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1. Introduction

In this paper we will be exploring a basic topological notion known as metriz-
ability, or whether or not a given topology can be understood through a distance
function. We first give the reader some basic definitions. As an outline, we will
be using these notions to first prove Urysohn’s lemma, which we then use to prove
Urysohn’s metrization theorem, and we culminate by proving the Nagata Smirnov
Metrization Theorem.

Definition 1.1. Let X be a topological space. The collection of subsets B ⊂ X
forms a basis for X if for any open U ⊂ X can be written as the union of elements
of B
Definition 1.2. Let X be a set. Let B ⊂ X be a collection of subsets of X. The
topology generated by B is the intersection of all topologies on X containing B.

Definition 1.3. Let X and Y be topological spaces. A map f : X → Y . If f is a
homeomorphism if it is a continuous bijection with a continuous inverse.

If there is a homeomorphism from X to Y , we say that X and Y are homeo-
morphic. Moreover, because continuity is a strictly topological property, a home-
omorphism between two spaces guarantees that the spaces are indistinguishable
topologically.
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Definition 1.4. Let (X, T ) be a topological space. Let d : X×X → R be a metric.
If the topology generated by d is T , then we say T is metrizable.

2. Product Topology

In this chapter we introduce a topology that we will use later in the paper.

Definition 2.1. Let {Xα}α∈J be a collection of topological spaces. We define the
Product Topology on the cartesian product Πα∈JXα to be the minimal topology
such that the projection maps πβ : Πα∈JXα → Xβ given by πβ((xα)α∈J) = xβ , are
continuous.

Now we prove the exact form open sets take in this topology

Proposition 2.2. Let (Xα)α∈J be topological spaces. Then in the product space
Πα∈JXα under the product topology all open sets are of the form Πα∈JUα where
Uα open in Xα, and Uα = Xα for all but finitely many values of α

Proof. Let Πα∈JXα have the product topology. This tells us the projection maps
πβ : Πα∈JXα → Xβ are continuous for all β ∈ J . Take the topology generated
by S = {f−1

β (Uβ) | β ∈ J, Uβ open in Xβ}. This must be the minimum topology
on Πα∈JXα, for if it weren’t then at least one f−1

β (Uβ) would not be open in the
product space, which is a contradiction.
A basis for the topology generated by S is the set of all finite intersections of
elements of S. Consider

f−1
α1

(Uα1) ∩ f−1
α2

(Uα2) ∩ · · · ∩ f−1
αn

(Uαn
) =

∏
α∈J

Uα

Where Uα 6= Xα for all indices in J except possibly for α1, α2, . . . , αn.
�

We now end the section with a proof of a theorem that we will be using in our
proof of Urysohn’s Metrization Theorem.

Lemma 2.3. Let f : A → Πα∈JXα, with the product topology. Then the function
f is continuous iff each of its coordinate functions fβ is continuous

Proof. We first prove the easier direction. Assume f : A→ Πα∈JXα is continuous.
We show that πβ : Πα∈JXα → Xβ is continuous
Let Uβ ⊂ Xβ such that U is open. Then π−1

β (Uβ) = Πα∈JUα where Uα = Xα

except when α = β. This is an open set in the product topology by prop. 2.2,
and so πβ is continuous. Notice that fβ = πβ ◦ f , so fβ is continuous as it is the
composition of continuous functions.

Now for the other direction. Let each of the coordinate functions fα be contin-
uous. We will prove the continuity of f by showing the preimage of an open set
in Πα∈JXα to be open in A. Let U ⊂ Πα∈JXα be an open set in the product
topology. By prop. 2.2 we know U = Πα∈JUα, where Uα 6= Xα for only finitely
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many α ∈ J . Label such α’s α1, α2, . . . , αn. We then have:

f−1(Πα∈JUα) = f−1(π−1
α1

(Uα1) ∩ · · · ∩ π−1
αn

(Uαn
))

= f−1(π−1
α1

(Uα1)) ∩ · · · ∩ f−1(π−1
αn

(Uαn
))

= f−1
α1

(Uα1) ∩ · · · ∩ f−1
αn

(Uαn
)

Where the last line must be open as it is the finite intersection of open sets in
Πα∈JXα �

3. More Product Topology and Rω

In this chapter we build on our knowledge of metrizability. We first show that
not all topologies are metrizable.

Example 3.1. Let X be a non-empty set with the indiscrete topology with at least
2 elements. Let d be any metric over X. We will show that d can not generate the
indiscrete topology. Let x, y ∈ X. Since d is a metric, let m = 1

2 · d(x, y). Then
Bm(x) is an open set in the metric topology, but x ∈ Bm(x), so Bm(x) 6= ∅ and
y /∈ Bm(x), so Bm(x) 6= X. Therefore, Bm(x) is open in the metric topology, but
it is not open in the indiscrete topology,and so any topological space X containing
at least two points is not metrizable under the indiscrete topology.

