
THE MORDELL-WEIL THEOREM FOR Q
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Abstract. An elliptic curve is a specific type of algebraic curve on which one

may impose the structure of an abelian group with many desirable properties.

The study of elliptic curves has far-reaching connections number theory, cryp-
tography, analysis, and many other fields, and occupies a large area of current

research. If an elliptic curve happens to be defined over the rationals, one may

examine the subgroup of points with rational coordinates. The Mordell-Weil
Theorem for Q states that this group is finitely generated.
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1. Preliminaries

We assume some familiarity with the theory of algebraic curves and algebraic
number theory. As such, many definitions will be stated quickly and under the
assumption that the reader has seen them before, and results that come purely
from one of these fields will be stated without proof.

Definition 1.1. Let K be an algebraically closed field. Recall that the projective
plane over K is the set P2(K) of equivalence classes of nonzero points in K3 under
the relation (x, y, z) ∼ (λx, λy, λz) for each λ 6= 0 ∈ K. The equivalence class of
the point (x, y, z) is denoted [x : y : z].

Definition 1.2. For any homogeneous polynomial F in K[X,Y, Z] we have a set
V (F ) defined by

V (F ) = {[a : b : c] ∈ P2 : F (a, b, c) = 0}.
Note that this definition does not depend on the choice of representative for the
point [a : b : c], because F (λa, λb, λc) = λdeg FF (a, b, c), since F is homogeneous.
Such a set V (F ) is called the locus of F . If L is a subfield of K and the coefficients
of F lie in L, we say V (F ) is defined over L.

In this paper, we will be concerned only with curves of a specific type, namely
those specified by a cubic polynomial with only one point on the line H∞ = {[x :
y : 0] : x, y ∈ K} at infinity. After a linear change of coordinates, we may assume
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that the point in question is [0 : 1 : 0]. The curve may then be given by an equation
of the following form, called a Weierstrass equation:

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3.

Given a Weierstrass equation, we define the following quantities [4, 46]:

b2 = a2
1 + 4a2

b4 = 2a4 + a1a3

b6 = a2
3 + 4a6

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4

∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6.

The quantity ∆ above is called the discriminant. Note that if the characteristic of
K is not 2, we may simplify the Weierstrass equation by completing the square.
Replacing Y with 1

2 (Y − a1X − a3Z), one can easily check that the Weierstrass
equation becomes

Y 2Z = 4X3 + b2X
2Z + 2b4XZ2 + b6.

Definition 1.3. Recall that a point P ∈ V (F ) is called a singular point if

∂F/∂X(P ) = ∂F/∂Y (P ) = ∂F/∂Z(P ) = 0.

Suppose F is given by a Weierstrass equation. It takes a straightforward but tedious
calculation, which we omit here, to verify that every point of V (F ) is nonsingular if
and only if ∆ 6= 0. If this is the case, we call V (F ) an elliptic curve. The basepoint
is the point O = [0 : 1 : 0].

The points of an elliptic curve can be made into an abelian group in a relatively
simple way, and it is this group that will be the object of study in this paper. Before
defining the group operation, we recall some definitions that will help in defining
our operation properly.

Definitions 1.4. Let E be an elliptic curve.
• The divisor group Div(E) of E is the free abelian group generated by the

points of E. If D =
∑m

i=1 niPi ∈ Div(E), we define deg(D) =
∑m

i=1 ni. We
writeD ≥ D′ if each entry inD is greater than or equal to the corresponding
entry in D′.
• Recall that if P is a nonsingular point on E, then the local ring OP at P

(the ring of rational functions on E which are defined at P ) is a discrete
valuation ring. Given a rational function f ∈ K(E) (where K(E) is the
field of rational functions on E) we define div(f) =

∑
P∈P2 ordP (f), where

ordP is the valuation on K induced by OP .
• The image of div forms a subgroup of Div0(E) = {D ∈ Div(E) : degD =

0}. The quotient of Div0(E) by this subgroup is called Pic0(E), and if two
elements D and D′ of the divisor group differ by an element of the image
of div, we write D ∼ D′.
• For D ∈ Div(E), we write L(D) = {f ∈ K(E) : div(f) ≥ −D}. This is a

vector space over K.

