Given a collection of
positively overlapping coordinate charts covering M , append to this collection all
other coordinate charts on M that overlap these charts positively. The charts in
this expanded collection positively overlap each other. This expanded collection is
called an orientation for M . A manifold M with an orientation is called an oriented
manifold.
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A concept we will especially need to state Stokes’ Theorem is that of the induced
orientation of the boundary of a manifold. Given a manifold M , we often are
interested in integrating over its boundary ∂M . The following definition tackles
the problem of how to orient ∂M once we are given an orientation for M .

Definition 7.9. Let M ⊂ Rn be an orientable k-manifold, with ∂M 6= ∅. Given
an orientation for M , we define the induced orientation of ∂M as follows: If k is
even, it is the orientation obtained by restricting coordinate charts belonging to the
orientation of M . Otherwise, it is the opposite of such orientation.

The first and most obvious question to ask is if such boundary orientation can
even exist. Though we will not prove it, the following theorem says that this defined
orientation will always exist.

Theorem 7.10. Let k ≥ 1. If M ⊂ Rn is an orientable k-manifold (with bound-
ary), then ∂M is orientable.

There is one more idea that needs to be conveyed before moving on to the next
section. We have defined a manifold, but there is a special kind of manifold called
a smooth manifold that is very important in differential geometry.

Definition 7.11. Let αi be the collection of coordinate charts of a manifold M .
The composition αi ◦ α−1

j of maps is called a transition map.

Definition 7.12. A manifold for which all transition maps are smooth is called a
smooth manifold.

This definition is necessary to establish such important objects as smooth tensor
fields and smooth forms.

8. Poincare’s Lemma and Conservative Fields

In the latter part of vector calculus courses, it is typical to learn the concept of
conservative fields, which play a titanic role in physics. In this section, we elaborate
on and generalize some results of conservative fields presented in vector calculus
courses.

Definition 8.1. A vector field F in R3 is said to be conservative if there exists a
scalar function ϕ : R3 → R such that F = ∇ϕ.

We now present two new definitions, the first corresponding to a vector field
having curl 0, and the latter being a generalization of Definition 8.1.

Definition 8.2. A k-form ω is defined to be closed if dω = 0.

Definition 8.3. A k-form is said to be exact if there exists a (k − 1)-form µ
satisfying dµ = ω.

We can now easily prove a pertinent result.

Theorem 8.4. Every exact form is closed.

Proof. Let ω be exact, and write ω = dµ. Then dω = d(dµ) = 0. �

Corollary 8.5. If a vector field F is conservative, then ∇× F = 0.
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Proof. This is clear from Theorem 6.8. �

The converse of the theorem is also true with certain restrictions, as we will
shortly prove. The reader should note that the following material establishes an
algebraic context not strictly necessary to the main theorems.

Definition 8.6. Let f, g : X → Y be functions. If there exists a continuous
function F : X × [0, 1] → Y satisfying F (x, 0) = f(x) and F (x, 1) = g(x), then f
and g are said to be homotopic. If f and g are homotopic, then we write f ' g.

A similar idea can be applied to spaces.

Definition 8.7. Let X ⊂ Rk and Y ⊂ Rn. We say that X and Y are homotopy
equivalent, written X ' Y , if there exist maps f : X → Y and g : Y → X satisfying
f ◦ g ' idY and g ◦ f ' idX

Roughly, f ' g if f can be continuously deformed into g. A similar statement
holds for X ' Y . We now introduce a group that, given a set A, gives us an idea
of the forms on A that are closed but not exact.

Definition 8.8. Let M ⊂ Rn be a smooth manifold. Let Ck(M) denote the set of
closed k-forms on M , and let Ek(M) be the set of exact k-forms on M . The kth
deRham group on M is defined to be the quotient vector space

(8.9) Hk(M) = Ck(M)/Ek(M).

