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Abstract. The Szemerédi Regularity Lemma states that any sufficiently large

graph G can be partitioned into a bounded (independent of the size of the

graph) number of regular, or “random-looking,” components. The resulting
partition can be viewed as a regularity graph R. The Key Lemma shows

that under certain conditions, the existence of a subgraph H in R implies its

existence in G. We prove the Regularity Lemma and the Key Lemma.
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1. Introduction

In 1975 Endre Szemerédi proved a 40 year old Ramsey Theory type conjecture
of Erdös and Turán: every set of natural numbers of positive upper density con-
tains arithmetic progressions of arbitrary length. Szemerédi began his proof with
a “lemma on bipartite graphs” [1]. In 1976, he generalized this result to simple
graphs [2], a result which became known as the Regularity Lemma. The Regularity
Lemma states that any graph can almost entirely be partitioned into a bounded
number of components, such that the edge density between any two of these com-
ponents is nearly random, or ε-regular, as will be defined in Section 2. Notably,
for a given lower bound m and ε, the upper bound M = M(m, ε) given by the
Regularity Lemma depends only on m and ε and holds for arbitrarily large graphs.

One application of the Regularity Lemma is in proving that certain conditions
on a large graph G (such high enough edge density) can force the existence of a
given subgraph H. The partition resulting from the Regularity Lemma gives rise to
a regularity graph R whose vertices are the components of the partition and where
two components are connected by an edge if and only if the edge density between
the two components in G is sufficiently high. The Key Lemma states that under
the right conditions, the existence of a bounded degree subgraph H in a certain
generalized regularity graph (see Section 4) implies its existence in G.
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Figure 1. A complete (3, 4)-bipartite graph.

In this paper we prove the Regularity Lemma and the Key Lemma. We shall
draw main ideas, lemma statements, and some notations from [3]. The illustrations,
examples, and most of the explanations are original.

2. Definitions, Examples, and Statement of the Regularity Lemma

Let G = (V,E) be a simple graph on n vertices, i.e., a connected, undirected
graph with no loops.

Definition 2.1. (Edge density) For disjoint A,B ⊂ V , let

d(A,B) =
e(A,B)
|A||B|

,

where e(A,B) is the number of edges with a vertex in A and a vertex in B.

First observe some obvious properties of edge density. The quantity d(A,B)
is the ratio of the number of edges between A and B to the maximum possible
number of such edges. Thus if the subgraph on A and B is a complete bipartite
graph, the density is 1 (as in Figure 1). If no edges connect A and B, the density
is 0. Edge density is always a rational number in [0, 1]. Here are two slightly less
trivial examples: In Figure 2, we have d(A,B) = 15/16 and d(C,D) = 5/8.

We shall now introduce ε-regular pairs. Consider two disjoint vertex sets, A and
B. Intuitively, the pair of sets {A,B} is said to be ε-regular if the edges between
A and B are distributed fairly homogeneously.

Definition 2.2. (ε-Regular Pair) Let ε > 0. Finite nonempty disjoint sets A,B ⊂
V are said to be ε-regular if for all A′ ⊂ A and B′ ⊂ B, we have

|A′| ≥ ε|A| and |B′| ≥ ε|B| =⇒ |d(A,B)− d(A′, B′)| ≤ ε.

First observe that any {A,B} is trivially ε-regular for all ε ≥ 1, since it is
impossible for |d(A,B)− d(A′, B′)| to be greater than 1. Thus ε-regularity is only
meaningful for ε < 1.
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Figure 2. (i) The pair {A,B} is (1/3)-regular. (ii) The pair
{C,D} is not (1/3)-regular.

The justification for the above definition is by comparison to large random
graphs. Suppose, for example, that A and B are countably infinite. Let p ∈ [0, 1]
and for each a ∈ A and b ∈ B let {a, b} be an edge with probability p. Then for
large finite subsets A′ ⊂ A and B′ ⊂ B (taking the limit as |A′|, |B′| −→ ∞), the
expected number of edges would be p|A′||B′|. So the expected density would be
p|A′||B′|
|A′||B′| = p. But of course, if we were to pick out a single vertex a ∈ A and a single

vertex b ∈ B, then d({a}, {b}) = 0 or 1. Thus we can only be reasonably certain
that the edge density will be very close to p for certain large subsets of A and B.
We use ε to specify an upper bound for the size of sets which do not necessarily
behave randomly.

Here are some examples of ε-regular pairs. The pair {A,B} in Figure 1 is ε-
regular for all ε, since d(A,B) = 1 and since for any subsets A′ ⊂ A and B′ ⊂ B,
we also have d(A′, B′) = 1. More generally, if the subgraph induced by A and B is
a complete bipartite graph, then {A,B} is ε-regular for all ε. Any pair {{a}, {b}}
of singletons is ε-regular for all ε, since the only nonempty subset of a singleton is
itself.

In Figure 2, the pair {A,B} is (1/3)-regular while the pair {C,D} is not. Let us
see why. We already observed that d(A,B) = 15/16 and d(C,D) = 5/8. To check
(1/3)-regularity, we need to look at subsets of size at least d(1/3)4e = 2. First we
show that {A,B} is (1/3)-regular. Suppose not. there are subsets A′ ⊂ A and B′ ⊂
B of size at least 2 with |d(A′, B′)− 15/16| > 1/3. Thus d(A′, B′) < 29/48 < 3/4.
But since the bipartite graph between A and B is complete except for one edge and
since |A′| ≥ 2 and |B′| ≥ 2, we also have d(A′, B′) ≥ 3/4, a contradiction.