Proposition 1.5. Let E be an elliptic curve and let O ∈ E be the point [0 : 1 : 0].
Then for every D ∈ Div0(E), there is a unique point P such that D ∼ P −O.
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Proof. A nonsingular plane cubic has genus 1, so we may apply the Riemann-Roch
Theorem [2, 108] to get that dimL(D + O) = 1. Let f be a nonzero element
of L(D + O). Then div(f) ≥ −D − O which, since deg(div(f)) = degD = 0,
gives us that div(f) = P − D − O for some P . Then D ∼ P − O as desired. If
D ∼ P ′ − O for some other P ′, then P ∼ P ′, so for some rational function f ,
div(f) = P − P ′ ∈ L(P ′). But by the same reasoning as above, L(P ′) is one-
dimensional, and it contains all the constant functions, so f must be constant,
meaning div(f) = 0, so P = P ′. �

This gives a one-to-one correspondence between the elements of Pic0(E) and the
points on E, and since Pic0(E) is already an abelian group, this gives us a group
structure on E. If L is a subfield of K, we write E(L) for the set of points [x : y : z]
of E for which, for some λ ∈ K×, λx, λy, λz ∈ L. That is, E(L) is the set of points
of E for which there exists a choice of coordinates using only elements of L.

Remark 1.6. There is also a geometric way to think about the group law on an
elliptic curve. Suppose P and Q are points on E. By Bézout’s theorem [2, 57], the
line going through P and Q intersects E in exactly one other point, say R. Write
R = P ⊕Q. Then P +Q = O⊕(P ⊕Q). To see this, let L be the line going through
P and Q (or tangent at P if P = Q), and let L′ be the line going through P ⊕ Q
and O. It is easy to see by inspecting the Weierstrass equation that ordO(Z) = 3
and ordP (Z) = 0 for P 6= O, so we get that

div(L/Z) = P +Q+ (P ⊕Q)− 3O,

div(L′/Z) = (P ⊕Q) + (O ⊕ (P ⊕Q))− 2O.
Then

0 ∼ div(L/L′) = P +Q−O − (O ⊕ (P ⊕Q)),
so we get that (P −O) + (Q−O) = (O ⊕ (P ⊕Q))−O.

Thinking of the group law in terms of lines allows us to derive an explicit formula
for computing the sum of two points on an elliptic curve. The verification of the
formula is long and would take us too far off course, but we transcribe it here.

Proposition 1.7. [4, 58] Let P = [x1 : y1 : 1] and Q = [x2 : y2 : 1] be two
nonidentity points on an elliptic curve E. If x1 = x2 and y1 + y2 + a1x2 + a3 = 0,
then P = −Q. Otherwise, if x1 6= x2, define

λ =
y2 − y1
x2 − x1

, ν =
y1x2 − y2x1

x2 − x1
,

and if x1 = x2, define

λ =
3x2

1 + 2a2x1 + a4 − a1y1
2y1 + a1x1 + a3

,

ν =
−x3

1 + a4x1 + 2a6 − a3y1
2y1 + a1x1 + a3

.

The line Y = λX + νZ is the line L from the preceding discussion. Then if

x3 = λ2 + a1λ− a2 − x1 − x2,

y3 = −(λ+ a1)x3 − ν − a3,

then [x3 : y3 : 1] = P +Q.
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2. Heights and the Descent Theorem

The goal of this paper is to prove that, if E is an elliptic curve, then the group
E(Q) is finitely generated. To do this, we will use a general result called the Descent
Theorem, which relies on the existence of a function with certain properties which
measures the “size” of an element of the group and uses information about the
number of elements of small enough size to find a finite generating set.

Theorem 2.1 (Descent). [4, 199] Suppose A is an abelian group, and h : A → R
is a function with the following properties:

• For each q ∈ A there is a constant c1 depending on A and q such that
h(p+ q) ≤ 2h(p) + c1 for all p.
• For some integer m ≥ 2 and some constant c2 depending only on A, we

have that h(mp) ≥ m2h(p)− c2 for all p.
• For every real number k, {p ∈ A : h(p) < k} is finite.

If, in addition, A/mA is finite for the m above, then A is finitely generated.

Proof. Pick representatives q1, . . . , qr ∈ A for each of the cosets of A/mA, and pick
some p ∈ A. Write p = mp1 + qi1 for some i1. Continuing inductively in this way,
writing pn−1 = mpn + qin

. From the first two properties of the height function, we
have that

h(pn) ≤ 1
m2

(h(mpn) + c2)

=
1
m2

(h(pn−1 − qin
) + c2)

≤ 1
m2

(2h(pn−1 + c′1 + c2)

where c′1 is the maximum of the c1’s for all the −qi’s.
Doing this repeatedly gives us that

h(pn) ≤
(

2
m2

)n

h(p) + (c′1 + c2)
n∑

i=1

2n−1

m2n

<

(
2
m2

)n

h(p) +
c′1 + c2
m2 − 2

≤ 2−nh(p) + (c′1 + c2)/2.

