
A PROOF OF THE GAUSS-BONNET THEOREM

AARON HALPER

Abstract. In this paper I will provide a proof of the Gauss-Bonnet Theorem.
I will start by briefly explaining regular surfaces and move on to the first
and second fundamental forms. I will then discuss Gaussian curvature and
geodesics. Finally, I will move on to the theorem itself, giving both a local and
a global version of the Gauss-Bonnet theorem. For this paper, I will assume
that the reader has a knowledge of point-set topology, analysis in Rn, and
linear algebra.
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1. Introduction

The Gauss-Bonnet theorem relates the sum of the interior angles of a triangle
with the its Gaussian curvature, an intrinsic quantity of the geometry of the space
that the triangle is drawn on. The theorem has numerous applications within and
without its native field of differential geometry. In order to understand the Gauss-
Bonnet theorem we must first understand some basic differential geometry. To this
end, we start with the most basic idea in differential geometry, a regular surface.

2. Regular Surfaces

Definition 2.1. A subset S ⊂ R3 is a regular surface if for every point p ∈ S there
is a neighborhood V ⊂ R3 and a function f which maps an open set U ⊂ R2 onto
V ∩ S ⊂ R3 which has the following properties:

(1) f is differentiable.
(2) f is a homeomorphism.
(3) For every q ∈ U , the differential dfq : R2 −→ R3 is one-to-one.

Throughout this paper we denote the partial derivative of f with respect to u as
fu = ∂f

∂u . Note that f is a vector-value function.
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We will discuss (3), often called the regularity condition, once we have the fol-
lowing definition.

Definition 2.2. The function f defined as above is called a parametrization in
a neighborhood of p. The neighborhood V ∩ S of p ∈ S is called a coordinate
neighborhood.

Condition (3) is more familiar if we compute the matrix of the linear map dfq

in the standard, or canonical bases e1 = (1, 0), e2 = (0, 1) of R2 with coordinates
(u, v) and f1 = (1, 0, 0), f2 = (0, 1, 0), f3 = (0, 0, 1) of R3, with coordinates (x, y, z).

Let q = (u0, v0). Then e1 is tangent to the curve u −→ (u, v0) where the image
of this curve under f becomes the curve

u −→ (x(u, v0), y(u, v0), z(u, v0)).
This image curve lies on our surface S and at f(q) has the tangent vector

(
∂x

∂u
,
∂y

∂u
,
∂z

∂u
) =

∂x

∂u
.

Here we compute the derivatives at (u0, v0) and a vector is indicated by its compo-
nents in the basis f1, f2, f3. By the definition of differential,

dfq(e1) = (
∂x

∂u
,
∂y

∂u
,
∂z

∂u
) =

∂x

∂u
.

Similarly, we find

dfq(e2) = (
∂x

∂v
,
∂y

∂v
,
∂z

∂v
) =

∂x

∂v
.

Combining this into a single matrix, we see that

dfq =





∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

∂z

∂u

∂z

∂v





Condition (3) is equivalent to requiring that the two column vectors of the above
matrix be linearly independent, or that the vector product

∂x

∂u
× ∂x

∂v
'= 0,

or finally that one of the Jacobian determinants

∂(x, y)
∂(u, v)

=

∣∣∣∣∣∣∣

∂x

∂u

∂x

∂v
∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣
,
∂(y, z)
∂(u, v)

,
∂(x, z)
∂(u, v)

.

is non-zero.
We defined surfaces as subsets of R3. We do this by covering a surface S in R3 with
embeddings of open sets in R2 or charts. Condition (1) is very natural if we are
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to do differential geometry on S. Condition (2) makes sure charts only overlap in
2–dimensional subsets, so that the tangent plane at a point is unique. We will now
show that condition (3) guarantees that the set of tangent vectors to parametrized
curves of S at a point p makes up a plane.

Definition 2.3. A tangent vector to S at a point p ∈ S is the tangent vector α′(0)
of a differentiable parametrized curve α : (−ε, ε) −→ S with α(0) = p.

