A PROOF OF THE GAUSS-BONNET THEOREM

AARON HALPER

Abstract

In this paper I will provide a proof of the Gauss-Bonnet Theorem. I will start by briefly explaining regular surfaces and move on to the first and second fundamental forms. I will then discuss Gaussian curvature and geodesics. Finally, I will move on to the theorem itself, giving both a local and a global version of the Gauss-Bonnet theorem. For this paper, I will assume that the reader has a knowledge of point-set topology, analysis in \mathbb{R}^{n}, and linear algebra.

Contents

1. Introduction 1
2. Regular Surfaces $\quad 1$
3. The First Fundamental Form 3
4. Orientation 4
5. The Gauss Map 4
6. The Second Fundamental Form 6
7. geodesics 6
8. The Local Gauss-Bonnet Theorem 9

1. Introduction

The Gauss-Bonnet theorem relates the sum of the interior angles of a triangle with the its Gaussian curvature, an intrinsic quantity of the geometry of the space that the triangle is drawn on. The theorem has numerous applications within and without its native field of differential geometry. In order to understand the GaussBonnet theorem we must first understand some basic differential geometry. To this end, we start with the most basic idea in differential geometry, a regular surface.

2. Regular Surfaces

Definition 2.1. A subset $S \subset \mathbb{R}^{3}$ is a regular surface if for every point $p \in S$ there is a neighborhood $V \subset \mathbb{R}^{3}$ and a function f which maps an open set $U \subset \mathbb{R}^{2}$ onto $V \cap S \subset \mathbb{R}^{3}$ which has the following properties:
(1) f is differentiable.
(2) f is a homeomorphism.
(3) For every $q \in U$, the differential $d f_{q}: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{3}$ is one-to-one.

Throughout this paper we denote the partial derivative of f with respect to u as $f_{u}=\frac{\partial f}{\partial u}$. Note that f is a vector-value function.

[^0]We will discuss (3), often called the regularity condition, once we have the following definition.
Definition 2.2. The function f defined as above is called a parametrization in a neighborhood of p. The neighborhood $V \cap S$ of $p \in S$ is called a coordinate neighborhood.

Condition (3) is more familiar if we compute the matrix of the linear map $d f_{q}$ in the standard, or canonical bases $e_{1}=(1,0), e_{2}=(0,1)$ of \mathbb{R}^{2} with coordinates (u, v) and $f_{1}=(1,0,0), f_{2}=(0,1,0), f_{3}=(0,0,1)$ of \mathbb{R}^{3}, with coordinates (x, y, z).

Let $q=\left(u_{0}, v_{0}\right)$. Then e_{1} is tangent to the curve $u \longrightarrow\left(u, v_{0}\right)$ where the image of this curve under f becomes the curve

$$
u \longrightarrow\left(x\left(u, v_{0}\right), y\left(u, v_{0}\right), z\left(u, v_{0}\right)\right) .
$$

This image curve lies on our surface S and at $f(q)$ has the tangent vector

$$
\left(\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}, \frac{\partial z}{\partial u}\right)=\frac{\partial x}{\partial u} .
$$

Here we compute the derivatives at $\left(u_{0}, v_{0}\right)$ and a vector is indicated by its components in the basis f_{1}, f_{2}, f_{3}. By the definition of differential,

$$
d f_{q}\left(e_{1}\right)=\left(\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}, \frac{\partial z}{\partial u}\right)=\frac{\partial x}{\partial u}
$$

Similarly, we find

$$
d f_{q}\left(e_{2}\right)=\left(\frac{\partial x}{\partial v}, \frac{\partial y}{\partial v}, \frac{\partial z}{\partial v}\right)=\frac{\partial x}{\partial v}
$$

Combining this into a single matrix, we see that

$$
d f_{q}=\left(\begin{array}{cc}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \\
\frac{\partial z}{\partial u} & \frac{\partial z}{\partial v}
\end{array}\right)
$$

Condition (3) is equivalent to requiring that the two column vectors of the above matrix be linearly independent, or that the vector product

$$
\frac{\partial x}{\partial u} \times \frac{\partial x}{\partial v} \neq 0
$$

or finally that one of the Jacobian determinants

$$
\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{cc}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|, \frac{\partial(y, z)}{\partial(u, v)}, \frac{\partial(x, z)}{\partial(u, v)}
$$

is non-zero.
We defined surfaces as subsets of \mathbb{R}^{3}. We do this by covering a surface S in \mathbb{R}^{3} with embeddings of open sets in \mathbb{R}^{2} or charts. Condition (1) is very natural if we are
to do differential geometry on S. Condition (2) makes sure charts only overlap in 2-dimensional subsets, so that the tangent plane at a point is unique. We will now show that condition (3) guarantees that the set of tangent vectors to parametrized curves of S at a point p makes up a plane.