So if n is big enough we can make h(pn) < 1 + (c′1 + c2)/2. Since p is a linear
combination of pn and the qi’s and there are only finitely many elements α of
height less than 1 + (c′1 + c2)/2, those α’s and the qi’s generate A. �

3. The Weak Mordell-Weil Theorem

In order to apply the Descent Theorem to the rational points on an elliptic
curve, we need two things: a height function on Q satisfying the conditions of
the theorem, and that E(Q)/mE(Q) is finite where m is the number used in the
Descent Theorem. The second of these is the focus of this section. In fact, we will
prove something stronger [4, 190]:

Theorem 3.1 (Weak Mordell-Weil). If K/Q is a finite extension, and E is an
elliptic curve in P2(K̄) defined over K, then for each m ≥ 2, E(K)/mE(K) is
finite.
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We first prove a series of reductions, and at the end we will take advantage of
a finiteness result from algebraic number theory. (For a group G and a natural
number m, we write G[m] for the set of elements g ∈ G with mg = 0.)

Lemma 3.2. If L/K is a finite Galois extension and E(L)/mE(L) is finite, then
so is E(K)/mE(K).

Proof. Let Φ be the kernel of the obvious map from E(K)/mE(K) to E(L)/mE(L).
For each P ∈ Φ, pick a QP in E(L) with mQP = P , and define λP (σ) = σ(QP )−QP

for each σ ∈ Gal(L/K). It is easy to check that λP lands in E[m], that it is well-
defined, and that if λP = λP ′ , then P = P ′ in E(K)/mE(K). So the map sending
P to λP is injective, but there are only finitely many maps from Gal(L/K) to
E[m], so Φ is finite. (E[m] is the kernel of the multiplication-by-m map, which is
representable by a rational function, so it must be finite.) So both the image and
kernel of the aforementioned map from E(K)/mE(K) to E(L)/mE(L) are finite,
so E(K)/mE(K) is finite. �

In light of this statement, it is enough to prove Weak Mordell-Weil under the
assumption that E[m] is contained in E(K) (note that, as mentioned in the proof
above, E[m] is finite): according to the explicit formulas for the group operation
on an elliptic curve given in 1.7, membership in the kernel may be specified by a
polynomial in x and y, and adjoining the roots of that polynomial gives us a finite
extension of K with the desired property, to which we may apply 3.2.

We now reduce the question of the finiteness of E(K)/mE(K) to a question
about the finiteness of a certain field extension:

Lemma 3.3. Let L be the composite of all extensions K(Q) over all Q with mQ ∈
E(K). If L/K is a finite extension, then E(K)/mE(K) is finite.

Proof. Define the map κ : E(K) × Gal(K̄/K) → E[m] as follows: for P ∈ E(K),
pick Q ∈ E(K̄) with mQ = P ; then κ(P, σ) = σ(Q) − Q. It is straightforward to
check that this map is bilinear and independent of the choice of Q. The kernel of κ
on the left is mE(K), because if κ(P, σ) = 0 for all σ, then each σ fixes the Q with
mQ = P , so the entries of Q are in the fixed field of Gal(K̄/K), i.e., Q ∈ E(K),
so P ∈ mE(K). The kernel on the right is Gal(K̄/L): if σ fixes L, then the Q for
each P is in L by definition, so κ(σ, P ) = O for each P , and if σ is in the kernel,
then σ fixes every Q with mQ ∈ E(K), so σ fixes L.

This gives a perfect bilinear pairing E(K)/mE(K) × Gal(L/K) → E[m], so
E(K)/mE(K) ∼= Hom(Gal(L/K), E[m]), but, as mentioned above, E[m] is finite,
so the lemma follows. �

Suppose v is a discrete valuation on K. Since E is an elliptic curve over K, we
may consider it as an elliptic curve over the completion Kv of K with respect to v.
Replacing X and Y by u−2X and u−3Y respectively, one can easily see that each
coefficient ai in the Weierstrass equation for E is replaced by uiai. So by doing this
with an appropriate u we can find a Weierstrass equation for E so that v(ai) ≥ 0
for each i and v(∆) is as small as possible. This is called a minimal Weierstrass
equation for E.