Proposition 2.4. Let f : U −→ R3 ∩ S be a parametrization of a regular surface
S and let q ∈ U . The vector subspace of dimension 2,

dfq(R2) ⊂ R3,

coincides with the set of tangent vectors to S at f(q).

We will not prove this proposition, but we will note that the plane dfq(R2),
which passes through f(q) = p, does not depend on the parametrization f . We will
denote this plane the tangent plane to S at p and write it as Tp(S). It is easy to
see that fu and fv span TpS.

3. The First Fundamental Form

Besides differentiability, surfaces carry further geometric structures, the most
important of which is called the first fundamental form.

Definition 3.1. By restricting The natural inner product 〈·, ·〉 on R3 to each tan-
gent plane Tp(S) of a regular surface S, we get an inner product on Tp(S). We
call this inner product on TpS the first fundamental form and denote it by Ip. So
Ip〈v, w〉 = 〈v, w〉.

Thus the first fundamental form tells us how the surface S inherits the natural
inner product of R3. We want to write it in terms of {fu, fv}, a basis associated to
a parametrization f(u, v) at p. To do this, we remember that a tangent vector w ∈
Tp(s) is the tangent vector to a parametrized curve α(t) = f(u(t), v(t)), t ∈ (−ε, ε)
with p = α(0) = f(u0, v0). Then, keeping in mind that u′ and v′ are the respective
derivatives of u and v,

I〈α′(0),α′(0)〉 = 〈fuu′ + fvv
′, fuu′ + fvv

′〉
= 〈fu, fu〉(u′)2 + 2〈fu, fv〉u′v′ + 〈fv, fv〉(v′)2
= E(u′)2 + 2Fu′v′ + G(v′)2

where we define

E(u0, v0) = 〈fu, fu〉(3.2)
F (u0, v0) = 〈fu, fv〉(3.3)
G(u0, v0) = 〈fv, fv〉.(3.4)

To round off the section, we give the following

Definition 3.5. A parametrization is orthogonal if F (u, v) = 0.
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4. Orientation

Definition 4.1. A regular surface S is orientable if it is possible to cover S with a
family of coordinate neighborhoods so that if a point p ∈ S is in two neighborhoods
of this family, then the change of coordinates has positive Jacobian at p. The choice
of family that satisfies this condition is called an orientation of S, and S is called
oriented. If it is not possible to find such a family then S is called nonorientable.

Given a parametrization f(u, v) at p, we have a definite choice of a unit normal
vector N at p by the rule

N(p) =
fu × fv

|fu × fv|
(p).

(It may worth to say that the normal space is 1–dimensional.)
Taking a second parametrization f ′(u′, v′) at p, we see that

f ′
u × f ′

v = (fu × fv)
∂(u, v)
∂(u′, v′)

,

where
∂(u, v)
∂(u′, v′)

is the Jacobian of the coordinate change. From this we can see

that N will not change its direction if the Jacobian is positive, and change its
direction if the Jacobian is negative. So we can see from this that a surface is
orientable if N keeps its direction no matter how it is moved around the surface.

Example 4.2. On the Möbius strip, we cannot find a differentiable field of unit
normal vectors that are defined on the entire surface. Intuitively, we can see this
by taking a vector field N around the middle circle of the figure and noticing that
it would come back as −N , which contradicts the continuity of N . This is because
we cannot decide which side of the surface we are on since we can go continuously
to the other side without breaking the surface.

5. The Gauss Map

We denote S2 as the unit sphere, i.e. S2 = {(x, y, z) ∈ R3| x2 + y2 + z2 = 1}.

Definition 5.1. Let S ⊂ R3 be a surface with an orientation N . The Gauss map
is defined to be N : S −→ S2 ⊂ R3 is defined to be p *−→ N(p).

It is easy to see that the Gauss map is differentiable. The differential dNp is a
linear map from Tp(S) to TN(p)(S2). We can identify TpS and TN(p)S since they
are parallel planes, hence dNp is a linear map on Tp(S). We now are ready for the
following

Proposition 5.2. The differential dNp: Tp(S) −→ TpS of the Gauss-map is self-
adjoint.