Definition 2.3. A tangent vector to S at a point $p \in S$ is the tangent vector $\alpha^{\prime}(0)$ of a differentiable parametrized curve $\alpha:(-\varepsilon, \varepsilon) \longrightarrow S$ with $\alpha(0)=p$.

Proposition 2.4. Let $f: U \longrightarrow \boldsymbol{R}^{3} \cap S$ be a parametrization of a regular surface S and let $q \in U$. The vector subspace of dimension 2,

$$
d f_{q}\left(\mathbb{R}^{2}\right) \subset \mathbb{R}^{3}
$$

coincides with the set of tangent vectors to S at $f(q)$.
We will not prove this proposition, but we will note that the plane $d f_{q}\left(\mathbb{R}^{2}\right)$, which passes through $f(q)=p$, does not depend on the parametrization f. We will denote this plane the tangent plane to S at p and write it as $T_{p}(S)$. It is easy to see that f_{u} and f_{v} span $T_{p} S$.

3. The First Fundamental Form

Besides differentiability, surfaces carry further geometric structures, the most important of which is called the first fundamental form.
Definition 3.1. By restricting The natural inner product $\langle\cdot, \cdot\rangle$ on \mathbb{R}^{3} to each tangent plane $T_{p}(S)$ of a regular surface S, we get an inner product on $T_{p}(S)$. We call this inner product on $T_{p} S$ the first fundamental form and denote it by I_{p}. So $I_{p}\langle v, w\rangle=\langle v, w\rangle$.

Thus the first fundamental form tells us how the surface S inherits the natural inner product of \mathbb{R}^{3}. We want to write it in terms of $\left\{f_{u}, f_{v}\right\}$, a basis associated to a parametrization $f(u, v)$ at p. To do this, we remember that a tangent vector $w \in$ $T_{p}(s)$ is the tangent vector to a parametrized curve $\alpha(t)=f(u(t), v(t)), t \in(-\varepsilon, \varepsilon)$ with $p=\alpha(0)=f\left(u_{0}, v_{0}\right)$. Then, keeping in mind that u^{\prime} and v^{\prime} are the respective derivatives of u and v,

$$
\begin{aligned}
I\left\langle\alpha^{\prime}(0), \alpha^{\prime}(0)\right\rangle & =\left\langle f_{u} u^{\prime}+f_{v} v^{\prime}, f_{u} u^{\prime}+f_{v} v^{\prime}\right\rangle \\
& =\left\langle f_{u}, f_{u}\right\rangle\left(u^{\prime}\right)^{2}+2\left\langle f_{u}, f_{v}\right\rangle u^{\prime} v^{\prime}+\left\langle f_{v}, f_{v}\right\rangle\left(v^{\prime}\right) 2 \\
& =E\left(u^{\prime}\right)^{2}+2 F u^{\prime} v^{\prime}+G\left(v^{\prime}\right)^{2}
\end{aligned}
$$

where we define

$$
\begin{align*}
E\left(u_{0}, v_{0}\right) & =\left\langle f_{u}, f_{u}\right\rangle \tag{3.2}\\
F\left(u_{0}, v_{0}\right) & =\left\langle f_{u}, f_{v}\right\rangle \tag{3.3}\\
G\left(u_{0}, v_{0}\right) & =\left\langle f_{v}, f_{v}\right\rangle \tag{3.4}
\end{align*}
$$

To round off the section, we give the following
Definition 3.5. A parametrization is orthogonal if $F(u, v)=0$.

4. Orientation

Definition 4.1. A regular surface S is orientable if it is possible to cover S with a family of coordinate neighborhoods so that if a point $p \in S$ is in two neighborhoods of this family, then the change of coordinates has positive Jacobian at p. The choice of family that satisfies this condition is called an orientation of S, and S is called oriented. If it is not possible to find such a family then S is called nonorientable.