Now we show that {C,D} is not (1/3)-regular. Let C ′ be the two vertices on the
top left and D′ be the two vertices on the bottom right, in the right side of Figure
2. Then d(C ′, D′) = 1/4, so |d(C ′, D′)−d(C,D)| = |1/4− 5/8| = 3/8 > 1/3, which
contradicts (1/3)-regularity.

Now we introduce the partitions we will use. In fact, usually we will not use
partitions, but rather collections of disjoint sets covering most, but not all, vertices
of a graph. The phrase “collection of disjoint sets” will be used with the implied
meaning of “almost partition”, or a partition of all of a graph except for a few
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Figure 3. A (2/3)-regular collection.

leftover vertices. We will only use the word “partition” when its precise meaning
is intended, that is to refer to a collection of disjoint sets which cover a set.

Given a large dense graph, we would like to group its vertices into components,
in such a way that “most” choices of two components form ε-regular pairs and such
that all components are the same size. We also would like to group most of the
vertices, although not necessarily all, into these components.

Definition 2.3. (ε-Regular Collection) A collection of pairwise disjoint vertex sets
A = {A1, . . . , Ak} is said to be ε-regular if

(1) (regular pairs) At most εk2 pairs {Ai, Aj} are not ε-regular, for 1 ≤ i <
j ≤ k.

(2) (equal size) |A1| = · · · = |Ak|.
(3) (almost a partition) |V \

⋃
A∈A | ≤ ε|V |.

An example of a (2/3)-regular collection is Figure 3. It is easy to check condition
(1) of (2/3)-regularity: that the pairs {A,B}, {B,C}, and {A,C} are (2/3)-regular.
As an example, we will prove that {A,C} is (2, 3)-regular. First observe that
d(A,C) = 2/9. To check ε-regularity, we must show that for any subsets A′ ⊂ A
and C ′ ⊂ C of size at least (2/3)(3) = 2, we have |d(A′, C ′)− 2/9| ≤ 2/3. Suppose
this were false. Then there exist A′ and C ′ such that d(A′, C ′) > 2/3 + 2/9 = 8/9.
But since d(A′, B′) is of the form i/9 for some i, we have d(A′, C ′) = 1, which
implies the graph between A′ and C ′ is a complete (2, 2) bipartite graph. This
contradicts the picture.

Now we check the two other conditions of (2/3)-regularity. Condition (2) is
satisfied because |A| = |B| = |C|, while condition (3) is satisfied because only 1
vertex is excluded from the collection, and 1 ≤ 6 = (2/3)32 = εk2.

Since every pair of singletons is ε-regular, every graph on n vertices trivially
admits an ε-regular collection of n disjoint singletons. Thus the importance of the
Regularity Lemma is in the claim that we can put an upper (and lower) bound on
the number of sets needed to form an ε-regular collection, independent of how large
a graph is.
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Theorem 2.4. (Regularity Lemma) For every ε > 0 and m ∈ N, there exists an
integer M = M(ε,m) such that every graph G on m or more vertices admits an
ε-regular collection A = {A1, . . . , Ak} with m ≤ k ≤M .

3. Proof of the Regularity Lemma

Our proof will follow [3]. The main idea is as follows. We define an index τ of
a pair of disjoint vertex sets A and B. We extend this definition so τ becomes a
function from the set {collections of disjoint subsets of V } −→ R. In Lemma 3.2
we show that τ is bounded above. Then we describe an algorithm that takes an ε-
irregular collection and produces a refinement with index increased by the positive
constant ε5(1−ε)2 (assuming ε < 1) depending only on ε. Thus by the boundedness
of τ , the algorithm will eventually result in an ε-regular collection.

The algorithm involves two steps. In Lemma 3.6 we show that if a pair of disjoint
sets A,B is not ε-regular, then there exist partitions of A of A and B of B such
that the index of {A,B} is greater than the index of {A,B} by at least ε4|A||B|

|V |2 . In
Lemma 3.11, we use the previous result to show that if a collection A of disjoint
vertex sets is not ε-regular, then a refinement exists with index increased by at least
the nonzero constant ε5(1− ε)2, depending only on ε.

We begin by defining the index τ , first for a pair of disjoint vertex sets; then
for a finite collection {Ai}i∈I of disjoint vertex sets; then for a pair of collections
{Ai}i∈I of disjoint sets in A and {Bj}j∈J of disjoint sets in B; and finally we define
an extended version τ∗ which will only be used in Lemma 3.11.

Definition 3.1. (Index τ)

(1) For disjoint A,B ⊂ V , let

τ(A,B) =
e(A,B)2

|A||B||V |2
.

(2) For a collection A = {Ai}i∈I of pairwise disjoint vertex sets, let

τ(A) =
∑
{i,j}⊂I

τ(Ai, Aj).