Given a minimal Weierstrass equation for E over Kv we may reduce the coeffi-
cients with respect to the maximal ideal of Kv to obtain a new elliptic curve Ẽv in
P2(kv), where kv is the residue field of Kv.
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Definition 3.4. We say E has good reduction at v if Ẽv is nonsingular. Otherwise,
we say E has bad reduction at v.

In order to proceed we will need the following fact, whose proof would unfortu-
nately take took long to include here. For a proof, see [4, 176].

Lemma 3.5. Suppose v is a discrete valuation over K, v(m) = 0, and E has good
reduction at v. Then the map E(K)[m]→ Ẽv(kv) given by the reduction described
above is injective.

Definition 3.6. If v is a valuation on K, L is an algebraic extension of K, and v′

is a place of L lying above v, then the inertia group of v′ over v is the subgroup
Iv′/v of Gal(Lv′/Kv) which act trivially on the residue field kv′ of Lv′ . We say that
the extension L/K is unramified at v if the action of the inertia group of v′ over v
is trivial for every v′ lying above v.

Proposition 3.7. Let L be the field defined in 3.3. Then Gal(L/K) is abelian of
exponent m. Let S be the set of valuations v on K for which v is Archimedean,
v(m) 6= 0, or E has bad reduction at v. Then if v is a valuation and v /∈ S, L/K
is unramified at v.

Proof. From the proof of 3.3, there’s an injective map from Gal(L/K) to Hom(E(K), E[m]),
which proves that the Galois group is abelian of exponent m.

Pick some v /∈ S and some Q with mQ ∈ E(K). It’s enough to show that
K(Q)/K is unramified at v, since L is the composite of all such extensions. Pick
some place v′ of K(Q) lying above v. Since E has good reduction at v, it clearly
also does at v′. Let r be the reduction map E(K(Q))→ Ẽv′(kv′).

Pick some σ in the inertia group of v′/v. By definition, r(σ(Q)−Q) = σ(r(Q))−
r(Q) = r(O). But m(σ(Q) − Q) = O as well, so σ(Q) − Q ∈ E[m] and it’s in the
kernel of the reduction map, so by 3.5, σ fixes Q.

So, since K(Q) is fixed by every element of the inertia group of v′/v for every v′

lying above v, we see that K(Q)/K is unramified at v. �

We have now established enough about the extension L/K to prove that it is
finite. The proof will require a result from algebraic number theory, which we state
here without proof:

Theorem 3.8 (Dirichlet’s S-Unit Theorem). Let K be a finite extension of Q, and
let R be its ring of integers. If S is a finite set of valuations on R, define RS to be
the ring {a ∈ K : v(a) ≥ 0 for all v /∈ S}. Then the group of units R×S is finitely
generated.

Theorem 3.9. If K/Q is a finite extension and S is a finite set of places on K
containing all the non-Archimedean absolute values, and m ≥ 2, let L/K be the
maximal extension of K whose automorphism group over K is abelian of exponent
m and which is unramified outside of S. Then L/K is a finite extension.

Proof. First, note that if the theorem is true for some finite extension K ′ of K
(replacing S with the set S′ of places of K ′ lying above S), then we would have
that LK ′/K ′ finite, so L/K would be as well. Therefore, we may assume K contains
the m’th roots of unity.

We can also make S bigger, since this will only make L bigger. Since the class
number of K is finite (since K is a finite extension of Q; this is a fundamental
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fact of algebraic number theory, cf. [3, 34]), we may add finitely many places to S
to make the ring RS described above into a principal ideal domain. We may also
throw in every v for which v(m) 6= 0.

By the primary theorem of Kummer theory (cf. [1, 626, 816]), because K con-
tains the m’th roots of unity, abelian extensions of K of exponent m are obtained
by adjoining m’th roots of elements of K. Pick some (normalized) valuation v /∈ S.
Since v(m) = 0, one may check that Kv( m

√
a)/Kv is unramified if and only if

m|v(a). So L is obtained by adjoining m’th roots of elements of TS , where

TS = {a ∈ K×/(K×)m : m|v(a) for all v /∈ S}.
We just need to check that TS is finite.