Given a parametrization $f(u, v)$ at p, we have a definite choice of a unit normal vector N at p by the rule

$$
N(p)=\frac{f_{u} \times f_{v}}{\left|f_{u} \times f_{v}\right|}(p)
$$

(It may worth to say that the normal space is 1-dimensional.)
Taking a second parametrization $f^{\prime}\left(u^{\prime}, v^{\prime}\right)$ at p, we see that

$$
f_{u}^{\prime} \times f_{v}^{\prime}=\left(f_{u} \times f_{v}\right) \frac{\partial(u, v)}{\partial\left(u^{\prime}, v^{\prime}\right)}
$$

where $\frac{\partial(u, v)}{\partial\left(u^{\prime}, v^{\prime}\right)}$ is the Jacobian of the coordinate change. From this we can see that N will not change its direction if the Jacobian is positive, and change its direction if the Jacobian is negative. So we can see from this that a surface is orientable if N keeps its direction no matter how it is moved around the surface.

Example 4.2. On the Möbius strip, we cannot find a differentiable field of unit normal vectors that are defined on the entire surface. Intuitively, we can see this by taking a vector field N around the middle circle of the figure and noticing that it would come back as $-N$, which contradicts the continuity of N. This is because we cannot decide which side of the surface we are on since we can go continuously to the other side without breaking the surface.

5. The Gauss Map

We denote S^{2} as the unit sphere, i.e. $S^{2}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=1\right\}$.
Definition 5.1. Let $S \subset \mathbb{R}^{3}$ be a surface with an orientation N. The Gauss map is defined to be $N: S \longrightarrow S^{2} \subset \mathbb{R}^{3}$ is defined to be $p \longmapsto N(p)$.

It is easy to see that the Gauss map is differentiable. The differential $d N_{p}$ is a linear map from $T_{p}(S)$ to $T_{N(p)}\left(S^{2}\right)$. We can identify $T_{p} S$ and $T_{N(p)} S$ since they are parallel planes, hence $d N_{p}$ is a linear map on $T_{p}(S)$. We now are ready for the following

Proposition 5.2. The differential $d N_{p}: T_{p}(S) \longrightarrow T_{p} S$ of the Gauss-map is selfadjoint.

Proof. We need to show that $\left\langle d N_{p}\left(w_{1}\right), w_{2}\right\rangle=\left\langle w_{1}, d N_{p}\left(w_{2}\right)\right\rangle$ for a basis $\left\{w_{1}, w_{2}\right\}$ of $T_{p}(S)$. To do this, let $f(u, v)$ be a parametrization of S at p and $\left\{f_{u}, f_{v}\right\}$ the associated basis of $T_{p}(S)$. If $\alpha(t)=f(u(t), v(t))$ is a parametrized curve in S, with $\alpha(0)=p$, we get

$$
\begin{aligned}
d N_{p}\left(\alpha^{\prime}(0)\right) & =d N_{p}\left(f_{u} u^{\prime}(0)+f_{v} v^{\prime}(0)\right. \\
& =\left.\frac{d}{d t} N(u(t), v(t))\right|_{t=0} \\
& =N_{u} u^{\prime}(0)+N_{v} v^{\prime}(0)
\end{aligned}
$$

in particular, $d N_{p}\left(f_{u}\right)=N_{u}$ and $d N_{p}\left(f_{v}\right)=N_{u}$. Thus, in order to prove that $d N_{p}$ is self-adjoint, we only need to show that

$$
\left\langle N_{u}, f_{v}\right\rangle=\left\langle f_{u}, N_{v}\right\rangle .
$$

We can see this by taking the derivatives of $\left\langle N, f_{u}\right\rangle=0$ and $\left\langle N, f_{v}\right\rangle=0$, relative to v and u respectively, and get

$$
\begin{aligned}
\left\langle N_{v}, f_{u}\right\rangle+\left\langle N, f_{u v}\right\rangle & =0 \\
\left\langle N_{u}, f_{v}\right\rangle+\left\langle N, f_{v u}\right\rangle & =0
\end{aligned}
$$

Hence,

$$
\left\langle N_{u}, f_{v}\right\rangle=-\left\langle N, f_{u v}\right\rangle=\left\langle N_{v}, f_{u}\right\rangle
$$

For a parametrization $f(u, v)$ at a point $p \in S$ with $\alpha(t)=f(u(t), v(t))$ a parametrized curve on S, with $\alpha(0)=p$, the tangent vector to $\alpha(t)$ at p is $\alpha^{\prime}=f_{u} u^{\prime}+f_{v} v^{\prime}$, and

$$
d N\left(\alpha^{\prime}\right)=N^{\prime}(u(t), v(t))=N_{u} u^{\prime}+N_{v} v^{\prime}
$$