(3) Let A and B be disjoint vertex sets. For collections A = {Ai}i∈I of pairwise
disjoint subsets of A and B = {Bj}j∈J of pairwise disjoint subsets of B, let

τ(A,B) =
∑

i∈I,j∈J
τ(Ai, Bj).

(4) Furthermore, let

τ∗(A) = τ

(
A ∪

{
{x}
∣∣∣x ∈ V \ ⋃

A∈A
A

})
.

We now show that the index τ is bounded above.

Lemma 3.2. Let A = {Ai}i∈I be a collection of pairwise disjoint vertex sets. Then
τ(A) ≤ 1.



6 ARIEL HAFFTKA

Proof.

τ(A) =
∑
{i,j}⊂I

τ(Ai, Aj)

=
∑
{i,j}⊂I

d(Ai, Aj)2|Ai||Aj |
|V |2

≤ 1
|V |2

∑
{i,j}⊂I

|Ai||Aj |

≤ 1
|V |2

(∑
i∈I
|Ai|

)∑
j∈J
|Aj |


≤ 1
|V |2
|V ||V |

= 1.

�

The Cauchy-Schwarz inequality

(3.3)
n∑
i=1

α2
i

βi
≥

(
∑n
i αi)

2∑n
i=1 βi

.

for αi ∈ R and βi ∈ R+, will be used in Lemmas 3.4 and 3.6.

Lemma 3.4. (τ does not decrease when taking refinements.) Let A,B ⊂ V be
disjoint, A = {Ai}i∈I be a partition of A, and B = {Bj}j∈J be a partition of B.
Then

τ(A,B) ≥ τ(A,B).

Furthermore, if A′ is a partition of A that refines A, then

τ(A′) ≥ τ(A).

Proof. (1) First we show that τ(A,B) ≥ τ(A,B).
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τ(A,B) =
∑

i∈I,j∈J
τ(Ai, Bj)

=
∑

i∈I,j∈J

e(Ai, Bj)2

|Ai||Bj ||V |2

≥

(∑
i∈I,j∈J e(Ai, Bj)

)2

|V |2
∑
i∈I,j∈J |Ai||Bj |

, (by Cauchy-Schwarz 3.3) .

=
e(A,B)2

|V |2(
∑
i∈I |Ai|)(

∑
j∈J |Bj |)

,

(
since

∑
i∈I,j∈J

e(Ai, Bj) counts all the(3.5)

edges from A to B

)
.

=
e(A,B)2

|V |2|A||B|
=τ(A,B).

(2) The second claim follows from the first. For each X ∈ A, let

AX = {A′ ∈ A′|A′ ⊂ X},
so that AX is the partition of X induced by A′. Then

τ(A′) =
∑

{A′,A′′}⊂A′
τ(A′, A′′)

≥
∑

{X,X′}⊂A

∑
A′∈AX ,A′′∈AX′

τ(A′, A′′) (since A′ refines A) .

=
∑

{X,X′}⊂A

τ(AX ,AX′)

≥
∑

{X,X′}⊂A

τ(X,X ′), (by part 1) .

=τ(A).

�

The next lemma is the first of two crucial parts of our proof. We look at a single
pair of disjoint vertex sets {A,B} and show that if it is not ε-regular, then there
exist partitions of A and of B, each into two sets, with index increased by at least
ε4|A||B|
|V |2 . The main idea is the following: Since {A,B} is not ε-regular, there exist

subsets of A and of B that contradict the definition of ε-regularity. We use these
sets to construct partitions of A and B. The rest of the proof involves computation
and an application of Cauchy-Schwarz to prove the inequality.

Lemma 3.6. Let A,B ⊂ V be disjoint. If the pair {A,B} is not ε-regular, there
exist partitions A of A and B of B such that |A| ≤ 2, |B| ≤ 2, and

τ(A,B) ≥ τ(A,B) +
ε4|A||B|
|V |2

.
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Proof. 1. Constructing the partitions.
Since {A,B} is not ε-regular, there exist A1 ⊂ A and B1 ⊂ B such that |A1| ≥

ε|A|, |B1| ≥ ε|B|, and

(3.7) |d(A1, B1)− d(A,B)| ≥ ε.

Let A2 = A\A1 and B2 = B\B1, so that A := {A1, A2} is a partition of A and
B := {B1, B2} is a partition of B. At least one of A2 and B2 is nonempty, since
otherwise (3.7) would be false. Without loss of generality, assume A2 is nonempty.
Then we can write

A = {Ai}i∈I ; B = {Bj}j∈J ;

where I = {1, 2} and J = {1, 2} if B2 is nonempty and J = {1} if B2 is empty.
2. Proving the inequality.
We claim that τ(A,B) is sufficiently larger than τ(A,B). For brevity, let

λ :=d(A1, B1)− d(A,B);

a :=|A|; b := |B|, e := e(A,B);

ai :=|Ai|; bj := |Bj |; eij = e(Ai, Bj);
with b2 = 0 = ei2 if B2 is empty.

We are borrowing some notation from [3]. The goal is to express the difference
between τ(A,B) and τ(A,B) in terms of λ, and then the claim will follow from
|λ| ≥ ε.