We first note that if M is connected, then H0(M) = R, which is similar to the
property exhibited by T 0(A). Since, given ω ∈ Ωk(M), d(f∗ω) = f∗(dω), f∗ takes
closed forms to closed forms and exact forms to exact forms. We now state a lemma
that will lead us directly to the Poincare Lemma. However, its proof is beyond the
scope of this paper.

Lemma 8.10. If X ' Y , then Hk(X) ∼= Hk(Y ).

Theorem 8.11 (Poincare Lemma). If X is a smooth manifold that is homotopy
equivalent to a point x0, then all closed k-forms on X are exact, for k ≥ 1.

Proof. For k ∈ N, Hk(x0) = 0, since all (n + 1)-forms on Rn are 0. Therefore,
Hk(X) = 0 as well, and the theorem is proven. �

This is a nice result, but it isn’t ideal for our purposes. We would like a result
that is easier to interpret, as homotopic equivalence isn’t a very ’visible’ criterion.
There exists a more elementary restriction that we can use.

Definition 8.12. A set A ⊂ Rn is said to be star-shaped if there exists x ∈ A such
that for all a ∈ A, the line segment connecting x to a lies entirely within A.

It is easy to see that a star is star-shaped. If we take x in the definition to be
the center of the star, then we can clearly draw a straight line to every other point
in the star without going outside of it. It is not difficult to prove that every convex
set is star-shaped. Therefore, it is trivial that Rn is star-shaped, as it is convex.
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It so happens that every open, star-shaped set is homotopy equivalent to a point.
(Prove it.) Therefore, in elementary differential geometry textbooks, the following
theorem is often presented as the Poincare Lemma, in place of Theorem 8.11.

Theorem 8.13 (Poincare Lemma). Let A ⊂ Rn be open and star-shaped, and let
ω be a closed k-form on A. Then ω is exact.

Corollary 8.14. If a vector field F is defined on all of R3 and ∇×F = 0, then F
is conservative.

9. Integration of Differential Forms over Manifolds

We initiate this section by defining the integral of a scalar function over a man-
ifold. It is not defined in an obvious fashion, for precisely the reason that a simple,
intuitive definition is impossible. We start by defining the integral of a scalar func-
tion f in the case where the support of f lies in a single coordinate chart. From
there, the more general case is defined by means of a partition of unity. Here, we
will only treat the case of a compact k-manifold, but our results can be extended
to other types of manifolds in an intuitive fashion.

Definition 9.1. Let M ⊂ Rn be a compact k-manifold, and let f : M → R be a
continuous function. Let C = suppf = {x ∈M : f(x) 6= 0}, and assume that there
exists a coordinate chart α : A→ B satisfying C ⊂ B. Since C is compact, α−1(C)
is also compact. Therefore, if we replace A by a smaller open set, we can assume
that A is bounded without loss of generality.

The integral of f over M is defined by the equation:

(9.2)
∫
M

f =
∫

Int U
(f ◦ α)V (Dα).

Clearly, Int U = U if U is open in Rk. We use Int U for the case that U is only
open in Hk.

Proposition 9.3. As in the definition, assume that supp f can be covered by a
single coordinate chart. Then

∫
M
f is independent of the choice of coordinate chart,

and is therefore well-defined.

Extending this definition to the general case is more difficult and will be ad-
dressed here. In the following theorem, a family of functions Φ = {φ1, ..., φl}
satisfying 1-3 is called a partition of unity. If Φ also satisfies 4, then we say that Φ
is subordinate to the choice of coordinate charts.

Proposition 9.4. Let M be a compact k-manifold in Rn. There exists a finite
collection of smooth functions φ1, ..., φl : Rn → R such that

(1) For each i, φi ≥ 0.
(2) For each x ∈M ,

∑
i φi(x) = 1.

(3) Given φi, there is a coordinate chart αi : Ui → Vi s.t. (supp φi ∩M) ⊂ Vi.