Next we show the space Rω is metrizable, which we will be using later in our
proof of theorem 5.1.

Definition 3.2. Let d be the usual metric over R. Define the standard bounded
metric on R to be d(a, b) = min{|a− b|, 1}

Theorem 3.3. The space Rω = Πn∈NR, the countable product of the real line, is
metrizable under the product topology

Proof. Define a metric over Rω as follows: Let x, y ∈ Rω, then

D(x, y) = sup
{
d(xi, yi)

i

}
i∈N

This defines a metric over Rω. We now show that D induces the product topology
over Rω. We prove this by showing that a set open in the product topology can
be written as the union of balls in the metric topology, and also by showing that a
set open in the topology generated by D can be written as a union of sets that are
open in the product topology.

Let U be open in the metric topology on Rω, and let x ∈ U . As U is open in
the metric topology, there exists ε > 0 such that Bε(x) ⊂ U . Let N ∈ N such that
1
N < ε. For any y ∈ Rω we have that d(xi,yi)

i ≤ 1
N for all i ≥ N , and so

D(x, y) ≤ max{d(x1, y1),
d(x2, y2)

2
,
d(x3, y3)

3
, . . . ,

1
N
}

Consider the set

V = (x1 − ε, x1 + ε)× (x2 − ε, x2 + ε)× · · · × (xN − ε, xN + ε)× R× R× . . .
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which is open in the product topology on Rω by prop 2.2. Let y ∈ V . By the
argument in the previous paragraph, we know

D(x, y) ≤ max{d(x1, y1),
d(x2, y2)

2
,
d(x3, y3)

3
, . . . ,

1
N
}

D(x, y) ≤ max
{

min{x1 − y1, 1},
min{x2 − y2, 1}

2
,

min{x3 − y3, 1}
3

, . . . ,
1
N

}
D(x, y) < ε

As each element of the above set is strictly less than or equal to ε. Therefore, we
have found a set V open in the product topology such that x ∈ V ⊂ U , where U is
open in the metric topology.

Now, Let x ∈ U ⊂ Rω be open an open set in the product topology. This
says U = Πn∈NUi where Ui = R for all but finitely many values of i, and Uj is
open in Rj for all j ∈ J , where J is finite. For each j ∈ J choose εj such that
xj ∈ (xj − εj , xj + εj) ⊂ Uj , then let 0 < ε < min{εj/j | j ∈ J}. We claim that
x ∈ Bε(x) ⊂ U
Indeed, let y ∈ Bε(x). This means that d(xj ,yj)

j < ε for all j ∈ J . This implies
d(xj ,yj)

j < ε < min{εj/j | j ∈ J}, and so we know for all j ∈ J , d(xj , yj) < ε
j < ε,

and so d(xj , yj) < εj , yj ∈ (xj − εj , xj + εj) ⊂ Uj . Moreover, for each index k such
that k /∈ J , we know that Uk = R, and so yk ∈ Uk trivially. Therefore, Bε(x) ⊂ U

�

4. Separation Axioms

We are at the point now where we are almost ready to tackle Urysohn’s Lemma.
Let us remark that in order for any of the following characteristics of topological
spaces to be true, we insist that all one point sets {x} ⊂ X are closed. This
condition is also known as the T1 condition.

Definition 4.1. Let (X, T ) be a topological space. We say that X is Hausdorff
, or T2, if given any two points, x, y ∈ X, there exist Ux, Uy ∈ (X, T ) such that
x ∈ Ux and y ∈ Uy with Ux ∩ Uy = ∅.

Definition 4.2. If for any singleton x ∈ X and any closed set B ⊂ X there exists
open sets U, V such that x ∈ U and B ⊂ V , with U ∩ V = ∅, then the space X is
called regular, or T3.

Definition 4.3. If for any two closed sets A,B ∈ X there exist open sets U, V such
that A ⊂ U and B ⊂ V with U ∩ V = ∅, then X is called normal, or T4.

Now we prove another theorem which we will use in theorem 5.1

Theorem 4.4. Let (X, T ) be a regular topological space. Let x ∈ X. Then for any
open neighborhood U of x, there exists Ux ∈ T such that Ux ⊂ U

Proof. Because U is open, we know X \ U is closed. Therefore, since X is regular,
there exists open sets Ux, V such that x ∈ Ux and X \ U ⊂ V , with Ux ∩ V = ∅.
But then Ux ⊂ U , since Ux ∩ V = ∅, and so all we are left to show is that Ux ⊂ U .
To show this, it will suffice to show that Ux ∩ V = ∅, since if Ux does not intersect
with V , it can’t intersect with X \ U , and hence must be a subset of U .
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We show that Ux ∩V = ∅: Let y ∈ V . Then V is an open neighborhood separating
y from Ux, and so y /∈ Ux. And so our claim is proven. Here we are using the fact
that a point x is in A iff for all open intervals U containing x, U is not disjoint
from A.