Since by definition, λ = e11
a1b1
− e

ab , we have e11 = λa1b1 + ea1b1
ab . Thus we have

two simple identities.
First,

e2
11 =

(
λa1b1 +

ea1b1
ab

)2

= λ2a2
1b

2
1 +

2λea2
1b

2
1

ab
+
e2a2

1b
2
1

a2b2
.(3.8)

Second,

(e− e11)2 =

(
e

(
ab− a1b1

ab

)
− λa1b1

)2

= e2

(
ab− a1b1

ab

)2

− 2λa1b1e

(
ab− a1b1

ab

)
+ λ2a2

1b
2
1.(3.9)
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Putting it all together,

|V |2τ(A,B) =|V |2
∑

i∈I,j∈J
τ(Ai, Bj)

=
∑

i∈I,j∈J

e2
ij

aibj

=
e2

11

a1b1
+

∑
i∈I,j∈J,(i,j)6=(1,1)

e2
ij

aibj

≥ e2
11

a1b1
+

(∑
i∈I,j∈J,(i,j)6=(1,1) eij

)2

∑
i∈I,j∈J,(i,j)6=(1,1) aibj

, (by Cauchy-Schwarz 3.3) .

=
e2

11

a1b1
+

(e− e11)2

ab− a1b1
,

since a =
∑
i∈I

ai, b =
∑
j∈J

bj , and e =
∑

i∈I,j∈J
eij

 .

=
λ2a2

1b
2
1 + 2λea2

1b
2
1

ab + e2a2
1b

2
1

a2b2

a1b1
+
e2
(
ab−a1b1

ab

)2 − 2λa1b1e
(
ab−a1b1

ab

)
+ λ2a2

1b
2
1

ab− a1b1
,

(by 3.8 and 3.9) .

=

(
λ2a1b1 +

2λea1b1
ab

+
e2a1b1
a2b2

)
+
e2 (ab− a1b1)

a2b2
− 2λa1b1e

ab
+

λ2a2
1b

2
1

ab− a1b1

=λ2a1b1 +
e2ab

a2b2
+

λ2a2
1b

2
1

ab− a1b1

≥ε4ab+
e2

ab
,
(

since |λ| ≥ ε; a1 ≥ εa; b1 ≥ εb; and a1 < a [since A2 is

nonempty]
)
.

Thus τ(A,B) ≥ τ(A,B) + ε4|A||B|
|V |2 . �

The next lemma is the second crucial part of our proof. In it we show that if
a collection P = {A1, . . . , Ak} of pairwise disjoint, equal-sized vertex sets covering
most of V is not ε-regular, then there exists a refinement P ′ of P, covering almost
as much as P, with index increased by a positive constant depending only on ε. We
use the following broad definition of refinement.

Definition 3.10. (Refinement) Let P and P ′ be collections of pairwise disjoint
subsets of V . We say that P ′ refines P if each set in P ′ is a subset of some set in
P.

Trivially, refinement is a partial ordering on the set {collections of disjoint vertex
sets}, with P ′ ≤ P if P ′ refines P. In the proof of the following, we will use the
term maximal with respect to this partial ordering and a given condition.

Lemma 3.11. Let 0 < ε < 1; P := {A1, . . . , Ak} be a collection of pairwise disjoint
subsets of V ; |A1| = · · · = |Ak| := c; and |V \

⋃k
i=1Ai| ≤ ε|V |. If P is not ε-regular,

then there exists a collection P ′ = {A′1, . . . , A′l} of pairwise disjoint equal-sized
subsets of V refining P such that
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(1) (The collection P ′ covers almost as much as P):

|V \
l⋃
i=1

A′i| ≤ |V \
k⋃
i=1

Ai|+
|V |

2k+1
.

(2) (The collection P ′ has extended index τ∗ increased by a positive constant
depending only on ε):

τ∗(P ′) ≥ τ∗(P) + ε5(1− ε)2.

(3) (The collection P ′ is bounded): k ≤ l ≤ k4k

Proof. The proof consists of two parts: first constructing the partitions and second
proving the inequalities.

1. Constructing the partitions.
The main idea of the construction is as follows: Since the initial collection P is

not ε-regular, there exist more than εk2 ε-irregular pairs. We will apply Lemma 3.6
to obtain, for each such pair {Ai, Aj}, a partition Aij of Ai and a partition Aji of
Aj with index increased by at least ε4|A||B|

|V |2 .
The next step will be to use the partitions Aij to create the desired collection P ′.

First we will take the refinement A of P induced by all the Aij and Aji. Second
we will slice the sets of A into sets of equal size, to produce the desired collection
P ′. See Figure 4 for a diagram of the construction.

We begin the construction. For 1 ≤ i < j ≤ k, choose partitions Aij of Ai and
Aji of Aj as follows.

(1) If {Ai, Aj} is ε-regular, let Aij := {Ai} and Aji := {Aj}.
(2) If {Ai, Aj} is not ε-regular, then by Lemma 3.6 there exist partitions Aij

of Ai and Aji of Aj such that |Aij |, |Aji| ≤ 2 and

(3.12) τ(Aij ,Aji) ≥ τ(Ai, Aj) + ε4
c2

|V |2
.