But N_{u} and N_{v} belong to $T_{p}(S)$, so we can write them in terms of our parameters

$$
\begin{align*}
N_{u} & =a_{11} f_{u}+a_{21} f_{v} \tag{5.3}\\
N_{v} & =a_{12} f_{u}+a_{22} f_{v} \tag{5.4}
\end{align*}
$$

hence

$$
d N\left(\alpha^{\prime}\right)=\left(a_{11} u^{\prime}+a_{12} v^{\prime}\right) f_{u}+\left(a_{21} u^{\prime}+a_{22} v^{\prime}\right) f_{v}
$$

which gives us

$$
d N\binom{u^{\prime}}{v^{\prime}}=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)\binom{u^{\prime}}{v^{\prime}}
$$

Thus, in the basis $\left\{f_{u}, f_{v}\right\}, d N$ is given by the matrix $\left(a_{i j}\right) ; i, j=1,2$
Definition 5.5. The determinant of $d N_{p}$ is the Gaussian curvature, K, of S at a point p.

6. The Second Fundamental Form

Now that we have the self-adjoint, linear map $d N_{p}$, we can associate with it a quadratic form which we imaginatively call the second fundamental form.

Definition 6.1. The quadratic form $I I_{p}$ is defined in $T_{p}(S)$ by $I I_{p}(v)=-\left\langle d N_{p}(v), v\right\rangle$, and is called the second fundamental form of S at p.

Just like with the first fundamental form, we now proceed to write the second fundamental form in the basis $\left\{f_{u}, f_{v}\right\}$. Now

$$
\begin{aligned}
I I_{p}\left(\alpha^{\prime}\right) & =-\left\langle d N\left(\alpha^{\prime}\right), \alpha^{\prime}\right\rangle \\
& =-\left\langle N_{u} u^{\prime}+N_{v} v^{\prime}, f_{u} u^{\prime}+f_{v}, v^{\prime}\right\rangle \\
& =e\left(u^{\prime}\right)^{2}+2 f u^{\prime} v^{\prime}+g\left(v^{\prime}\right)^{2},
\end{aligned}
$$

where

$$
\begin{align*}
e & =-\left\langle N_{u}, f_{u}\right\rangle=\left\langle N, f_{u u}\right\rangle \tag{6.2}\\
f & =-\left\langle N_{v}, f_{u}\right\rangle=\left\langle N, f_{u v}\right\rangle=-\left\langle N_{u}, f_{v}\right\rangle \tag{6.3}\\
g & =-\left\langle N_{v}, f_{v}\right\rangle=\left\langle N, f_{v v}\right\rangle \tag{6.4}
\end{align*}
$$

since $\left\langle N, f_{u}\right\rangle=\left\langle N, f_{v}\right\rangle=0$. We can use the coefficients e, f, g to find the values of $a_{i j}$, giving us

$$
\begin{align*}
-f & =\left\langle N_{u}, f_{v}\right\rangle=a_{11} F+a_{21} G \tag{6.5}\\
-f & =\left\langle N_{v}, f_{u}\right\rangle=a_{12} E+a_{22} F, \tag{6.6}\\
-e & =\left\langle N_{u}, f_{u}\right\rangle=a_{11} E+a_{21} F, \tag{6.7}\\
-g & =\left\langle N_{u}, f_{u}\right\rangle=a_{12} F+a_{22} G . \tag{6.8}
\end{align*}
$$

Or in matrix form,

$$
-\left(\begin{array}{ll}
e & f \\
f & g
\end{array}\right)=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)\left(\begin{array}{ll}
E & F \\
F & G
\end{array}\right)
$$

From this it is clear that

$$
K=\operatorname{det}\left(a_{i j}\right)=\frac{e g-f^{2}}{E G-F^{2}}
$$

7. GEODESICS

Definition 7.1. Given a differentiable vector field w in an open $U \subset S$ with $p \in U$, take a $y \in T_{p}(S)$. Consider the parametrized curve $\alpha:(-\varepsilon, \varepsilon) \longrightarrow U$, with $\alpha(0)=p, \alpha^{\prime}(0)=y$, and let $g(t), t \in(-\varepsilon, \varepsilon)$, be the restriction of of the vector field g to the curve α. Then projecting $\frac{d w}{d t}(0)$ onto $T_{p}(S)$ forms the covariant derivative at p of the vector field w relative to the vector y, which we denote by $\frac{D w}{d t}(0)$ or $\left(D_{y} w\right)(p)$.