�

Also note that the same can be done with a normal space, replacing the singleton
x with a closed set A ⊂ X. The following is another proof we will be using in later
chapters.

Proposition 4.5. Let (X, T ) be a regular topological space with a countable basis
B. Then X is normal.

Proof. Let A,B ⊂ X be closed. Because X is regular, for each x ∈ A there exists
Ux ∈ T such that x ∈ Ux and Ux ∩ B = ∅. As B is a basis of X, for each x ∈ A
there exists An ∈ B such that x ∈ An ⊂ Ux. Notice the collection {An} forms a
countable open covering of A. We repeat the same construction for the closed set
B.
Notice that for both {An} and {Bn}, both sets will be disjoint from B and A
respectively, but need not be disjoint from each-other. We fix this problem by
defining the following sets:

A′n = An \
n⋃
i=1

Bi and B′n = Bn \
n⋃
i=1

Ai

And now we show that the collection of sets {A′n}n∈N and {B′n}n∈N are the open
sets which separate the closed sets A and B.
It is clear that A ⊂ ∪n∈NA

′
n and B ⊂ ∪n∈NB

′
n, and so we only show that sets are

disjoint.
Let x ∈ ∪n∈NA

′
n. By definition, x ∈ A′n = An \ ∪ni=1Bi for all n ∈ N. Therefore,

x /∈ Bm for all m ∈ N, and so x /∈ ∪n∈NB′n. Hence {A′n}n∈N and {B′n}n∈N are
disjoint �

5. Urysohn’s Lemma

We first provide the claim.

Theorem 5.1. (Urysohn’s Lemma) Let X be a normal topological space, with A
and B disjoint closed subsets of X. Then there exists a continuous function f :
X → [0, 1] such that f(x) = 0 for all x ∈ A and f(y) = 1 for all y ∈ B

Proof. Let Q = {q ∈ Q | q ∈ [0, 1]}. As B is closed, we know X \ B is open, and
therefore X \B is an open neighborhood of A, as A ∩B = ∅. Let U1 = X \B.
Since U1 is an open neighborhood of A, and A is closed, by Theorem 4.4 there
exists some open set U0 such that A ⊂ U0 and U0 ⊂ U1. For every p ∈ Q we wish
to define an open set A ⊂ Up such that Up ⊂ Uq for all q > p in Q. We prove the
collection {Ur} with r ∈ Q, with the above condition, exists by induction.
The base case has already been proven: we know that A ⊂ U0 ⊂ U1 by our
construction above.

Inductive Step: Choose a well ordering < of Q. Then Q = {r0 = 1, r1, r2, . . . , 1}.
Suppose we have defined Ur0 , Ur1 , . . . , Urn , U1 with the above property. We define
Urn+1 . We know rn and 1 are the immediate predecessor and successor of rn+1

in {r0 = 0, r1, . . . , rn, 1} respectively. By the inductive hypothesis we have that



6 DUSTIN HEDMARK

Urn
⊂ U1 where U1 is open. Therefore, by theorem 4.4 there exists an open set

Urn+1 such that Un ⊂ Un+1 ⊂ U1.

Now we have defined Ui for all i ∈ Q by induction. We extend this to all ra-
tional numbers by letting Up = X if p > 1 and Up = ∅ if p < 0.
Next define the function T : X → Q such that T (x) = {p ∈ Q | x ∈ Up}. We
know this function is well defined because given any x ∈ X, x ∈ Up for all p > 1.
Furthermore, for any x ∈ X we know there is no number less than 0 in T (x), for
Un = ∅ for n < 0. Consequently, for any x ∈ X we see that T (x) is subset of the
reals that is bounded below by zero, and so by the greatest lower bound property
of the reals we can define:

f : X → [0, 1] by f(x) = inf T (x)

Now we prove that f is the function with the properties desired in the lemma.
All that is left to prove now is that f : X → [0, 1] is a continuous map with
f(A) = {1} and f(B) = {0}.