There is a natural map R×S → TS . For any a ∈ K× whose residue is in TS , we
know that aRS is the m’th power of some ideal of RS , since v(a) is a multiple of
m for each v /∈ S. So for some unit u, we have a = ubm for some b ∈ K×, because
RS is a principal ideal domain. Now, u ∈ R×S , but our map sends u to the residue
of a, so our map is surjective. And the kernel obviously contains the m’th powers,
so we have a surjection R×S /(R

×
S )m → TS . By Dirichlet’s S-Unit Theorem, R×S is

finitely generated, so that quotient is finite, so TS is finite, as desired. �

4. Height over Q

Our next task should be to find a height function on E(Q) with the properties
we need. First we note that, since Q has characteristic 0, we may simplify our
Weierstrass equation even further. It is left to the reader to check that in this case,
with an appropriate change of coordinates, we may assume that the equation looks
like

Y 2Z = X3 +AXZ2 +BZ3

for some A and B. We define a height function as follows:

Definition 4.1. For any rational number p/q with gcd(p, q) = 1, define H(p/q) =
max{|p|, |q|}. Then for any point in E(Q), define hx([x : y : 1]) = logH(x) and
hx([0 : 1 : 0]) = 0.

We now show that hx satisfies the conditions of the Descent Theorem:

Proposition 4.2. [4, 202]
(a) If P0 ∈ E(Q) then there is a constant c1 so that for all P ∈ E(Q), we have

hx(P + P0) ≤ 2hx(P ) + c1

s.
(b) There is a constant c2 so that for all P ∈ E(Q), hx(2P ) ≥ 4hx(P )− c2.
(c) For every k, the set {P ∈ E(Q) : hx(P ) ≤ k} is constant.

Proof. With appropriate final adjustments to c1, we may assume that P, P0 6= O
and P 6= ±P0. Let P = [x : y : 1], P0 = [x0 : y0 : 1] where x = a/d2, y = b/d3,
x0 = a0/d

2
0, y0 = b0/d

3
0 in lowest terms. (It is easy to verify from the Weierstrass

equation that they may be put into this form.)
Using the addition formula given in 1.7 and the Weierstrass equation, one may

verify that the x coordinate of P + P0 (after normalizing with z = 1) is

x(P + P0) =
(aa0 +Ad2d2

0)(ad2
0 + a0d

2) + 2Bd4d4
0 − 2bdb0d0

(ad2
0 − a0d2)2

.
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Cancelling common factors would only make the height smaller, so we get that
H(x(P + P0)) ≤ cmax{|a|2, |d|4, |bd|}. Now, H(x(P )) = max{|a|, |d|2}, so except
for the |bd| this is what we want.

But from the Weierstrass equation, we get that

b2 = a3 +Aad4 +Bd6,

so |b| ≤ c′max{|a|3/2, |d|3}, so |bd| won’t affect the maximum. This proves (a).
With appropriate final adjustments to c2, we can force our height to be above

those of the finitely many points of E(Q)[2], allowing us to assume that 2P 6= O.
Set P = [x : y : 1]. Using the addition formula, we get that the x coordinate of 2P
is

x(2P ) =
x4 − 2Ax2 − 8Bx+A2

4x3 + 4Ax+ 4B
.

Let
F (X,Z) = X4 − 2AX2Z2 − 8BXZ3 +A2Z4,

G(X,Z) = 4X3Z + 4AXZ3 + 4BZ4.

Then writing x = a/b in lowest terms, it is clear that x(2P ) = F (a, b)/G(a, b).
Let ∆ = 4A3 +27B2 be the discriminant of E. We leave it to the reader to check

that there are cubic homogeneous polynomials f1, g1, f2, g2 so that

f1F − g1G = 4δZ7,

f2F + g2G = 4δX7.

(Check that F and G are relatively prime if ∆ 6= 0.) Let δ = gcd(F (a, b), G(a, b)).
From the equations just proved, it is clear that δ divides 4∆, so H(x(2P )) ≥
max{F (a, b), G(a, b)}/|4∆|. Using the homogeneity of the fi’s and the gi’s, the
equations also tell us that

max{|4∆a7|, |4∆b7|} ≤ 2cmax{|a|3, |b|3}max{F (a, b), G(a, b)},
and cancelling and making the appropriate substitutions gives us that H(x(2P )) ≥
(2c)−1H(x(P ))4, which implies (b).

The set {t ∈ Q : H(t) ≤ k} is obviously finite, and for a given rational there are
at most two points on the curve with that number as an x value, so (c) is clear. �

Remark 4.3. This, together with Weak Mordell-Weil and the Descent Theorem,
shows that E(Q) is finitely generated. Given the way Weak Mordell-Weil was
stated and proved, it is natural to ask whether E(K) is finitely generated for any
finite extension K over Q. The answer is yes, and one may construct a height
function on such a K, though the construction and the proof that it satisfies the
hypotheses of the Descent Theorem will be a bit more complicated than they were
for Q.
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