The covariant derivative is the vector field analogue of the usual derivative in the plane. It is easy to verify that the covariant derivative does not depend on the choice of α.

Definition 7.2. A vector field along a parametrized curve $\alpha \longrightarrow S$ is parallel if $\frac{D w}{d t}=0$ for all $t \in I$.
Definition 7.3. A nonconstant, parametrized curve $\gamma: I \longrightarrow S$ is geodesic at $t \in I$ if the field of the tangent vectors $\gamma^{\prime}(t)$ is parallel along γ at t, i.e. $\frac{D \gamma^{\prime}(t)}{d t}=0 . \gamma$ is called a parametrized geodesic if γ is geodesics for every $t \in I$.

Definition 7.4. Let w be a differentiable field of unit vectors along a parametrized curve $\alpha: I \longrightarrow S$ on an oriented surface S. Since $w(t), t \in I$, is a unit vector field, $\frac{d w}{d t}(t)$ is normal to $w(t)$, hence

$$
\frac{D w}{d t}=\lambda(N \times w(t))
$$

The real number $\lambda=\lambda(t)$, denoted by $\left[\frac{D w}{d t}\right]$, is called the algebraic value of the covariant derivative of w at t.
Definition 7.5. Let C be an oriented regular curve contained on an oriented surface S, and let $\alpha(s)$ be a parametrization of C, in an neighborhood of $p \in S$, by the arc length s. The algebraic value of the covariant derivative

$$
\left[\frac{D \alpha^{\prime}(s)}{d s}\right]=k_{g}
$$

of $\alpha^{\prime}(s)$ at p is called the geodesic curvature of C at p.
Lemma 7.6. Let a, b be differentiable functions in I with $a^{2}+b^{2}=1$ and φ_{0} be such that $a\left(t_{0}\right)=\cos \varphi_{0}$ and $b\left(t_{0}\right)=\sin \varphi_{0}$. Then the function φ defined by

$$
\varphi=\varphi_{0}+\int_{t_{0}}^{t}\left(a b^{\prime}-b a^{\prime}\right) d t
$$

has the properties that $\cos \varphi(t)=a(t), \sin \varphi(t)=b(t)$ for $t \in I$, and $\varphi\left(t_{0}\right)=\varphi_{0}$. Proof. To prove this we need only show that

$$
(a-\cos \varphi)^{2}+(b-\sin \varphi)^{2}=2-2(a \cos \varphi+b \sin \varphi)
$$

is zero everywhere. Or in other words, that

$$
A=a \cos \varphi+b \sin \varphi=1
$$

By using the fact that $a a^{\prime}=-b b^{\prime}$ and the definition of φ, we get

$$
\begin{aligned}
A^{\prime} & =-a(\sin \varphi) \varphi^{\prime}+b(\cos \varphi) \varphi^{\prime}+a^{\prime} \cos \varphi+b^{\prime} \sin \varphi \\
& =-b^{\prime}(\sin \varphi)\left(a^{2}+b^{2}\right)-a^{\prime}(\cos \varphi)\left(a^{2}+b^{2}\right)+a^{\prime} \cos \varphi+b^{\prime} \sin \varphi \\
& =0
\end{aligned}
$$

This tells us that $A(t)=$ constant, and since $A\left(t_{0}\right)=1$, we have proved the lemma.

Lemma 7.7. Let v, w be differentiable vector fields along the curve $\alpha: I \longrightarrow S$, with $|w(t)|=|v(t)|=1, t \in I$. Then

$$
\left[\frac{D w}{d t}\right]-\left[\frac{D v}{d t}\right]=\left[\frac{d \varphi}{d t}\right]
$$

where φ is the function given in the previous lemma.

Proof. Take the vectors $\bar{v}=N \times v$ and $\bar{w}=N \times w$. Then
(7.8) $\quad w=(\cos \varphi) v+(\sin \varphi) \bar{v}$,
(7.9) $\quad \bar{w}=N \times w=(\cos \varphi) N \times v+(\sin \varphi) N \times \bar{v}=(\cos \varphi) \bar{v}-(\sin \varphi) v$.