Proof of Continuity of F : Let (c, d) ⊂ [0, 1] be open in the usual subspace topology
on [0, 1]. Choose some x ∈ X such that f(x) ∈ (c, d). Choose rational numbers j, k
such that
c < j < f(x) < k < d. By construction, since j < f(x) < k, we know x ∈ Uk and
x /∈ Uj , so x ∈ Uk \ Uj , which is an open neighborhood of x. Let P = Uk \ Uj .
To conclude, we claim that f(P ) ⊂ (c, d).
Let y ∈ P . We have that y ∈ Uk \ Uj , and hence f(y) ∈ (j, k) ⊂ (c, d), and so
f(P ) ⊂ (c, d). Hence, we have shown that the pre-image of an open set is open,
and so our map f is continuous.
We check that f satisfies the property that f(a) = 0 for all a ∈ A and f(b) = 1 for
all b ∈ B. Let a ∈ A, then by our construction we know a ∈ U0 and so f(a) = 0.
Let b ∈ B, then b /∈ Up for any rational p ∈ [0, 1), therefore f(b) = 1.

�

With Urysohn’s lemma, we now want to prove a theorem regarding the metriz-
ability of topological space. The idea of this proof is to construct a sequence of
functions using Urysohn’s lemma, then use these functions as component functions
to embed our topological space in the metrizable space Rω

6. Urysohn’s Metrization Theorem

Theorem 6.1. (Urysohn’s Metrization Theorem) Let (X, T ) be a regular topological
space with a countable basis B, then X is metrizable.

Proof. Let (X, T ) be a regular metrizable space with countable basis B. Idea: We
will first create a countable collection of functions {fn}n∈N, where fm : X → R for
all m ∈ N, such that given any x ∈ X and any open neighborhood U of x there
is an index N such that fN (x) > 0 and zero outside of U . Then we will use these
functions to imbed X in Rω.

Let x ∈ X and let U be any open neighborhood of x. There exists Bm ∈ B
such that x ∈ Bm. As X has a countable basis and is regular, by theorem 4.5
we know X is normal. Next, as Bm is open, we know by theorem 6.5 there exists
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some Bn ∈ B such that Bn ⊂ Bm. Thus we now have two closed sets Bn and
X \ Bm, and so we can apply Urysohn’s lemma to give us a continuous function
gn,m : X → R such that gn,m(Bn) = {1} and gn,m(X \Bm) = {0}. Notice that this
function satisfies our requirement: gn,m(y) = 0 for y ∈ X \ Bm, and gn,m(x) > 0.
Notice we indexed g purposely, as it shows us that {gn,m} is indexed by N × N,
which is countable as the cross product of two countable sets is countable. With
this in mind, we relable our functions {gn,m}n,m∈N as {fn}n∈N.

We now imbed X in the metrizable space Rω, (if you don’t remember the met-
ric used on Rω, see theorem 3.4).
Let F : X → Rω such that F (x) = (f1(x), f2(x), f3(x), . . . ), where fn are the func-
tions constructed above. We claim that F is an imbedding of X into Rω.
For F to be an imbedding we need F to be homeomorphic onto its image. First,
this requires that F is a continuous bijection onto its image. We know that F is
continuous by theorem 4.5, as each of its component functions fN are continuous
by construction. Now we show that F is an injection.
Let x, y ∈ X be distinct. By the Hausdorff condition there exists open sets Ux and
Uy such that x ∈ Ux, y ∈ Uy with Ux ∩Uy = ∅. By the construction of our maps f
there exists an index N ∈ N such that fN (Ux) > 0 and FN (X \Ux) = 0. It follows
that fN (x) 6= fN (y), and so F (x) 6= F (y). Therefore, F is injective.
It is clear that F is surjective onto its image F (X), and so all that is left to show
is that F is an embedding is to show that for any open set U ∈ X, F (U) is open in
Rω.
Let U ⊂ X be open. Let x ∈ U . Choose an index N such that fN (x) > 0 and
fN (X \ U) = 0. Let F (x) = z ∈ F (U). Let V = π−1

N ((0,∞)), which is simply all
elements of Rω with a positive N ′th coordinate. Now, let W = F (X) ∩ V . We
claim that z ∈ W ⊂ F (U) showing that F (U) can be written as a union of open
sets, hence making it open.
We first show that W is open in F (X). We know that V is an open set in Rω.
W = F (X) ∩ V , W is open by the definition of the subspace topology.
Next, we will first show that f(x) = z ∈ W , and then that W ⊂ F (U). To prove
our first claim, F (x) = z and so πN (z) = πN (F (x)) = fN (x) > 0, and so πN (z) > 0
which means that z ∈ π−1

N (V ) and of course z ∈ F (x), and so z ∈ F (X) ∩ V = W .
Now we show that W ⊂ F (U). Let y ∈W . This means y ∈ F (X)∩V . This means
there exists some w ∈ X such that F (w) = y. But, since y ∈ V we have that:
πN (y) = πN (F (w)) = fN (w) > 0 since y ∈ V , but fN (w) = 0 for all w ∈ X \ U ,
and so y ∈ F (U).
In conclusion, as we have shown that F : X → Rω is a map that preserves open sets
in both directions and bijective onto its image, we have shown that F is an embed-
ding of the space X into the metrizable space Rω, and X is therefore metrizable,
the metric being given by the induced metric from Rω. �

Example 6.2. The topology generated by the dictionary ordering on R2 is metriz-
able

Proof. By the previous theorem, all we must do to show R2 is metrizable in the
dictionary ordering is to show that this space is regular with a countable basis.
Because the set {(a, b), (c, d) | a ≤ c, b < d a, b, c, d ∈ R} is a basis for the dictionary
ordering on R2, and the set of intervals with rational end-points are a basis for the
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usual topology on R, it follows that the set {(a, b), (c, d) | a ≤ c, b < d a, b, c, d ∈ Q}
is a countable basis for the dictionary ordering.
Now we show the dictionary ordering is regular. Let a ∈ R2 and B ⊆ R2 such that
B is closed in the dictionary ordering and a /∈ B. Let ε = inf{d(a, b) | b ∈ B}.
We know ε > 0, for if it weren’t, then a would be an accumulation point of B,
which is a contradiction. It follows that the open sets ((a, a− ε/2), (a, a+ ε/2)) and⋃
b∈B((b, b−ε/2), (b, b+ε/2)) are disjoint open sets containing a and B respectively.

Therefore, the dictionary ordering over R2 is metrizable, as it is regular and has a
countable basis

�

Remark 6.3. Recall that in this proof we proved that a sequence of functions
{fn}n∈N with the property that for each x ∈ X, and each neighborhood U of
x, there is some n ∈ N such that fn(x) > 0 and fn(y) = 0 for all y ∈ X \ U ,
gives us an imbedding F : X → Rω. Notice we have the very similar result if we
have a sequence of functions {fj}j∈J with the same properties as above; given any
x ∈ X and any neighborhood U of x there exists j ∈ J such that fj(x) > 0 and
fj(y) = 0 for all y ∈ X \ U , then we have an imbedding from X → RJ given by
F (x) = (fj(x))j∈J . This is known as the Imbedding Theorem, and it a generaliza-
tion of Urysohn’s Metrization Theorem

7. Local Finiteness and Gδ sets

We have now proven our first substantial result, i.e that any regular space with a
countable basis is metrizable. However, there are weaker conditions under which a
given topological space is metrizable. In this chapter we will introduce the relevant
notions and prove theorems we will need in the next chapter to prove theorem 8.1.
We now present the definitions.

Definition 7.1. Let X be a topological space. We say a collection of subsets A of
X is locally finite if for all x ∈ X there is a neighborhood of Ux of x such that Ux
intersects only finitely many A ∈ A.

Definition 7.2. Let X be a topological space. If A ⊂ X can be written as the
countable intersection of open sets, then we say A is a Gδ set.

Definition 7.3. Let X be a topological space with C ⊂ 2X . If C =
⋃
n∈N Bn,

where each Bn is locally finite, then we say C is countably locally finite.

Definition 7.4. Let X be a set. Let A,B ⊂ 2X . We call B a refinement of A if
for every B ∈ B there exists A ∈ A such that B ⊂ A

Let us look at an example

Example 7.5. Let X be a metric space. Any open subset U in X is locally finite,
as U is already a finite collection of open sets. However, on a more interesting note,
any closed A ⊂ X is a Gδ set.

Lemma 7.6. Let A be locally finite in the topological space X. Then the collection
{A}A∈A is locally finite, and

⋃
A∈AA =

⋃
A∈AA.

Proof. We prove the first claim. Let A be locally finite in the topological space
X. Let x ∈ X, and assume for contradiction that all neighborhoods U of x inter-
sect infinitely many elements of {A}A∈A. However, we know if U ∩ A 6= ∅, then



AN EXPLORATION OF THE METRIZABILITY OF TOPOLOGICAL SPACES 9

U

n

S (U)n E (U)n

1/n 1/3n

Figure 1. An example of Sn(U) and En(U) for some U ∈ A

x ∩ A 6= ∅, and so if U intersects with infinitely many elements of {A}A∈A then
likewise it must intersect with infinitely many A ∈ A, which contradicts that A is
locally finite

Now we prove the second claim: Let x ∈
⋃
A∈AA. Let U be an open neigh-

borhood of x such that U intersects with A1, A2, . . . , An ∈ A. Assume x /∈ Ak
for 1 ≤ k ≤ n. This tells us the set U \

⋃n
i=1Ai is an open neighborhood of x

that does not intersect any A ∈ A, and hence does not intersect
⋃
A∈AA, which

means this neighborhood does not intersect
⋃
A∈AA, which contradicts the fact

that x ∈
⋃
A∈AA

Other Direction: Let x ∈
⋃
A∈AA, so x ∈ A for some A ∈ A. Hence every neigh-

borhood of x intersects with A, which means it intersects with
⋃
A∈AA, and so

x ∈
⋃
A∈AA �

Theorem 7.7. Let X be a metric space with an open cover A. Then there exists
an open cover C that refines A and is countably locally finite.

