
SYMMETRIES IN R3

NAMITA GUPTA

Abstract. This paper will introduce the concept of symmetries being rep-

resented as permutations and will proceed to explain the group structure of

such symmetries under composition. We then describe the special orthogonal
group, SO3, and how its finite subgroups are various groups of symmetry. This

will lead us to the conclusion that there are only five regular polyhedra.

1. Background

Definition 1.1. A permutation is defined to be a bijection from a finite set to
itself.

A permutation generally acts on a finite set of the form {1, . . . , n}. The set
of permutations of {1, . . . , n} is known as Sn. The permutation σ of {1, 2, 3, 4, 5}
given by σ(1) = 3, σ(2) = 4, σ(3) = 1, σ(4) = 2, σ(5) = 5 can be written either in
matrix form: (

1 2 3 4 5
3 4 1 2 5

)
or in cycle structure:

(13)(42)(5).
Matrix form allows for a clearer picture of how the numbers are being moved around,
whereas cycle structure shows which numbers are being switched around and which
remain unchanged. If 2 had been sent to 1 and 1 sent to 3 and 3 sent back to 2,
then there would have been a cycle of the form (213), (321), or (132) in the cycle
structure of the permutation.

Permutations on a set can be viewed as a group under the binary operation of
composition, where composition of permutations is simply composition of functions.
Thus we can regard Sn as a group. For example, if

σ =
(

1 2 3 4
2 4 3 1

)
and π =

(
1 2 3 4
4 3 2 1

)
then

π ◦ σ =
(

1 2 3 4
3 1 2 4

)
and σ ◦ π =

(
1 2 3 4
1 3 4 2

)
.

Now we will relate permutation groups to symmetries of geometric objects. Look-
ing at a square with vertices numbered 1 to 4, the set of rotations of the square by
multiples of π2 is a group of permutations that is a subgroup of S4. The identity is a
rotation by 0, and each rotation has an inverse rotation. More generally, looking at
an n-gon with vertices labeled 1 through n, the rotations by multiples of 2π

n around
the fixed center of the n-gon always form a symmetry group called the cyclic group,
Cn, which is a subgroup of Sn. This group of rotations can be generated by rotation
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Figure 1. Symmetries of a Square [1]

by 2π
n since all other rotations are a composition of a certain number of copies of

this rotation. Including one more element that is a reflection across a single line of
symmetry of the n-gon expands the group into what is referred to as the dihedral
group, Dn, which is the group of all symmetries of a regular n-gon. The reflection
element is its own inverse, and any symmetry of a polygon can be expressed as
a composition of rotations and the reflection (if needed). When considering the
square (see Figure 1), if g, g2, and g3 are the three rotation elements and h is the
reflection across a diagonal, it is clear that these generate all symmetries of the
square.

Definition 1.2. The group SOn is defined to be the set of n×n orthogonal matrices
with determinant 1,

SOn = {A ∈Mn(R) | AAT = ATA = I, detA = 1}.

These matrices in two dimensions are all matrices of the form(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
and correspond to rotations of the plane. The subgroup of SO2 generated by θ = 2π

n
geometrically describes the orientation-preserving symmetries of an n-gon, or the
cyclic group on n vertices, Cn.

2. Conceptual 3-D Group

Having thought about the rotations possible in two dimensions, the next step is
to attempt to visualize the rotations possible in three dimensions. The group SO3

helps in doing so because it is the group of orientation-preserving symmetries of R3

fixing the origin. The matrices consist of orthonormal bases that follow the right-
hand rule, since AAT = I forces the inner product of the i-th and j-th columns
to be δij and detA = 1 implies that the ordered column vectors are positively
oriented.

Definition 2.1. A pole p of a nontrivial symmetry g ∈ SO3 is a point on the unit
sphere S2 ⊂ R3 left unchanged by g. That is, gp = p.
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Proposition 2.2. Any element A of SO3 fixes a line (or equivalently, two poles).
Furthermore, A is a rotation about the fixed line.