For each i, let Ai be the unique partition of Ai induced by all partitions Aij
with j ∈ [1, k]\{i}. In terms of topology, Ai is the set of minimal nonempty open
sets, or “atoms,” in the finite topology generated on Ai by the sets in Aij with
j ∈ [1, k]\{i}. Thus each Ai contains at most 2k−1 sets, since each starting set Ai
has been cut into two pieces at most k − 1 times.

Let

(3.13) A :=
k⋃
i=1

Ai.

It follows from |Ai| ≤ 2k−1 that

k ≤ |A| ≤ k2k−1,

satisfying part (3) of the claim.
Now we further refine A to obtain a collection with all sets of the same size. Let

P ′ := {A′1, . . . A′l} be a maximal collection of disjoint sets of size d := b c
4k c that

refines A. A trivial example exists: Since each Ai covers the set Ai, |Ai| = c, and
Ai has at most 2k−1 sets, it follows that at least one component of Ai has size
at least c

2k−1 > d. Thus we could pick a single set of d vertices from at least one
component of each Ai. Since V is finite, a maximal collection certainly exists. We
claim P ′ has the desired properties.
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A1 A2 A3

A12 A13 A21 A23 A31 A32

A1 A2 A3

A1 A2 A3

P

P’

A

(i)

(ii)

(iii)

(iv)

Figure 4. The construction of P ′, for k = 3 and assuming all
pairs {Ai, Aj} start ε-irregular. (i) We begin with the collection
P. (ii) Using Lemma 3.6, each set is partitioned in two different
ways, with respect to the other sets. For example, the partition
A12 is a partition of A1 with respect to A2. (iii) The induced
partition Ai is taken on each set Ai. (iv) The sets are cut into
pieces of size d.

2. Proving the inequalities.
Since each component of P ′ is of size d = b c

4k c and is contained in at least one
set Ai of size c, we have k ≤ l ≤ k4k.
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Since P ′ excludes less than d vertices from each component of A,

|V \
l⋃
i=1

A′i| ≤|V \
k⋃
i=1

Ai|+ d|A|

≤|V \
k⋃
i=1

Ai|+
( c

4k
)
k2k−1

=|V \
k⋃
i=1

Ai|+
ck

2k+1

≤|V \
k⋃
i=1

Ai|+
|V |

2k+1
, (since P is a partition of |V | or fewer vertices into k sets of size c) .

We claim that τ∗(P ′) ≥ τ∗(P) + ε5(1− ε)2. Let

A′0 =
{
{x}|x ∈ V \

l⋃
i=1

A′i

}
; A0 =

{
{x}|x ∈ V \

k⋃
i=1

Ai

}
.

The goal is to use Lemma 3.4 to show that τ∗(P ′) ≥ τ∗(P). We must use τ∗, not
τ , for the following reason. Although the collection P ′ refines P, it may cover fewer
vertices than P. Lemma 3.4, however, only applies if P ′ refines P and covers the
same vertices. The extended index τ∗ avoids this problem by considering all the
vertices not covered by a partition to be singletons in the partition. By definition,
τ∗(P ′) = τ (P ′ ∪ A′0). Now we can make two observations: First, P ′ ∪ A′0 refines
A∪A0 (since P ′ refines A and each set in A′0 is a singleton). Second, P ′ ∪A′0 and
A ∪ A0 both cover all of V . Thus P ′ ∪ A′0 and A ∪ A0 satisfy the conditions of
Lemma 3.4.

τ∗(P ′) =τ (P ′ ∪ A′0)

≥τ (A ∪A0) ,
(

by Lemma 3.4, since P ′ ∪ A′0 refines A ∪A0 and by the above

discussion
)
.

=τ

(
k⋃
i=0

Ai

)
,by (3.13).
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=
∑

1≤i<j≤k

τ(Ai,Aj) +
k∑
i=0

τ(Ai) +
k∑
i=1

τ(A0,Ai),

≥
∑

1≤i<j≤k

τ(Aij ,Aji) + τ(A0) +
k∑
i=1

τ(A0, {Ai}),
(

by Lemma 3.4, since

in the first term Ai refines Aij and Aj refines Aji; in the second term the

summands are nonnegative; and in the third term Ai refines {Ai}
)
.

≥
∑

1≤i<j≤k

τ(Ai, Aj) + εk2 ε
4c2

|V |2
+ τ(A0) +

k∑
i=1

τ(A0, {Ai}),
(

since at least εk2

irregular pairs {Ai, Aj} satisfy (3.12)
)
.

=τ∗(P) + ε5
k2c2

|V |2
, (by definition of τ∗) .

≥τ∗(P) + ε5(1− ε)2,

(
since |V | − ck = |A0| ≤ ε|V | and 0 < ε < 1 imply

(
ck

|V |

)2

≥ (1− ε)2

)
.

�

The Regularity Lemma now follows by repeated application of Lemma 3.11 and
by the boundedness of τ∗.

Proof. (Proof of the Regularity Lemma)

Let ε > 0 and m ∈ N. Lemma 3.2 shows that τ , and consequently τ∗, is bounded
above by 1. Thus

b :=
⌈

1
e5(1− ε)2

⌉
is an upper bound on the number of times Lemma 3.11 can be applied before a
partition is forced to be ε-regular. Choose k0 ∈ N large enough that

2k0 ≥ b/ε.