Proof. Fix a metric on X. Let U ∈ A be arbitrary. Define Sn(U) = {x ∈ U |
B1/n(x) ⊂ U}. Next, by the axiom of choice we create a well ordering on the
elements of A, which we will call <. Define

Tn(U) = Sn(U) \
⋃
V <U

V

.
Now we show that Tn(U) is disjoint from Tn(V ) for U, V ∈ A distinct : Because <
is a total ordering over A, either V < U or U < V . Assume WLOG that V < U .
Then, for u ∈ Tn(U), by definition Tn(U) = Sn(U) \

⋃
V <U V , and as V < U ,

u /∈ V . But, we know that for all v ∈ Tn(V ), v ∈ V , hence Tn(U) ∩ Tn(V ) = ∅. It
is useful to put a bound on exactly how close the two sets Tn(U) and Tn(V ) can
be. Let x ∈ Tn(U) and y ∈ Tn(V ). Once again we assume WLOG that V < U .
Then x ∈ Tn(U) implies x ∈ Sn(U) \ V . Also, x ∈ Sn(U) means B1/n(x) ⊂ U . So
d(x, y) ≥ 1/n, as y ∈ V .

Now define En(U) = {B1/3n(x) | x ∈ Tn(U)}. Once again, we try to find a
bound on how close together the sets En(U) and En(V ) can be. Using the triangle
inequality combined with the construction of each En, we see that the distance
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between En(U) and En(V ) is at least 1/3n for distinct U, V ∈ A.
Next define Cn = {En(U) | U ∈ A}. We first note that Cn is a refinement of A, as
En(U) ⊂ U for all U ∈ A. Also note that as En is a union of open balls, each En
is open. Cn is locally finite, because the distance between En(V ) and En(U) is at
least 1/3n for distinct U and V , B1/6n(x) intersects only one En(U) ∈ Cn.

We now let C =
⋃
n∈N Cn, and we claim that C is the open refinement of A that is

countably locally finite. As we have already shown that each Cn is locally finite, we
have shown that C is countably locally finite. All that is left to show is that C is a
cover of X.
Showing C is a Cover of X: Let x ∈ X. As A is an open cover of X, there exists
U ∈ X such that x ∈ U , which tells us S = {U ∈ A | x ∈ U} is non-empty. As
< is a well ordering on A, let V denote the least element of S in the well ordering
<.Choose n ∈ N such that B1/n(x) ⊂ V . This tells us x ∈ Sn(V ). As V is the first
element of A containing x we have that x ∈ Tn(U) ⊂ En(U) ∈ Cn ∈ C. Therefore,
we have shown that C is a countably locally finite refinement of the open cover
A �

Now we prove a relevant theorem

Theorem 7.8. Let X be a regular topological space with a basis B that is countably
locally finite. Then X is normal, and all closed subsets of X are Gδ sets.

Proof. Let X be a regular topological space with a countably locally finite basis
B. We will first show that for any open set T in X there is a countable collection
{Un} of open sets such that T =

⋃
Un =

⋃
Un, which we will then use to show

closed sets are Gα sets, and then use to help us prove the normality condition on X.

Subclaim: If T ⊂ X is open, then T =
⋃
Un =

⋃
Un

Let T ⊂ X be open. By hypothesis, we know the basis for X, B, is countably
locally finite, and hence B =

⋃
n∈N Bn, where each Bn is a locally finite collection

of subsets of X. Define
Cn = {B ∈ Bn | B ⊂ T}

Now, let Un =
⋃
B∈Cn

B. Since Un is a union of open sets, we know it must also
be open. Also, as Cn is a sub-collection of Bn, we know it must also be locally
finite. Moreover, as Cn is locally finite, we use lemma 7.6 to give us Un =

⋃
B∈Cn

B.
Therefore as each B ⊂ Cn ⊂ T , we have⋃

Un ⊂
⋃
Un ⊂ T

We now show the other inclusion. Let x ∈ T . Using the regularity of X, by the-
orem 4.4 there exists a basic open set B ∈ B such that x ∈ B ⊂ T . Because B
is countably locally finite, there exists some Bn such that x ∈ Bn with Bn locally
finite. Now, we have that x ∈ B ⊂ T , and by definition of Cn, we have that B ∈ Cn,
and hence x ∈

⋃
B∈Cn

B = Un, and therefore x ∈
⋃
Un, and so we have shown⋃

Un =
⋃
Un = T

Now we prove that all closed sets are Gδ sets in X: Let A ∈ X be closed. Then
X \A is open, and by the first part of this proof we have that X \A =