We now have the machinery to define the integral of a scalar function over a
compact k-manifold.
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Definition 9.5. Let M ⊂ Rn be a compact k-manifold. Let f : M → R be a
continuous function, and let φ1, ..., φl be a partition of unity on M that is subordi-
nate to the coordinate charts of M (whose existence is guaranteed by the preceding
proposition). The integral of f over M is defined by the equation

(9.6)
∫
M

f =
l∑
i=1

[∫
M

(φif)
]
.

This representation is independent of the choice of partition of unity. To see this,
let φ1, ..., φl and ψ1, ..., ψm be two different partitions of unity. A quick calculation
shows that

m∑
j=1

[∫
m

ψjf

]
=

m∑
j=1

l∑
i=1

[∫
M

φiψjf

]
=

l∑
i=1

m∑
j=1

[∫
M

φiψjf

]
=

l∑
i=1

[∫
M

φif

]
,

which immediately proves the statement.

Now that we can integrate scalar functions over manifolds, it is not very difficult
to generalize this result to k-forms, for k > 1. The reason for this is due to the
following definition:

Definition 9.7. Let U ⊂ Rk be open, and let ω be a k-form defined in U . We
know that ω can be written uniquely as ω = fdx1 ∧ · · · ∧ dxk. The integral of ω
over U is defined by the equation

(9.8)
∫
U

ω =
∫
U

f

From this definition, it is clear now why we use the fdx notation when integrating
functions. We are simply integrating the k-form fdx, which is equal to

∫
f by

definition! The superfluous dx is then simply a marker to remind the beginner of
calculus that the integral is merely a sum over very small portions of a set.

This definition doesn’t solve the problem of integrating forms over manifolds just
yet. We have only discovered how to integrate forms over open sets. However, this
information will be vital when we do want to integrate forms over manifolds.

We now define the integral of a k-form over a k-manifold M . As we did with
scalar functions, we begin by defining the integral in the case where the support of
our k-form lies in a single coordinate chart.

Definition 9.9. Let M ⊂ Rn be a k-manifold, and let ω be a k-form on M . Assume
that there exists a coordinate chart α : U → V such that supp ω ⊂ V . Then we
define

(9.10)
∫
M

ω =
∫

Int U
α∗ω.

Now, by almost exactly the same process as we used to generalize the integral
of scalar functions over manifolds, we shall generalize the integral of forms over
oriented manifolds.
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Definition 9.11. Let M ⊂ Rn be an oriented, compact k-manifold. Let ω be a
k-form defined in an open set of Rn containing M . Cover M with a collection of
coordinate charts A associated with the orientation of M , and choose a partition of
unity φ1, ..., φl on M that is subordinate to A. The integral of ω over M is defined
by the equation

(9.12)
∫
M

ω =
l∑
i=1

[∫
M

φiω

]
.

This definition is, of course, independent of the choice of partition of unity by
the same logic that we used for scalar functions. We also have the following two
important facts:

Proposition 9.13. Let M ⊂ Rn be an oriented, compact k-manifold. Let ω, µ be
k-forms defined in an open set of Rn containing M . Then, if a, b ∈ R, we obtain∫

M

(aω + bµ) = a

∫
M

ω + b

∫
M

µ.

Proposition 9.14. If −M denotes M with the opposite orientation, then∫
−M

ω = −
∫
M

ω.

We previously defined integration of forms over n-manifolds, where n > 0. A
separate definition is necessary to handle the trivial case n = 0.

Definition 9.15. Let X = {x1, ..., xn} be a discrete set of points. We define an
orientation upon each point by the map O : X → {−1, 1}. If f is a scalar function
defined on an open set of Rn containing X, we define the integral of f over the
oriented manifold X to be

(9.16)
∫
X

f =
n∑
i=1

O(xi)f(xi).

Now we define the induced orientation of the boundary of a 1-manifold.

Definition 9.17. Let M ⊂ Rn be an oriented 1-manifold, with ∂M 6= ∅. Let
p ∈ ∂M . We define the induced orientation of ∂M about p, denoted O(p), to be -1
if there exists a coordinate chart α : U → V around p belonging to the orientation
of M , where U is open in H1. Otherwise, we let O(p) = +1.