Proof. We need to show that 〈dNp(w1), w2〉 = 〈w1, dNp(w2)〉 for a basis {w1, w2}
of Tp(S). To do this, let f(u, v) be a parametrization of S at p and {fu, fv} the
associated basis of Tp(S). If α(t) = f(u(t), v(t)) is a parametrized curve in S, with
α(0) = p, we get
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dNp(α′(0)) = dNp(fuu′(0) + fvv
′(0)

=
d

dt
N(u(t), v(t))

∣∣∣∣
t=0

= Nuu′(0) + Nvv
′(0);

in particular, dNp(fu) = Nu and dNp(fv) = Nu. Thus, in order to prove that
dNp is self-adjoint, we only need to show that

〈Nu, fv〉 = 〈fu, Nv〉.

We can see this by taking the derivatives of 〈N, fu〉 = 0 and 〈N, fv〉 = 0, relative
to v and u respectively, and get

〈Nv, fu〉 + 〈N, fuv〉 = 0
〈Nu, fv〉 + 〈N, fvu〉 = 0.

Hence,

〈Nu, fv〉 = −〈N, fuv〉 = 〈Nv, fu〉.

!

For a parametrization f(u, v) at a point p ∈ S with α(t) = f(u(t), v(t)) a
parametrized curve on S, with α(0) = p, the tangent vector to α(t) at p is
α′ = fuu′ + fvv′, and

dN(α′) = N ′(u(t), v(t)) = Nuu′ + Nvv
′.

But Nu and Nv belong to Tp(S), so we can write them in terms of our parameters

Nu = a11fu + a21fv,(5.3)
Nv = a12fu + a22fv,(5.4)

hence

dN(α′) = (a11u
′ + a12v

′)fu + (a21u
′ + a22v

′)fv,

which gives us

dN

(
u′

v′

)
=

(
a11 a12

a21 a22

) (
u′

v′

)

Thus, in the basis {fu, fv}, dN is given by the matrix (aij); i, j = 1, 2

Definition 5.5. The determinant of dNp is the Gaussian curvature, K, of S at a
point p.
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6. The Second Fundamental Form

Now that we have the self-adjoint, linear map dNp, we can associate with it a
quadratic form which we imaginatively call the second fundamental form.

Definition 6.1. The quadratic form IIp is defined in Tp(S) by
IIp(v) = −〈dNp(v), v〉, and is called the second fundamental form of S at p.

Just like with the first fundamental form, we now proceed to write the second
fundamental form in the basis {fu, fv}. Now

IIp(α′) = −〈dN(α′),α′〉
= −〈Nuu′ + Nvv

′, fuu′ + fv, v
′〉

= e(u′)2 + 2fu′v′ + g(v′)2,

where

e = −〈Nu, fu〉 = 〈N, fuu〉,(6.2)
f = −〈Nv, fu〉 = 〈N, fuv〉 = −〈Nu, fv〉,(6.3)
g = −〈Nv, fv〉 = 〈N, fvv〉,(6.4)

since 〈N, fu〉 = 〈N, fv〉 = 0. We can use the coefficients e, f, g to find the values
of aij , giving us

−f = 〈Nu, fv〉 = a11F + a21G,(6.5)
−f = 〈Nv, fu〉 = a12E + a22F,(6.6)
−e = 〈Nu, fu〉 = a11E + a21F,(6.7)
−g = 〈Nu, fu〉 = a12F + a22G.(6.8)

Or in matrix form,

−
(

e f
f g

)
=

(
a11 a12

a21 a22

) (
E F
F G

)
.

From this it is clear that

K = det(aij) =
eg − f2

EG − F 2
.

7. geodesics

Definition 7.1. Given a differentiable vector field w in an open U ⊂ S with
p ∈ U , take a y ∈ Tp(S). Consider the parametrized curve α : (−ε, ε) −→ U , with
α(0) = p, α′(0) = y, and let g(t), t ∈ (−ε, ε), be the restriction of of the vector field
g to the curve α. Then projecting dw

dt (0) onto Tp(S) forms the covariant derivative
at p of the vector field w relative to the vector y, which we denote by Dw

dt (0) or
(Dyw)(p).