Proof. Let A ∈ SO3 with three eigenvalues ∈ C. Note that the product of the
eigenvalues is equal to det(A), which equals 1. Given eigenvector w of A with the
corresponding eigenvalue λ,

(2.3) w = ATAw = AT (Aw) = λ(ATw).

This means that w is an eigenvector of AT with an eigenvalue of 1/λ, but AT

has the same eigenvalues as A, because both matrices have the same characteristic
polynomial. If λ 6= 1/λ, then the third eigenvalue must equal 1, since the product
of all three is 1. Otherwise, λ2 = 1. If λ = −1, then the other two eigenvalues
cannot also be -1, since the product of all three must be 1. So, there is another
eigenvalue µ with a corresponding eigenvector u. Following the same argument as
in (2.3) with u we have that µ2 = 1. Therefore, A must have an eigenvalue equal
to 1, so there exists an eigenvector v such that

Av = v.

In other words, A fixes the line along the vector v.
If the vector v

‖v‖ is defined to be one of the basis vectors, and the other two vectors
are orthonormal to this vector and follow the right-hand rule, then A can be written
in terms of this basis by conjugating by the change of basis matrix, resulting in a
new matrix, B. Since A ∈ SO3 and any matrix changing one orthonormal basis
to another maintaining positive orientation is also in SO3, matrix B ∈ SO3. The
matrix B is known to send the first basis vector v

‖v‖ (or (1, 0, 0) in the new basis) to
itself, fixing B’s first column to be (1, 0, 0). Because B ∈ SO3, the remaining entries
can be determined based on the necessity for linearly independent, orthonormal
column vectors and a determinant of 1, resulting in the matrix1 0 0

0 cos(x) − sin(x)
0 sin(x) cos(x)

 .

This matrix is a rotation about the line spanned by (1, 0, 0). �

Now that we know that orientation-preserving symmetries in three dimensions
are rotations fixing an axis, it is clear to see that if a rotation is a symmetry of a
polyhedron, this axis is forced by symmetry to go through two opposing vertices, the
centers of two opposing faces, or the midpoints of two opposing edges. In a regular
polyhedron, any two vertices are symmetrically equivalent by way of some rotation
in SO3, as are any two edges or faces. This leads to two important definitions. Let
G be a group acting on a set X.

Definition 2.4. The stabilizer of x ∈ X is defined to be the set of all rotations
g ∈ G that fix x,

Stab(x) = {g ∈ G | gx = x}.
For example, if X is the set of vertices of a polyhedron, then a stabilizer set can

be visualized by imagining holding onto one vertex x and rotating the rest.

Definition 2.5. The orbit of x ∈ X is defined to be the set of all elements of X
that can be reached by way of a rotation g ∈ G,

Orb(x) = {gx | g ∈ G}.



4 NAMITA GUPTA

If we let X be the set of edges of a regular two-dimensional polygon and G its
group of symmetries, then the orbit of any edge is the set of all of the edges, since
any edge can be reached by some rotation in the group SO2.

One can imagine that there is a relationship among the order of the orbit of x,
stabilizer of x, and group G that is somewhat intuitive.

Proposition 2.6 ([1], Theorem 2.1). For any x ∈ X, we have

(2.7) |G| = |Stab(x)||Orb(x)|.

Proof. The stabilizer of an element x is a subgroup of G, and it gives a partition of
G into its cosets. If the set H of left cosets of Stab(x) is taken, there is a bijection
between this set and Orb(x), namely if h ∈ H, hStab(x) 7→ hx. We know that
Orb(x) consists of elements gx and our map carries gStab(x) to gx, proving our
map is surjective. Now if aStab(x) and bStab(x) have the same image, i.e. ax = bx,
then x = a−1bx. This implies that a−1b ∈ Stab(x), so b = as, s ∈ Stab(x), and
bStab(x) = aStab(x), proving our map is injective, and altogether bijective, leading
to Proposition 2.6. �

3. The Theorem

Theorem 3.1 ([2], Theorem 9.1). Every finite subgroup G of SO3 is one of the
following:

• Ck: The cyclic group of rotations by multiples of 2π
k about a line

• Dk: The dihedral group of symmetries of a regular k-gon
• T : The tetrahedral group of twelve rotations carrying a regular tetrahedron

to itself
• O: The octahedral group of order 24 of rotations of a cube or of a regular

octahedron
• I: The icosahedral group of 60 rotations of a regular dodecahedron or of a

regular icosahedron.