Differentiating (7.8) we get

$$
w^{\prime}=-(\sin \varphi) \varphi^{\prime} v+(\cos \varphi) v^{\prime}+(\cos \varphi) \varphi^{\prime} \bar{v}+(\sin \varphi) \bar{v}^{\prime}
$$

Taking the inner product of this with (7.9) and using the fact that $\left\langle v, v^{\prime}\right\rangle=$ $\langle v, \bar{v}\rangle=0$ we get

$$
\begin{aligned}
\left\langle w^{\prime}, \bar{w}\right\rangle & =\left(\sin ^{2} \varphi\right) \varphi^{\prime}+\left(\cos ^{2} \varphi\right)\left\langle v^{\prime}, \bar{v}\right\rangle+\left(\cos ^{2} \varphi\right) \varphi-\left(\sin ^{2} \varphi\right)\left\langle v^{\prime}, \bar{v}\right\rangle \\
& =\varphi^{\prime}+\left(\cos ^{2} \varphi\right)\left\langle v^{\prime}, \bar{v}\right\rangle-\left(\sin ^{2} \varphi\right)\left\langle v^{\prime}, \bar{v}\right\rangle
\end{aligned}
$$

but $\langle v, \bar{v}\rangle=-\left\langle v, \bar{v}^{\prime}\right\rangle$, so

$$
\left\langle w^{\prime}, \bar{w}\right\rangle=\varphi^{\prime}+\left(\cos ^{2} \varphi+\sin ^{2} \varphi\right)\left\langle v, \bar{v}^{\prime}=\varphi^{\prime}+\left\langle v, \bar{v}^{\prime}\right\rangle\right.
$$

Thus,

$$
\left[\frac{D w}{d t}\right]=\left[\frac{D w}{d t}\right]\langle N \times w, \bar{w}\rangle=\left\langle\frac{d w}{d t}, \bar{w}\right\rangle=\left\langle w^{\prime}, \bar{w}\right\rangle=\varphi^{\prime}+\left\langle v^{\prime}, \bar{v}\right\rangle=\frac{d \varphi}{d t}+\left[\frac{D v}{d v}\right]
$$

which proves the lemma.
Proposition 7.10. Let $f(u, v)$ be an orthogonal parametrization of a neighborhood, and $w(t)$ a differentiable field of unit vectors along the curve $f(u(t), v(t))$. Then

$$
\left[\frac{D w}{d t}\right]=\frac{1}{2 \sqrt{E G}}\left(G_{u} \frac{d v}{d t}-E_{v} \frac{d u}{d t}\right)+\frac{d \varphi}{d t}
$$

where φ_{0} is the angle from from f_{u} to w in the given orientation.
Proof. Let $e_{1}=\frac{f_{u}}{\sqrt{E}}, e_{2}=\frac{f_{v}}{\sqrt{G}}$ be the unit vectors tangent to the coordinate curves. Then $e_{1} \times e_{2}=N$, and by lemma 7.7 we have

$$
\begin{equation*}
\left[\frac{D w}{d t}\right]=\left[\frac{d \varphi}{d t}\right]+\left[\frac{D v}{d t}\right] \tag{7.11}
\end{equation*}
$$

where $e_{1}(u(t), v(t))$ is the restriction of the field e_{1} to the curve $f(u(t), v(t))$. We know that

$$
\frac{D e_{1}}{d t}=\left\langle\frac{d e_{1}}{d t}, N \times e_{1}\right\rangle=\left\langle\frac{d e_{1}}{d t}, e_{2}\right\rangle=\left\langle\left(e_{1}\right)_{u}, e_{2}\right\rangle \frac{d u}{d t}+\left\langle\left(e_{1}\right)_{v}, e_{2}\right\rangle \frac{d v}{d t}
$$

But since $F=0$, we have $\left\langle f_{u u}, f_{v}\right\rangle=-\frac{1}{2} E_{v}$, giving us

$$
\left\langle\left(e_{1}\right)_{u}, e_{2}\right\rangle=\left\langle\left(\frac{f_{u}}{\sqrt{E}}\right)_{u}, \frac{f_{v}}{\sqrt{G}}\right\rangle=\frac{1}{2} \frac{E_{v}}{\sqrt{E G}}
$$

Similarly,

$$
\left\langle\left(e_{1}\right)_{v}, e_{2}\right\rangle=\frac{1}{2} \frac{G_{u}}{\sqrt{E G}}
$$

Putting all of this back into (7.11), we get

$$
\left[\frac{D w}{d t}\right]=\frac{1}{2 \sqrt{E G}}\left(G_{u} \frac{d v}{d t}-E_{v} \frac{d u}{d t}\right)+\frac{d \varphi}{d t}
$$

exactly what we wanted.