⋃
Un for Un

open. This tells us A = X \
⋃
Un =

⋂
X \ Un by DeMorgan’s Law. And as each
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Un is closed, we have that X \ Un is open, and we have written A as a countable
intersection of open sets, making A a Gδ set

Proof of Normality of X : Let A,B be disjoint closed subsets of X. As A is closed,
we use part 1 of this proof to give us that X \ A =

⋃
Un =

⋃
Un. Because B is

disjoint from A, we know that B ⊂
⋃
Un. We do the same steps to create the open

cover {Vn}n∈N of A. However, while the collection of open sets {Un} and {Vn}
do form an open cover of B and A respectively, they are not necessarily disjoint.
Nonetheless, we perform the same trick we did in theorem 4.4 to ensure these sets
are disjoint. Define

U ′n = Un \
n⋃
i=1

Vi and V ′n = Vn \
n⋃
i=1

Ui

Just as in theorem 6.6, it readily follows that {U ′n}n∈N and {V ′n}n∈N are disjoint
open sets covering B and A respectively, and so X is normal as required �

Next we prove a theorem that we use explicitly in the next section

Corollary 7.9. Let X be a normal topological space, and let A be a closed Gδ set
in X. Then there exists a continuous map f : X → [0, 1] such that f(a) = 0 for all
a ∈ A and f(y) > 0 for all y ∈ X \A

Proof. Let X be a topological space with A ⊂ X such that A is closed and Gδ.
Because A is Gδ we have that A = ∩n∈NUn for Un open in X. Since Un is open,
we know X \ Un is closed and disjoint from A, hence by Urysohn’s lemma we
define the continuous map fn : X → [0, 1] such that fn(a) = 0 for all a ∈ A
and fn(x) = 1 for all x ∈ X \ Un. Now define the map f : X → [0, 1] such
that f(x) =

∑∞
i=1 fi(x)/2i. For each n ∈ N we have that 0 ≤ fn(x) ≤ 1, and so

f(x) =
∑∞
i=1 fi(x)/2i ≤

∑∞
i=1 1/2i, and hence f(x) =

∑n
i=1 fn(x)/2n converges

uniformly to f by the comparison test, and as each fn is continuous, this tells us f
is continuous. Now we check our hypotheses, if x ∈ A, then we have that fn(x) = 0
for all n ∈ N, and so f(x) is simply an infinite sum of zeros, which is zero. If
x /∈ A, then x /∈ UN for some n ∈ N, and hence for all n > N , fn(x) > 0, and so
f(x) > 0 �

8. Nagata-Smirnov Metrization Theorem

Theorem 8.1. (Nagata-Smirnov Metrization Theorem) Let X be a topological
space. Then X is metrizable iff X is regular and has a countably locally finite
basis B.

Proof. Before we begin the proof we define the uniform metric. Let J be a set.
Define the uniform metric on Πα∈JRα as ρ(x, y) = sup{|xα − yα|, 1}α∈J

We begin with the harder direction. Let X be a space with a countably locally
finite basis B. This tells us B =

⋃
n∈N Bn where each Bn is locally finite. Let B be

a basis element in Bn. Define

fn,B : X → [0, 1/n]

where fn,B(y) > 0 for all y ∈ B and fn,B(z) = 0 for all z ∈ X \ B. We can define
such a function because B is an open set, and hence X \ A is a closed set, and as
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X is regular with a countably locally finite basis, it is also a Gδ set by theorem 7.8,
and hence we apply corollary 7.9 to construct our function fn,B .

Next, let K be the set consisting of the pairs K = (n,B) such that B is a ba-
sis element contained in the locally finite set Bn. Construct the function

F : X → [0, 1]J : F (x) = (fn,B(x))(n,B)∈K

In remark 6.2 the Imbedding Theorem is mentioned, and we use it here. We have
a sequence of functions {fn,B}(n,B)∈K with the property that for each x ∈ X and
each neighborhood U of X, there is some (m,B) ∈ K such that fm,B(x) > 0 and
fm,B(y) = 0 for all y ∈ X \U , hence F : X → [0, 1]J as defined above is an imbed-
ding relative to the product topology on [0, 1]J .

We now have an imbedding from X into [0, 1]J in the product topology. Next, we
give [0, 1]J the uniform metric, defined above, and show that F is still an imbed-
ding. With the uniform metric, it is clear that any set that is open in the product
topology on [0, 1]J will also be open in the metric topology. Therefore, as F is
an imbedding relative to the product topology on [0, 1]J , it must take open sets
in X to open sets in the product topology on [0, 1]J , which by our argument are
also open in the uniform metric topology. Hence all we need to show to prove F is
an imbedding relative to the uniform metric on [0, 1]J is to show that F is contin-
uous, as the previous sentence shows it preserves open sets in the forward direction.