Proof. Let P denote the set of all poles of a finite subgroup G of SO3 with order
n.

Lemma 3.2. The set P is carried to itself by the action of G on the sphere, i.e.
G operates on P .

Proof. Let p be a pole of some g ∈ G and h be a different element of G. We want
to show that hp is also a pole of some element g′ of G that is not the identity. If
the element hgh−1 is taken, hgh−1(hp) = hgp = hp, leaving hp unchanged. Note
that hgh−1 6= 1 because g 6= 1. �

Since p is a pole, there is an element in its stabilizer Stab(p) that is not the
identity. By Proposition 2.2, every element of Stab(p) fixes the line through p and
the origin; in fact, we proved that it is rotation about this line. Thus Stab(p) fixes
the plane normal to this line. Geometrically, we see that an element of Stab(p)
rotates the plane and is determined by its action on the plane. Hence we can
consider Stab(p) as a finite subgroup of SO2(R). A geometric argument shows
that this is a cyclic group. This means there is some smallest angle θ that is the
generator of the stabilizer set. If the order of the stabilizer is rp, the smallest angle
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of rotation would be 2π
rp

, with rp > 1. If we define op to be the number of different
poles in the orbit Orb(p), then by Proposition 2.6 we get that

(3.3) rpop = n.

Since the identity is in the stabilizer of p, there are rp − 1 elements of the group
that have p as a pole. Summing all of the elements g ∈ G that have p as a pole for
all p ∈ P gives us the total number of distinct (g, p) pairings. At the same time, by
Proposition 2.2, every group element g ∈ G has two poles except for the identity,
making the total number of distinct (g, p) pairings 2n − 2. Using these two facts,
we get the equation

(3.4)
∑
p∈P

(rp − 1) = 2n− 2.

If two poles p and p′ are in the same orbit, then op = op′ , so rp = rp′ by (3.3).
Because of this, we can collect the terms of the sum in (3.4) that belong to the
poles of a particular orbit Orb(p). There are op terms on the left equal to rp − 1,
so numbering the orbits as O1, O2, . . . gives us

(3.5)
∑
i

oi(ri − 1) = 2n− 2.

As defined above, oi is the order of Oi and ri is the order of Stab(p) for all p ∈ Oi.
Since n = rioi by (3.3), both sides of (3.5) can be divided by n to get

(3.6) 2− 2
n

=
∑
i

(
1− 1

ri

)
.

Since n is positive, the left side is less than 2, while each term of the sum in the
right side is at least 1

2 since there are at least two elements in any stabilizer set
(ri ≥ 2 for all i). This leaves us with at most three orbits, which reduces the proof
to the cases of one orbit, two orbits, or three orbits.

Case 1: One Orbit. If there is one orbit, then i = 1 and we get the equation

(3.7) 2− 2
n

= 1− 1
r
.

Since we know that n > 1, the left side of (3.7) must be greater than or equal to
one. We also know that r > 1, meaning that the right side of (3.7) is strictly less
than one. This means that (3.7) is impossible.

Case 2: Two Orbits. In this case, we have

2− 2
n

=
(

1− 1
r1

)
+
(

1− 1
r2

)
2
n

=
1
r1

+
1
r2
.(3.8)

The order ri of each stabilizer set must be less than or equal to n since they each
divide n. Therefore, equation (3.8) can only hold if r1 = r2 = n. By (3.3) we know
that o1 = o2 = 1, meaning that there are two poles p and p′, both of which are fixed
by every element g ∈ G. This clearly makes G the cyclic group Cn of rotations
about the line through p and p′.
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Case 3: Three Orbits. If there are three orbits, there are multiple possibilities
for the values ri. The equation yielded from (3.6) is

(3.9)
2
n

=
1
r1

+
1
r2

+
1
r3
− 1.