These definitions aid in developing the following version of Stokes’ Theorem. A
more general result will be encountered in the next section.

Theorem 9.18 (Stokes’ Theorem in 1 dimension). Let M ⊂ Rn be an oriented,
compact 1-manifold, and give ∂M the induced orientation. Let f be a scalar func-
tion defined in an open set of Rn containing M . Then



26 JONATHAN EMBERTON

(9.19)
∫
M

df =
∫
∂M

f.

The idea of the proof is encountered in the following section, but the reader is
encouraged to prove it independently.

10. Stokes’ Theorem

Stokes’ Theorem is one of the most important and fundamental result in math-
ematics. Three vital results of vector calculus are direct corollaries of it, and even
the fundamental theorem of calculus can be understood as a form of it. The goal of
many elementary textbooks on manifolds, including references [1] and [5], is to build
up to and, eventually prove, Stokes’ Theorem. Many other texts such as [2] give
a superb treatment of the theorem without devoting the entire book toward such
purpose. The goal of this section is to both prove the theorem and demonstrate
that many results of vector calculus are direct corollaries of it.

Theorem 10.1 (Stokes’ Theorem). If ω is a (k − 1)-form on a compact man-
ifold (with boundary) M , and ∂M denotes the boundary of M (with its induced
orientation), then

(10.2)
∫
M

dω =
∫
∂M

ω.

Proof. We will divide the proof into four steps.

Step 1. Let M = (0, 1] × (0, 1)k−1, and consider the (n − 1)-form ω = fdx1 ∧
· · · ∧ d̂xj ∧ · · · ∧ dxn, where the notation d̂xj means to omit this term. Then we
have

(10.3) dω =
(
∂f

∂x1
dx1 + · · ·+ ∂f

∂xn
dxn

)
∧ dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxn.

By linearity and because dxi ∧ dxi = 0, this is in turn equal to

(10.4)
∂f

∂xj
dxj ∧ dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxn = (−1)j−1 ∂f

∂xj
dx1 ∧ · · · ∧ dxn.

Using this fact, we obtain

(10.5)
∫
M

dω =
∫ 1

0

· · ·
∫ 1

0

(−1)j−1 ∂f

∂xj
dx1 · · · dxn.

By the Fundamental Theorem of Calculus, we further have that this equals

(−1)j−1
∫ 1

0
· · ·
∫̂ 1

0
· · ·
∫ 1

0
(f(x1, ..., 1, ..., xn)− f(x1, ..., 0, ..., xn)) dx1 · · · d̂xj · · · dxn.

We know that both ω and f have compact support in M , so we have
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M

dω =

{∫ 1

0
· · ·
∫ 1

0
f(1, x2, ..., xn)dx2 · · ·xn if j = 1

0 if j > 1

Now,
∫
∂M

ω is meant to be understood as
∫
∂M

ι∗ω, where ι : ∂M → M is the
inclusion map. Therefore, if j > 1, then ι∗ω = 0, and if j = 1, then ι∗ω(x) =
f(1, x2, ..., xn)dx2 ∧ · · · ∧ dxn. Therefore,

∫
∂M

ω =
∫ 1

0
· · ·
∫ 1

0
f(x)dx2 · · · dxn, and so

the theorem has been proven for our chosen M and ω.

Step 2. Now let M = (0, 1]× (0, 1)n−1, and let ω be an arbitrary (n−1)-form on
M . Write ω(x) =

∑
j fj(x)dx1∧· · ·∧ d̂xj ∧· · ·∧dxn . By additivity of the integral,

we are reduced to the previous case.

Step 3. Let M = (0, 1)n, and let ω be an (n − 1)-form on M . If we follow the
proof of Step 1, we have

∫
M
dω = 0. Since ∂M = ∅, we have

∫
M
dω =

∫
∂M

ω = 0.