The covariant derivative is the vector field analogue of the usual derivative in
the plane. It is easy to verify that the covariant derivative does not depend on the
choice of α.
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Definition 7.2. A vector field along a parametrized curve α −→ S is parallel if
Dw
dt = 0 for all t ∈ I.

Definition 7.3. A nonconstant, parametrized curve γ : I −→ S is geodesic at t ∈ I

if the field of the tangent vectors γ′(t) is parallel along γ at t, i.e. Dγ′(t)
dt = 0. γ is

called a parametrized geodesic if γ is geodesics for every t ∈ I.

Definition 7.4. Let w be a differentiable field of unit vectors along a parametrized
curve α : I −→ S on an oriented surface S. Since w(t), t ∈ I, is a unit vector field,
dw
dt (t) is normal to w(t), hence

Dw

dt
= λ(N × w(t)).

The real number λ = λ(t), denoted by
[

Dw
dt

]
, is called the algebraic value of the

covariant derivative of w at t.

Definition 7.5. Let C be an oriented regular curve contained on an oriented
surface S, and let α(s) be a parametrization of C, in an neighborhood of p ∈ S, by
the arc length s. The algebraic value of the covariant derivative

[
Dα′(s)

ds

]
= kg

of α′(s) at p is called the geodesic curvature of C at p.

Lemma 7.6. Let a, b be differentiable functions in I with a2 + b2 = 1 and ϕ0 be
such that a(t0) = cosϕ0 and b(t0) = sinϕ0. Then the function ϕ defined by

ϕ = ϕ0 +
∫ t

t0

(ab′ − ba′) dt

has the properties that cosϕ(t) = a(t), sinϕ(t) = b(t) for t ∈ I, and ϕ(t0) = ϕ0.

Proof. To prove this we need only show that

(a − cosϕ)2 + (b − sinϕ)2 = 2 − 2(a cosϕ + b sinϕ)

is zero everywhere. Or in other words, that

A = a cosϕ + b sinϕ = 1

.
By using the fact that aa′ = −bb′ and the definition of ϕ, we get

A′ = −a(sinϕ)ϕ′ + b(cosϕ)ϕ′ + a′ cosϕ + b′ sinϕ
= −b′(sinϕ)(a2 + b2) − a′(cosϕ)(a2 + b2) + a′ cosϕ + b′ sinϕ
= 0

This tells us that A(t) = constant, and since A(t0) = 1, we have proved the
lemma. !
Lemma 7.7. Let v, w be differentiable vector fields along the curve α : I −→ S,
with |w(t)| = |v(t)| = 1, t ∈ I. Then

[
Dw

dt

]
−

[
Dv

dt

]
=

[
dϕ

dt

]

where ϕ is the function given in the previous lemma.
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Proof. Take the vectors v̄ = N × v and w̄ = N × w. Then

w = (cosϕ)v + (sinϕ)v̄,(7.8)
w̄ = N × w = (cosϕ)N × v + (sinϕ)N × v̄ = (cosϕ)v̄ − (sinϕ)v.(7.9)

Differentiating (7.8) we get

w′ = −(sinϕ)ϕ′v + (cosϕ)v′ + (cosϕ)ϕ′v̄ + (sinϕ)v̄′

Taking the inner product of this with (7.9) and using the fact that 〈v, v′〉 =
〈v, v̄〉 = 0 we get

〈w′, w̄〉 = (sin2 ϕ)ϕ′ + (cos2 ϕ)〈v′, v̄〉 + (cos2 ϕ)ϕ − (sin2 ϕ)〈v′, v̄〉
= ϕ′ + (cos2 ϕ)〈v′, v̄〉 − (sin2 ϕ)〈v′, v̄〉.

but 〈v, v̄〉 = −〈v, v̄′〉, so

〈w′, w̄〉 = ϕ′ + (cos2 ϕ + sin2 ϕ)〈v, v̄′ = ϕ′ + 〈v, v̄′〉
.