Let φ : N −→ N be given by φ(x) = x4x. Let

M = max
{
φb(k0),

2k0

ε

}
,

where the exponent denotes iteration.
Let G be a graph on n ≥ m vertices. We aim to show that G admits an ε-regular

collection containing between m and M sets. If n ≤ M , G admits an ε-regular
collection into singletons. We can thus assume n > M .

Let A = {A1, . . . , Ak0} be a collection of disjoint subsets of V , each of size b nk0 c
and let As = {As1, . . . , Asks

} denote a result of iterating Lemma 3.11 s times.
We need to check that after each iteration, As either is ε-regular or satisfies the

hypotheses of Lemma 3.11. The sets of As are of the same size, so all there is to
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check is that As covers all but at most εn vertices. For 0 ≤ s ≤ b, we have

|V \
ks⋃
i=1

Asi | =|V \
k0⋃
i=1

Ai|+
sn

2k0+1
, (by Lemma 3.11) .

≤k0 +
bn

2k0+1
,
(
since A covers all but at most k0 vertices

and since s ≤ b
)
.

≤k0 +
εn

2
,

(
since 2k0 ≥ b

ε
implies

b

2k0
≤ ε
)
.

≤εn
2

+
εn

2
,

(
since n ≥M ≥ 2k0

ε
implies k0 ≤

εn

2

)
.

=εn.

Thus Lemma 3.11 can be iterated until A becomes ε-regular. The final ε-regular
collection will have at most φb(k) = M components. �

4. The Key Lemma

We have taken the Key Lemma, regularity graphs, and some notations from [3].
The Regularity Lemma allows one to approximate the structure of a large dense

graph G with a smaller graph R, called a regularity graph. The main idea of the
Key Lemma is that the regularity graph can be used to describe sugraphs of the
original graph.

Suppose for example that G is a large dense graph and that the Regularity
Lemma has provided an ε-regular collection A = {A1, . . . , Ak}. We let R be the
graph whose vertex set is A. We let {Ai, Aj} be an edge of R if the pair is ε-regular
and if the edge density d(Ai, Aj) is greater than some fixed choice of minimum
density d ∈ (0, 1]

(
we will make this precise in Definition 4.1

)
.

For each edge {Ai, Aj} of the regularity graph, we can put a lower bound on the
number of edges of G with one vertex in Ai and one vertex in Aj . In fact, we can
show that almost all vertices of Ai are connected to at least a d− ε fraction of the
vertices of Aj (Lemma 4.4). Thus, if for example the regularity graph contains a
triangle, it would be reasonable to hope that a triangle also exists in G.

Definition 4.1. (Regularity Graph) Let G be a graph, ε > 0, d ∈ (0, 1], and
A = {A1, . . . , Ak} be an ε-regular collection with |A1| = · · · = |Ak| := l. The
regularity graph of G with respect to A and with parameters ε, d, and l is the
graph R with vertex set V (R) := A and edge set

E(R) :=
{
{Ai, Aj}

∣∣∣{Ai, Aj} is an ε-regular pair of density d(Ai, Aj) ≥ d
}
.

The regularity graph can be generalized as follows.

Definition 4.2. (s-fold Regularity Graph) Let s ∈ N and let R be a regularity
graph, as above. The s-fold regularity graph Rs is obtained by replacing each vertex
Ai of R with an s-set Asi := {v1

i , . . . , v
s
i } of s distinct vertices and by replacing each

edge {Ai, Aj} with a complete bipartite graph between Asi and Asj .

The Key Lemma asserts that under the right conditions, the existence of a graph
in Rs implies its existence in G.
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R

A1 A2

A3

A1 A2

A3

Figure 5. An example of a regularity graph produced by an ε-
regular collection.

A4
1 A4

2

A4
3

R4

Figure 6. The 4-fold regularity graph produced by R from Figure 5.

Theorem 4.3. (The Key Lemma) For all d ∈ (0, 1] and any integer ∆ ≥ 0, there
exists ε0 > 0 such that the following holds: if G is any graph; s is any natural
number; Rs is any s-fold regularity graph of G with parameters ε ≤ ε0, d, and
l ≥ s/ε0, and H is any graph with maximum degree ∆(H) ≤ ∆; then

H ⊂ Rs =⇒ H ⊂ G.

Before proving the Key Lemma, we need the following trivial lemma.

Lemma 4.4. Let {A,B} be an ε-regular pair of density d; Y ⊂ B with |Y | ≥ ε|B|;
and

X = {x ∈ A|deg(x, Y ) < (d− ε)|Y |}.

Then |X| < ε|A|.
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Proof.

d(X,Y ) =
∑
x∈X

deg(x, Y )
|X| · |Y |

<
(d− ε)|X||Y |
|X||Y |

= d− ε.

Therefore |d(X,Y ) − d(A,B)| > ε. Since {A,B} is an ε-regular pair and since
|Y | ≥ ε, this implies |X| < ε|A|. �

Lemma 4.4 provides an upper bound on the number of vertices x ∈ A with less
than the expected number of neighbors in Y , provided Y is large enough. We will
use this fact repeatedly in our proof of the Key Lemma. It will allow us to embed H
into G by picking vertices one by one and, at each stage, using Lemma 4.4 to ensure
that such a choice is possible. The proof involves keeping track, at each stage of the
embedding, of which vertices in each component of the ε-regular collection are still
valid choices and of which vertices can no longer be used because they contradict
previously established adjacency relations. We will provide an algorithm and then
prove by induction that the algorithm works.