8. The Local Gauss-Bonnet Theorem

Theorem 8.1 (Local Gauss-Bonnet). Given an orthogonal parametrization f : $U \longrightarrow S$ of an oriented surface S, where $U \subset \mathbb{R}^{2}$ is homeomorphic to an open disk and f is compatible with the orientation of S, let $R \subset f(U)$ be a simple region of S, and let $\alpha: I \longrightarrow S$ be so that $\partial R=\alpha(I)$. If α is positively oriented, parametrized by arc length s, and if $\alpha\left(s_{0}\right), \ldots, \alpha\left(s_{k}\right)$ and $\theta_{0}, \ldots, \theta_{k}$ are respectively the vertices and external angles of α, then

$$
\sum_{j=0}^{k} \int_{s_{j}}^{s_{j+1}} k_{g}(s) d s+\iint_{R} K d \sigma+\sum_{j=0}^{k} \theta_{j}=2 \pi
$$

where k_{g} is the geodesic curvature of the regular arcs of α and K is the Gaussian curvature of S.

Proof. Let $u=u(s), v=v(s)$ be the expression of the parametrization of α in the parametrization f. By proposition 7.10 we have

$$
k_{g}=\frac{1}{2 \sqrt{E G}}\left(G_{u} \frac{d v}{d s}-E_{v} \frac{d u}{d s}\right)+\frac{d \varphi_{j}}{d s}
$$

where $\varphi_{j}(s)$ is the differentiable function which measures the positive angle from f_{u} to $\alpha^{\prime}(s)$ in $\left[s_{j}, s_{j+1}\right]$. By integrating the above expression in every interval [s_{j}, s_{j+1}], and adding the results we obtain

$$
\sum_{j=0}^{k} \int_{s_{j}}^{s_{j+1}} k_{g}(s) d s=\sum_{j=0}^{k} \int_{s_{j}}^{s_{j+1}}\left(\frac{G_{u}}{2 \sqrt{E G}} \frac{d v}{d s}-\frac{E_{v}}{2 \sqrt{E G}} \frac{d u}{d s}\right) d s+\sum_{j=0}^{k} \int_{s_{j}}^{s_{j+1}} \frac{d \varphi_{j}}{d s} d s
$$

Now, the Gauss-Green theorem states the following: If $\mathrm{P}(\mathrm{u}, \mathrm{v})$ and $\mathrm{Q}(\mathrm{u}, \mathrm{v})$ are differentiable functions in a simple region $A \subset R^{2}$, whose boundary is given by $u=u(s), v=v(s)$, then

$$
\sum_{j=0}^{k} \int_{s_{j}}^{s_{j+1}}\left(P \frac{d u}{d s}+Q \frac{d v}{d s}\right) d s=\iint_{A}\left(\frac{\partial Q}{\partial u}-\frac{\partial P}{\partial v}\right) d u d v
$$

Applying this theorem, we get

$$
\sum_{j=0}^{k} \int_{s_{j}}^{s_{j+1}} k_{g}(s) d s=\iint_{f-1(R)}\left[\left(\frac{E_{v}}{2 \sqrt{E G}}\right)_{v}+\left(\frac{G_{u}}{2 \sqrt{E G}}\right)_{u}\right] d u d v+\sum_{j=0}^{k} \int_{s_{j}}^{s_{j+1}} \frac{d \varphi_{j}}{d s} d s
$$

Now since we have an orthogonal parametrization, i.e. $F=0$,

$$
\iint_{f^{-1}(R)}\left[\left(\frac{E_{v}}{2 \sqrt{E G}} \frac{d u}{d t}\right)_{v}+\left(\frac{G_{u}}{2 \sqrt{E G}}\right)_{u}\right] d u d v=-\iint_{f^{-1(R)}} K \sqrt{E G} d u d v=-\iint_{R} K d \sigma
$$

And from topology we know the Theorem of Turning Tangents which tells us that

$$
\sum_{j=0}^{k} \int_{s_{j}}^{s_{j+1}} \frac{d \varphi_{j}}{d s} d s=\sum_{j=0} k\left(\varphi_{j}\left(s_{j+1}\right)-\varphi_{j}\left(s_{j}\right)\right)= \pm 2 \pi-\sum_{j=1}^{k} \theta_{j}
$$

Since the curve is positively oriented, the sign should be plus. Putting all of this together gives us

$$
\sum_{j=0}^{k} \int_{s_{j}}^{s_{j+1}} k_{g}(s) d s+\iint_{R} K d \sigma+\sum_{j=0}^{k} \theta_{j}=2 \pi
$$