Thus,
[
Dw

dt

]
=

[
Dw

dt

]
〈N × w, w̄〉 = 〈dw

dt
, w̄〉 = 〈w′, w̄〉 = ϕ′ + 〈v′, v̄〉 =

dϕ

dt
+

[
Dv

dv

]

,
which proves the lemma. !

Proposition 7.10. Let f(u, v) be an orthogonal parametrization of a neighborhood,
and w(t) a differentiable field of unit vectors along the curve f(u(t), v(t)). Then

[
Dw

dt

]
=

1
2
√

EG

(
Gu

dv

dt
− Ev

du

dt

)
+

dϕ

dt

where ϕ0 is the angle from from fu to w in the given orientation.

Proof. Let e1 = fu√
E

, e2 = fv√
G

be the unit vectors tangent to the coordinate curves.
Then e1 × e2 = N, and by lemma 7.7 we have

[
Dw

dt

]
=

[
dϕ

dt

]
+

[
Dv

dt

]
(7.11)

where e1(u(t), v(t)) is the restriction of the field e1 to the curve f(u(t), v(t)). We
know that

De1

dt
=

〈
de1

dt
, N × e1

〉
=

〈
de1

dt
, e2

〉
= 〈(e1)u, e2〉

du

dt
+ 〈(e1)v, e2〉

dv

dt

But since F = 0, we have 〈fuu, fv〉 = − 1
2Ev, giving us

〈(e1)u, e2〉 =
〈(

fu√
E

)

u

,
fv√
G

〉
=

1
2

Ev√
EG

.
Similarly,



A PROOF OF THE GAUSS-BONNET THEOREM 9

〈(e1)v, e2〉 =
1
2

Gu√
EG

.
Putting all of this back into (7.11), we get

[
Dw

dt

]
=

1
2
√

EG

(
Gu

dv

dt
− Ev

du

dt

)
+

dϕ

dt
,

exactly what we wanted.
!

8. The Local Gauss-Bonnet Theorem

Theorem 8.1 (Local Gauss-Bonnet). Given an orthogonal parametrization f :
U −→ S of an oriented surface S, where U ⊂ R2 is homeomorphic to an open disk
and f is compatible with the orientation of S, let R ⊂ f(U) be a simple region of S,
and let α : I −→ S be so that ∂R = α(I). If α is positively oriented, parametrized
by arc length s, and if α(s0), ...,α(sk) and θ0, ..., θk are respectively the vertices and
external angles of α, then

k∑

j=0

∫ sj+1

sj

kg(s) ds +
∫∫

R
K dσ +

k∑

j=0

θj = 2π

where kg is the geodesic curvature of the regular arcs of α and K is the Gaussian
curvature of S.

Proof. Let u = u(s), v = v(s) be the expression of the parametrization of α in the
parametrization f . By proposition 7.10 we have

kg =
1

2
√

EG

(
Gu

dv

ds
− Ev

du

ds

)
+

dϕj

ds

where ϕj(s) is the differentiable function which measures the positive angle from
fu to α′(s) in [sj , sj+1]. By integrating the above expression in every interval
[sj , sj+1], and adding the results we obtain

k∑

j=0

∫ sj+1

sj

kg(s) ds =
k∑

j=0

∫ sj+1

sj

(
Gu

2
√

EG

dv

ds
− Ev

2
√

EG

du

ds

)
ds +

k∑

j=0

∫ sj+1

sj

dϕj

ds
ds

Now, the Gauss-Green theorem states the following: If P(u, v) and Q(u, v) are
differentiable functions in a simple region A ⊂ R2, whose boundary is given by
u = u(s), v = v(s), then

k∑

j=0

∫ sj+1

sj

(
P

du

ds
+ Q

dv

ds

)
ds =

∫∫

A

(
∂Q

∂u
− ∂P

∂v

)
dudv.