Step 4. Now let M ⊂ Rn be an arbitrary n-manifold, and let ω be an arbitrary
(n− 1)-form. Let A = (Ui, αi) be an oriented set of coordinate charts αi : Ui →M
that cover M . We can further restrict that Ui be either (0, 1] × (0, 1)n−1 or Ui =
(0, 1)n. (This is always possible. Check this if you are skeptical.)

Let φi be a partition of unit subordinate to A. Then by Definition 9.11 and
Theorem 5.9,

∫
M

dω =
∑
i

∫
M

φidω =
∑
i

∫
M

d(φiω)−
∫
M

(∑
i

dφi

)
∧ ω =

∑
i

∫
M

d(φiω),

since
∑
i φi = 1 on M . In turn, by Definition 9.9,

∑
i

∫
M

d(φiω) =
∑
i

∫
Ui

α∗i (d(φiω)),

since supp(d(φiω)) ⊂ αi(Ui), as φiω = 0 outside αi(Ui). We also have

∑
i

∫
Ui

α∗i (d(φiω)) =
∑
i

∫
Ui

dα∗i (φiω) =
∑
i

∫
∂Ui

α∗i (φiω) =
∫
∂M

ω.

Hence,
∫
M
dω =

∫
∂M

ω, and we are finished. �

The resemblance of the Fundamental Theorem of Calculus to Stokes’ Theorem
is immediately seen. For completion, it will be stated here.

Theorem 10.6 (The Fundamental Theorem of Calculus). Let [a, b] be an interval
in R. Let f be a continuous function on [a, b], and let F satisfy the equation
F ′(x) = f(x) on the interval. Then

(10.7)
∫ b

a

f = F (b)− F (a).
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Clearly, [a, b] is a 1-manifold. Since F is differentiable, F is a 0-form, and
dF = dF

dx dx = fdx is a 1-form4. By Stokes’ Theorem, we then have
∫ b
a
fdx =∫

∂[a,b]
F =

∫
{a,b} F = F (b) − F (a), where the final equality is a result of Equation

9.16. Of course, we use the concept of induced orientation here as we integrate F
over {a, b}. This orientation is determined by Definition 9.17.

We briefly note that the FTC is not a true corollary to Stokes’ Theorem. The
reason for this is that we actually use the FTC to prove it. However, once Stokes’
Theorem has been established, it is tempting to regard the Fundamental Theorem
of Calculus as a 1-dimensional case of it.

We proceed in stating the corollaries of Stokes’ Theorem that are often pre-
sented in vector calculus courses. The most direct application of Stokes’ Theorem
is Green’s Theorem.

Corollary 10.8 (Green’s Theorem). Let M ⊂ R2 be a compact 2-manifold (with
boundary). Let P,Q : M → R be differentiable. Then

(10.9)
∫
∂M

Pdx+Qdy =
∫∫

M

(
∂Q

∂x
− ∂P

∂y

)
dxdy

Proof. Let ω = Pdx+Qdy. Then dω = dP ∧ dx+ dQ∧ dy. We further have dω =
dP ∧dx+dQ∧dy = (∂P∂x dx+ ∂P

∂y dy)∧dx+(∂Q∂x dx+ ∂Q
∂y dy)∧dy = (∂Q∂x −

∂P
∂y )dx∧dy.

The result now immediately follows from Stokes’ Theorem. �

The rest of this paper will be devoted to proofs of the Gradient Theorem and
the Divergence Theorem. The proof of the former is straight-forward, requiring a
single lemma. The latter is more involved, and requires a bit more work.