While our proof borrows the main ideas and notation from [3], the algorithm is
slightly based on that of [4] and the inductive part of the proof is largely original.

We will use the following notation in our proof:

Notation 4.5. (Neighbors) Let G = (V,E) be a graph. For v ∈ V , let N(v) be
the set of vertices adjacent to v.

Proof. (Proof of the Key Lemma.) Choose ε0 < d small such that

(4.6) (∆ + 1)ε0 ≤ (d− ε0)∆.

Assume that H is a subgraph of Rs and let V (H) := {u1, . . . , uh}. Each vertex
ui of H is contained in one of the s-sets Asj for some j ∈ [1, k]. This defines a
function σ : [1, h] −→ [1, k] satisfying

ui ∈ Asσ(i)

for each i ∈ [1, h].
We aim to embed H into G by associating each vertex ui of H with a unique

vertex vi in Aσ(i). The goal is to show that v1 ∈ Aσ(1), . . . , vh ∈ Aσ(h) can be
chosen such that

(1) (The vi’s are unique.) We have ui 6= uj =⇒ vi 6= vj .
(2) (Edges are preserved.) If {ui, uj} ∈ E(H), then {vi, vj} ∈ E(G).

We will pick v1, . . . , vh inductively. Immediately after having picked v1, . . . , vn,
we denote by Y ni the set of vertices in Aσ(i) that are still acceptable choices for vi.
At the start, Y 0

1 = Aσ(1), . . . , Y
0
h = Aσ(h), since there are no established adjacency

relations that might restrict the choices for v1, . . . , vh. At each stage, a vertex
vn is chosen in Y n−1

n and the sets Y nn , . . . , Y
n
h are created from the previous sets

Y n−1
n , . . . , Y n−1

h based on the adjacency relations introduced by the choice of vn.
The sets thus satisfy

Aσ(i) = Y 0
i ⊃ Y 1

i ⊃ · · · ⊃ Y i−1
i ⊃ Y ii = {vi},
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u1

u2

u3

u4u12

u5 u6

u7u9

u8u10

u11 Rs

H

As
σ(1) As

σ(3)

As
σ(9) As

σ(7)

As
σ(11) As

σ(4)

Figure 7. The graph H as a subgraph of Rs. In this example, R
is a 6-cycle and s = 3.

for each i ∈ [1, h].

The First Stage of the Algorithm
The first stage of the algorithm is to pick the vertex v1 ∈ Y 0

1 = Aσ(1) and to
compute the sets Y 1

1 , . . . Y
1
h . This stage is almost identical to the succeding stages.

We explain it in detail to give the reader a picture of how the general algorithm
will work, although this entire section is not really part of the proof. So the reader
may want to skip to the section titled Algorithm.

The first step is to pick v1 ∈ Aσ(1). We need to pick v1 in such a way that there
is a good chance of a successful embedding. This can be done by looking at the set
N(u1) of vertices in H adjacent to u1. There are at most ∆ such vertices. We label
these vertices N(u1) = {uη(1), . . . uη(d)}, with d := |N(u1)| ≤ ∆. Our goal can be
accomplishing by picking v1 ∈ Aσ(1) such that deg(v1, Aη(i)) is large for each uη(i)

adjacent to u1. Lemma 4.4 will ensure that such a choice is possible. This will be
made precise in the proof of proposition P (n) later in the proof.

Once v1 has been chosen, the next step is to update the sets Y 0
1 , . . . Y

0
h so that

they accurately reflect the remaining acceptable choices for the to be determined
vertices v2, . . . , vh. Since v1 has been chosen, the set Y 0

1 collapses to a single point,
and we have Y 1

1 = {v1}.
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Updating Y 0
2 , . . . , Y

0
h is slightly less trivial. In fact, we claim that

Y 1
i :=

{
Y 0
i ∩N(v1), if {ui, u1} ∈ E(H)
Y 0
i , else

for i ∈ [2, h]. To prove this, consider the two cases. First, assume that {ui, u1} ∈
E(H). Then for any vertex v ∈ Y 0

i we have:

v is an acceptable choice for vi ⇐⇒ {v1, v} ∈ E(H),
(

since {ui, u1} ∈ E(H)
)

⇐⇒ v ∈ N(v1).

For the second case, if {ui, u1} 6∈ E(H), then the choice of v1 has created no new
restrictions on the acceptable choices for vi, so Y 1

i = Y 0
i , as claimed. The general

algorithm is as follows:

Algorithm. For n = 1, 2, . . . , h− 1,
(1) Pick vn ∈ Y n−1

n such that vn 6∈ {v1, . . . , vn−1} and

deg(vn, Y n−1
i ) ≥ (d− ε)|Y n−1

i |

holds for all i ∈ [n+ 1, h] with {ui, un} ∈ E(H).
(2) Set

Y ni :=
{
Y n−1
i ∩N(vn), if {ui, un} ∈ E(H)
Y n−1
i , else

for all i ∈ [n+ 1, h].
To prove that the algorithm works, we shall induct on the following statement.