Applying this theorem, we get

k∑

j=0

∫ sj+1

sj

kg(s) ds =
∫∫

f−1(R)

[(
Ev

2
√

EG

)

v

+
(

Gu

2
√

EG

)

u

]
dudv+

k∑

j=0

∫ sj+1

sj

dϕj

ds
ds

Now since we have an orthogonal parametrization, i.e. F = 0,
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∫∫

f−1(R)

[(
Ev

2
√

EG

du

dt

)

v

+
(

Gu

2
√

EG

)

u

]
dudv = −

∫∫

f−1(R)
K
√

EG dudv = −
∫∫

R
K dσ

And from topology we know the Theorem of Turning Tangents which tells us
that

k∑

j=0

∫ sj+1

sj

dϕj

ds
ds =

∑

j=0

k(ϕj(sj+1) − ϕj(sj)) = ±2π −
k∑

j=1

θj

Since the curve is positively oriented, the sign should be plus. Putting all of this
together gives us

k∑

j=0

∫ sj+1

sj

kg(s) ds +
∫∫

R
K dσ +

k∑

j=0

θj = 2π

!
Theorem 8.2 (Global Gauss-Bonnet). Let R ⊂ S be a regular region of an oriented
surface and let C1, ..., Cn be the closed, simple, piecewise regular curves which form
the boundary ∂R of R. Suppose that each Cj is positively oriented and let θ1, ..., θp

be the set of all external angles of the curves C1, ..., Cn. Then

n∑

j=1

∫

Cj

kg(s) ds +
∫∫

R
K dσ +

p∑

j=1

θj = 2πχ(R)

where s denotes the arc length of Cj, and the integral over Cj means the sum of
integrals in every regular arc of Cj. Also, χ = F − E + V is the Euler-Poincaré
Characterization where for a given triangulation, F denotes the number of faces, E
denotes the number of edges, and V denotes the number of vertices of the triangu-
lation.

Proof. By a theorem in Topology, we know that we can take a triangulation J of
the region R with the property that every triangle Tj is contained in a coordi-
nate neighborhood of a family of orthogonal parametrizations compatible with the
orientation of S. By making the boundary of every triangle of mathfrakJ is op-
positely oriented, we get opposite orientations in the edges that adjacent triangles
share. To every triangle we apply the Local Gauss-Bonnet Theorem, add them up,
remembering that each ”interior” side is described twice in opposite orientations,

∑

j

∫

Cj

kg(s) ds +
∫∫

R
K dσ +

F,J∑

j,k=1

θj,k = 2πF

4 where F denotes the number of triangles of J, and θj1, θj2, θj3 are the external
angles of the triangle Tj .

The interior angles of the triangle Tj we shall denote ϕjk = π − θjk. From this,
we see that

∑

j,k

θj,k =
∑

j,k

π −
∑

j,k

ϕj,k = 3πF −
∑

j,k

ϕj,k.

I will now introduce the following notation:
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Ee = number of external edges of J,

Ei = number of internal edges of J,

Ve = number of external vertices of J,

Vi = number of exteranl vertices of J.

Since the curves Ci are closed, Ee = Ve. It is also clear that

3F = 3Ei + Ee

hence
∑

j,k

θj,k = 2πEi + πEe −
∑

j,k

ϕj,k.

Now either the external vertices are vertices of some curve Ci, which we’ll call
Vec, or they are vertices introduced by the triangulation, which we’ll call Vej . So
we can write Ve = Vec +Vej . And the sum of the angles around each internal vertex
is 2π, so we can write

∑

j,k

θj,k = 2πEi + πEe − 2πVi − 2πVei −
∑

j

(π − θj)

Adding and subtracting πEe to the right hand side of this equation, and using
the fact that Ee = Ve, we have

∑

j,k

θj,k = 2πEi + 2πEe − 2πVi − πVei − πVec +
∑

j

θj

= 2πE − 2πV +
∑

j

θj .

Finally, we can put it all back together again to get

n∑

j=1

∫

Cj

kg(s) ds +
∫∫

R
K dσ +

p∑

j=1

θj = 2π(F − E + V )

= 2πχ(R),

which is exactly what we wanted to prove. !