Theorem 8.2 (Global Gauss-Bonnet). Let $R \subset S$ be a regular region of an oriented surface and let C_{1}, \ldots, C_{n} be the closed, simple, piecewise regular curves which form the boundary ∂R of R. Suppose that each C_{j} is positively oriented and let $\theta_{1}, \ldots, \theta_{p}$ be the set of all external angles of the curves C_{1}, \ldots, C_{n}. Then

$$
\sum_{j=1}^{n} \int_{C_{j}} k_{g}(s) d s+\iint_{R} K d \sigma+\sum_{j=1}^{p} \theta_{j}=2 \pi \chi(R)
$$

where s denotes the arc length of C_{j}, and the integral over C_{j} means the sum of integrals in every regular arc of C_{j}. Also, $\chi=F-E+V$ is the Euler-Poincaré Characterization where for a given triangulation, F denotes the number of faces, E denotes the number of edges, and V denotes the number of vertices of the triangulation.

Proof. By a theorem in Topology, we know that we can take a triangulation \mathfrak{J} of the region R with the property that every triangle T_{j} is contained in a coordinate neighborhood of a family of orthogonal parametrizations compatible with the orientation of S. By making the boundary of every triangle of mathfrakJ is oppositely oriented, we get opposite orientations in the edges that adjacent triangles share. To every triangle we apply the Local Gauss-Bonnet Theorem, add them up, remembering that each "interior" side is described twice in opposite orientations,

$$
\sum_{j} \int_{C_{j}} k_{g}(s) d s+\iint_{R} K d \sigma+\sum_{j, k=1}^{F, \mathfrak{J}} \theta_{j, k}=2 \pi F
$$

4 where F denotes the number of triangles of \mathfrak{J}, and $\theta_{j 1}, \theta_{j 2}, \theta_{j 3}$ are the external angles of the triangle T_{j}.

The interior angles of the triangle T_{j} we shall denote $\varphi_{j k}=\pi-\theta_{j k}$. From this, we see that

$$
\sum_{j, k} \theta_{j, k}=\sum_{j, k} \pi-\sum_{j, k} \varphi_{j, k}=3 \pi F-\sum_{j, k} \varphi_{j, k}
$$

I will now introduce the following notation:

$$
\begin{aligned}
E_{e} & =\text { number of external edges of } \mathfrak{J} \\
E_{i} & =\text { number of internal edges of } \mathfrak{J} \\
V_{e} & =\text { number of external vertices of } \mathfrak{J} \\
V_{i} & =\text { number of exteranl vertices of } \mathfrak{J} .
\end{aligned}
$$

Since the curves C_{i} are closed, $E_{e}=V_{e}$. It is also clear that

$$
3 F=3 E_{i}+E_{e}
$$

hence

$$
\sum_{j, k} \theta_{j, k}=2 \pi E_{i}+\pi E_{e}-\sum_{j, k} \varphi_{j, k}
$$

Now either the external vertices are vertices of some curve C_{i}, which we'll call $V_{e c}$, or they are vertices introduced by the triangulation, which we'll call $V_{e j}$. So we can write $V_{e}=V_{e c}+V_{e j}$. And the sum of the angles around each internal vertex is 2π, so we can write

$$
\sum_{j, k} \theta_{j, k}=2 \pi E_{i}+\pi E_{e}-2 \pi V_{i}-2 \pi V_{e i}-\sum_{j}\left(\pi-\theta_{j}\right)
$$

Adding and subtracting πE_{e} to the right hand side of this equation, and using the fact that $E_{e}=V_{e}$, we have

$$
\begin{aligned}
\sum_{j, k} \theta_{j, k} & =2 \pi E_{i}+2 \pi E_{e}-2 \pi V_{i}-\pi V_{e i}-\pi V_{e c}+\sum_{j} \theta_{j} \\
& =2 \pi E-2 \pi V+\sum_{j} \theta_{j}
\end{aligned}
$$

Finally, we can put it all back together again to get

$$
\begin{aligned}
\sum_{j=1}^{n} \int_{C_{j}} k_{g}(s) d s+\iint_{R} K d \sigma+\sum_{j=1}^{p} \theta_{j} & =2 \pi(F-E+V) \\
& =2 \pi \chi(R)
\end{aligned}
$$

which is exactly what we wanted to prove.

[^0]: Date: DEADLINE AUGUST 22, 2008.