Proposition P (n)
(1) Vertices v1, . . . , vn have been chosen according to the algorithm.
(2) If n < h, then for each i ∈ [n+ 1, h],

|Y ni | ≥ (d− ε)δ(n,i) l,

where
δ(n, i) := deg

(
ui, {u1, . . . , un}

)
is the number of edges in H with one vertex equal to ui and another vertex in the
set {u1, . . . , un} and where δ(0, i) := 0.

Proof of the base case.
Let n = 0. Then part (1) of P (0) is true, since 0 vertices have been chosen. Part

(2) is true because

|Y 0
i | = |Aσ(i)| = l = (d− ε)0l = (d− ε)δ(0,i) l.

Proof of the inductive step.
Let n ∈ [1, h] and assume P (n− 1).
First we prove part (1) of P (n). The goal is to show that Y n−1

i is not too small,
and then Lemma 4.4 will show that there are at least s acceptable choices for vn.
Then we use the Pigeonhole Principle to show that at least one of these s choices
is distinct from v1, . . . , vn−1.
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First we claim that for each i ∈ [n, h], the set Y n−1
i is not too small.

|Y n−1
i | ≥ (d− ε)δ(n,i) l, ( by inductive hypothesis.)

≥ (d− ε)∆l,
(
since δ(n,i) ≤ ∆.

)
≥ (∆ + 1)ε0l, ( by assumption.)
= ∆ε0l + ε0l

≥ ∆εl + s, ( since ε ≤ ε0 and l ≥ s/ε0) .(4.7)

Now we can apply Lemma 4.4. For each i ∈ [n+1, h] such that {ui, un} ∈ E(H),
the sets

A := Aσ(n); B := Aσ(i);

form an ε-regular pair. And letting Y := Y n−1
i ⊂ B, we have

|Y | = |Y n−1
i | ≥ εl = ε|B|, by (4.7) and since ∆ ≥ 1.

Thus by Lemma 4.4,

|{v ∈ Aσ(n)|deg(v, Y ) < (d− ε)|Y |}| < εl.

Applying the above result to the at most ∆ values of i for which ui is adjacent to un,
it follows that at most ∆εl elements v ∈ Aσ(n) are such that for some i ∈ [n+ 1, h],
both deg(v, Y n−1

i ) < (d− ε)|Y n−1
i | and {ui, un} ∈ E(H). Thus there are at least

|Y n−1
n | −∆εl ≥ ∆εl + s−∆εl,

(
by 4.7.

)
= s.(4.8)

acceptable choices for vn.
Now we must check that of the at least s acceptable choices for vn in Y n−1

n

given by (4.8), at least one such choice will be such that vn is distinct from all the
previously chosen vertices v1, . . . , vn−1. Suppose indirectly that all of the at least
s acceptable choices for vn are equal to vi for some i ∈ [1, n− 1]. Let

I =
{
i ∈ [1, n− 1]

∣∣∣vi is one of the at least s acceptable choices for vn in Y n−1
n

}
.

Then by our assumption |I| ≥ s. By the inductive hypothesis and since I ⊂ [1, n−1],
we have successfully embedded ui 7→ vi for all i ∈ I. Since {vi}i∈I ⊂ Y n−1

n ⊂ Aσ(n),
we have {ui}i∈I ⊂ Asσ(n). Since we also know un ∈ Asσ(n) (as given), we have

(4.9) {ui}i∈I ∪ {un} ⊂ Asσ(n),

It is also given that u1, . . . , un are pairwise distinct, thus

(4.10) |{ui}i∈I ∪ {un}| = |I|+ 1 ≥ s+ 1.

Lines (4.9) and (4.10) contradict the fact that |Asσ(n)| = s, by definition. We thus
conclude that a distinct and acceptable choice for vn exists in Y n−1

n ⊂ Aσ(n).
Next we prove part (2) of P (n). Since the vertex vn has been chosen, part (2) of

the algorithm defines the sets Y ni for i ∈ [n+1, h]. We assert that |Y ni | ≥ (d−ε)δ(n,i)

for each i ∈ [n+ 1, h]. Fix i. To prove the inequality, let

δ :=
{

1, if {ui, un} ∈ E(H)
0, else.
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to indicate whether or not {ui, un} is an edge. Then

|Y ni | ≥ (d− ε)δ|Y n−1
i |, (by the choice of vn and Y ni in the algorithm).

≥ (d− ε)δ(d− ε)δ(n−1,i) , (by inductive hypothesis).

= (d− ε)δ(n−1,i)+δ

= (d− ε)δ(n,i) ,
(
since δ(n,i) = δ(n− 1, i) + δ, trivially

)
.

This proves part (2) of P (n). P (h) follows by induction.

Finally, we observe that P (h) implies the claim. Part (1) of P (h) asserts that
vertices v1, . . . , vh have been chosen according to the algorithm. Part (2) of the
algorithm ensures that our embedding ui 7→ vi is injective and edge-preserving.
Thus v1, . . . , vh is a copy of H in G.

�

5. Acknowledgements

I thank Asaf Hadari and Mike Shulman for reading my work and providing many
corrections.

References
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