Lemma 10.10. Let M ⊂ Rn be an oriented, compact 1-manifold, and let T be the
unit tangent vector to M corresponding to the orientation. Let F(x) =

∑
fi(x)ei be

a vector field defined in an open set containing M . By Theorem 6.9, F corresponds
to the 1-form ω =

∑
i fidxi. Then we have

(10.11)
∫
M

ω =
∫
M

F ·T

Theorem 10.12 (The Gradient Theorem). Let M ∈ Rn be a compact 1-manifold,
and let T be a unit tangent vector field to M . Let f be a smooth function defined
in an open set containing M . If ∂M = ∅, then we have

(10.13)
∫
M

(∇f ·T) = 0

4This provides more insight as to why we use the notation
∫

fdx. It fits perfectly into the

derivation of the Fundamental Theorem of Calculus.
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Proof. By Theorem 6.9, df corresponds to ∇f . Therefore, by the lemma, we have∫
M
df =

∫
M

(∇f ·T). But by Theorem 9.18, this implies that
∫
M

(∇f ·T) =
∫
M
df =∫

∂M
f = 0, since ∂M = ∅. �

Letting n = 3, we have the Gradient Theorem often presented in vector calculus
courses. It is finally time to develop the final theorem of this paper, the Divergence
Theorem.

Definition 10.14. Let M ⊂ Rk be an oriented (k − 1)-manifold. Let p ∈ M ,
and let (p; ν) be a unit vector in Tp(Rk) orthogonal to Tp(M). Let α : U → V be
a coordinate chart on M around p belonging to the orientation of M , satisfying
α(x) = p. Now, select ν such that det (ν,D1α(x), . . . , Dn−1α(x)) > 0. Then we
call the vector field n(p) = (p; ν(p)) the unit normal field corresponding to the
orientation of M .

Definition 10.15. We say that a normal vector to ∂M points inward if the gradient
of the curve traced by the boundary of M at p moves into M . Otherwise, we say
that it points outward.

We now give a rigorous definition to the symbol dA, which will be used in the
Divergence Theorem

Definition 10.16. Let M ⊂ R3 be a 2-manifold, and let n(x) be the unit outward
normal at x ∈ M . Then if v and w are vectors in R3, we define dA(v, w) =
〈v × w, n(x)〉.

By the preceding definition, dA is a 2-form on M . It has a few desirable prop-
erties that we will use to prove the Divergence Theorem.

Theorem 10.17. Let M ⊂ R3 be an oriented 2-manifold, and let n(x) = n1(x)i +
n2(x)j + n3(x)k be the outward unit normal. Then

(10.18) dA = n1(dy ∧ dz)− n2(dx ∧ dz) + n3(dx ∧ dy).

In fact, the following equations also hold:

n1dA = dy ∧ dx
n2dA = −dx ∧ dz
n3dA = dx ∧ dy

Proof. For Equation 10.18, write dA(v, w) = det

 v
w
n

. Then expand the deter-

minant by minors along the bottom row.

For the equations, let z ∈ Tx(R3). Since v × w = an(x) for some a ∈ R,

〈z, n(x)〉 · 〈v × w, n(x)〉 = 〈z, n(x)〉a = 〈z, an(x)〉 = 〈z, v × w〉.

Now, choose z = (x; e1), (x; e2), and (x; e3) to obtain the equations. �
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Theorem 10.19 (The Divergence Theorem). Let M ⊂ R3 be an oriented, compact
3-manifold. Let n = n1i + n2j + n3k be the unit normal vector field to ∂M that
points outwards from M . Let F = f1i + f2j + f3k be a vector field defined in an
open set containing M . Then

(10.20)
∫
M

∇ · F dV =
∫
∂M

F · n dA.

Proof. Let ω = f1(dy ∧ dz) + f2(dx ∧ dz) + f3(dx ∧ dy). Then dω = ∇ · FdV . By
Theorem 10.17, (F · n)dA = f1n1dA + f2n2dA + f3n3dA = f1(dy ∧ dz) + f2(dx ∧
dz) + f3(dx ∧ dy) = ω. Therefore, by Stokes’ Theorem,

(10.21)
∫
M

∇ · FdV =
∫
M

dω =
∫
∂M

ω =
∫
∂M

F · ndA.

�

In vector calculus textbooks, the divergence theorem is often written as:

(10.22)
∫∫∫

M

∇ · F =
∫∫

∂M

F · n.
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