If the ri are assumed to be in order from smallest to largest then we must have
r1 = 2, since otherwise the right side of (3.9) would not be positive.

If r1 = r2 = 2, then r3 can be arbitrary and n = 2r3. This implies that n3 = 2,
meaning there are two poles p, p′ that form the orbit O3 and are either fixed or
swapped by every group element g ∈ G. This makes the elements of G either
rotations around the line l going through the two poles or a rotation by π about
a line perpendicular to l (which looks like a reflection in the plane between p and
p′). This describes the dihedral group Dr of a regular r-gon, with the vertices and
centers of faces of the polygon corresponding to the other poles not equal to p or
p′ in the set P of poles.

If only r1 = 2, then the values of r2 and r3 are restricted by the fact that the
right side of (3.9) must be positive. Simple algebra tells us that there are only three
possible triples (r1, r2, r3) with r1 = 2:

• (r1, r2, r3) = (2, 3, 3), n = 12,
• (r1, r2, r3) = (2, 3, 4), n = 24, or
• (r1, r2, r3) = (2, 3, 5), n = 60.

The first case has (o1, o2, o3) = (6, 4, 4) with G being the group of rotations of a
tetrahedron: G = T . To help see this, let p be one of the four poles in O3 and let q
be one of the poles of O2 closest to p. Given that the stabilizer of p is of order three
and operates on O2, the number of nearest poles to p obtained by the stabilizer
acting on q must be a multiple of three. Since there are only six poles in O2 total,
if the number of nearest poles to p were six, then the nearest poles to all four poles
in O3 would be the same six poles, which is not possible. Therefore, the number of
nearest poles to p must be three. This leads to the conclusion that the poles in O3

are the centers of faces of a polyhedron, with the poles of O2 corresponding to the
vertices and poles of O1 being those through the centers of the edges. In this case,
o1 is the number of edges, while o2 and o3 are the number of vertices and faces of
a tetrahedron.

In the second case, (o1, o2, o3) = (12, 8, 6). Using the same argument as used in
the previous case, let p be one of the six poles of O3 and let q be one of the poles
in O2 closest to p. Given that the stabilizer of p is of order four and operates on
O2, the number of nearest poles to p obtained by the stabilizer acting on q must
be a multiple of four. Since there are only eight poles in O2 the same logic applied
previously leads to the conclusion that there are four poles closest to p. If the poles
of O3 are considered to be through the centers of the faces of a polyhedron, there
are six faces with eight vertices, describing a cube. If the poles of O3 are considered
to be through the vertices of a polyhedron, there are six vertices with eight faces,
describing an octahedron. The group of rotations of these two polyhedra is G = O.

In the third case, (o1, o2, o3) = (30, 20, 12). As before, let p be one of the twelve
poles of O3 and let q be one of the poles in O2 closest to p. Given that the stabilizer
of p is of order five and operates on O2, the number of nearest poles to p obtained
by the stabilizer acting on q must be a multiple of five. If there were ten nearest
poles to p, then the twelve poles of O3 would each have ten nearest poles, requiring
impossible amounts of overlap to yield only the twenty total poles of O2. This
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Figure 2. Five Polyhedra Formed by Subgroups of SO3

leads to the conclusion that there are only five poles closest to p. If the poles of
O3 are considered to be through the centers of the faces of a polyhedron, there are
twelve faces with twenty vertices, describing a dodecahedron. If the poles of O3

are considered to be through the vertices of a polyhedron, there are twelve vertices
with twenty faces, describing an icosahedron. The group of rotations of these two
polyhedra is G = I. �
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