Showing F is continuous relative to the uniform metric: To prove this claim, what
we must show is that given ε > 0 and any x ∈ X there exists some neighborhood
U of x such that for all y ∈ U we have ρ(F (x), F (y)) < ε.

Let x ∈ X and ε > 0 be given. Let n ∈ N be fixed. Because Bn is locally fi-
nite, there exists some neighborhood Un of X such that Un intersects only finitely
many elements in Bn. This means there are only finitely many basis elements
B ∈ Bn such that fn,B(x) 6= 0, for by construction we know fn,B(x) = 0 if x /∈ B.

Let Gn = {B ∈ Bn | fn,B(Un) 6= {0}}. For each B ∈ G we know that fn,B :
X → [0, 1/n] is a continuous map, and so for each B ∈ G we choose a neighbor-
hood QB of x such that for all y ∈ Q we have that ρ(fn,B(x), fn,B(y)) < ε/2. Let
Wn =

⋂
B∈Gn

QB , which is an open neighborhood of x because Gn is finite.

Inductively, we know that we have such an open interval Wn of x for each n ∈ N.
Choose N ∈ N such that 1/N < ε/2, and let W = W1 ∩W2 ∩ · · · ∩WN , and we
claim that W is the neighborhood that will prove F is continuous relative to the
uniform metric on [0, 1]J . Let y ∈ W . We will show that |fn,B(x) − fn,B(y)| < ε
for all n ∈ N , hence showing that ρ(F (x), F (y)) < ε.
If n ≤ N then either fn,B(x) = fn,B(y) = 0 or |fn,B(x) − fn,B(y)| ≤ ε/2 by the
definition of W .
If n > N then as fn,B : X → [0, 1/n] it is clear that |fn,B(x)−fn,B(y)| ≤ 1/n < ε/2
by choice of N .
Therefore |fn,B(x)− fn,B(y)| < ε for all n ∈ N and all y ∈W , and so:

ρ(F (x), F (y)) = sup{|fn,B(x)− fn,B(y)|}(n,B)∈K < ε
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So F is continuous, and by earlier arguments, an imbedding, thereby making X
metrizable.

Other Direction: Now we show if X is metrizable, then X has a countably lo-
cally finite basis. Let X be metrizable. As X is metrizable, X must be regular.
Let Am = {B1/m(x) | x ∈ X}. By theorem 7.7 there exists Bm such that Bm is
a countably locally finite open refinement of Am. Let B =

⋃
m∈N Bm. Then for

any each B ∈ Bm, we know that the greatest the diameter of B can be, by our
construction in theorem 7.7 is 2/m. Now we show that B is a basis for X.
Let x ∈ X and ε > 0 be given. Let m ∈ N such that 1/m < ε/2. As Bm is an open
cover of X there exists B ∈ Bm such that x ∈ B. Because Bm is a refinement of
Am, we have that each B ∈ Bm is contained in some A ∈ A, hence for any B ∈ Bm
we know the diameter of B is at most 2 · 1/m = 2/m, because A consists of balls
of radius 1/m. Moreover, as 1/m < ε/2 we have that 2/m < ε and as the diameter
of B < 2/m, we have that B ⊂ Bε(x)

�

Example 8.2. The space R′ω = Πi∈NR, where R has the discrete topology, is
metrizable under the product topology

Proof. We first see that this space does not have a countable basis, as each of its
coordinates R are discreet. Consequently, theorem 6.1 does not apply, so we use
theorem 8.1.
We first show that this space is regular. Let x ∈ R′ω and B ⊆ R′ω closed under
the above topology with x /∈ B. This tells us xn /∈ Bn for some n ∈ N. It follows
that B′ = Πi∈NUi where Ui = R except when i = n, in which case Un = Bn, and
A = Πi∈NUi where Ui = R except when i = n, where Un = x, are disjoint open sets
containing B and x respectively.
Now we show R′ω has a countably locally finite basis. We know the sets Amx =
Πi∈NUi with Ui = R for all but i = i1, i1, . . . , in = m, where Uij = {x} or R for
x ∈ R and 1 ≤ j ≤ n, form a basis for R′ω. Define

Fn = {Amx
| 1 ≤ m ≤ n}

Note Fn is nothing more than the collection of all basis elements with all but the
first n coordinates being R. We now show that Fn is locally finite.
Let x ∈ R′ω. The basic open neighborhood x1×x2×· · ·×xn×R×R . . . intersects
only itself in Fn, hence Fn is locally finite. It follows that B =

⋃
n∈N Fn is a basis

for R′ω.
Therefore, we have shown that R′ω is a regular space with a countably locally finite
basis, making it metrizable by theorem 8.1.

�
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