CLASSIFICATION OF SURFACES

JUSTIN HUANG

ABSTRACT. We will classify compact, connected surfaces into three classes:
the sphere, the connected sum of tori, and the connected sum of projective
planes.
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1. INTRODUCTION

This paper explores the subject of compact 2-manifolds, or surfaces. We begin
with a brief overview of useful topological concepts in Section 2 and move on to an
exploration of surfaces in Section 3. A few results on compact, connected surfaces
brings us to the classification of surfaces into three elementary types. In Section 4,
we prove Thm 4.1, which states that the only compact, connected surfaces are the
sphere, connected sums of tori, and connected sums of projective planes. The Euler
characteristic, explored in Section 5, is used to prove Thm 5.7, which extends this
result by stating that these elementary types are distinct. We conclude with an
application of the Euler characteristic as an approach to solving the map-coloring
problem in Section 6. We closely follow the text, Topology of Surfaces, although we
provide alternative proofs to some of the theorems.

2. TOPOLOGY

Before we begin our discussion of surfaces, we first need to recall a few definitions
from topology.

Definition 2.1. A continuous and invertible function f : X — Y such that its
inverse, f~!, is also continuous is a homeomorphism. In this case, the two spaces
X and Y are topologically equivalent.

Date: August 15, 2008.



2 JUSTIN HUANG

This definition of a homeomorphism means that f is a continuous bijection
such that f maps open sets to open sets. We also have the following notions
of compactness and connectedness.

Definition 2.2. An open cover of a subset A of the topological space X is a
collection 1 of open subsets of X such that A C (JocyO. A subcover of ¥ is
a subcollection ¥ C ¥ that is an open cover of A. A finite subcover is a finite
subcollection that is an open cover of A.

Definition 2.3. A topological space X is compact if every open cover of X has a
finite subcover.

Definition 2.4. A topological space X is disconnected if there exist two non-empty
disjoint open sets Uy, Us such that X = Uy U Us. A topological space X is connected
if it is not disconnected.

Examples 2.5. The following sets are illustrations of these two concepts.

(1) The unit interval is compact and connected.

(2) The real numbers are not compact, but connected.

(3) The set of two elements {0, 1} using the discrete topology is compact but
not connected.

(4) The integers, using the discrete topology, are not compact and not con-
nected.

Later in the paper, we will use various manipulations to classify and reduce
compact, connected surfaces. The following notions of the quotient topology and
quotient space are signficant, then, because they allow us to cut and glue spaces
together to form new spaces.

Definition 2.6. Given a function f: X — Y, where X is a topological space and
Y is a set, the quotient topology on Y is such that U C Y is open if and only if
f~Y(U) is open in X.

Definition 2.7. Given X a topological space and = ~ y an equivalence relation,
the quotient space is the set of equivalence classes X/ ~:= {[z] : z € X }.

Examples 2.8. Quotient Spaces.

(1) §* = [0,1]/{0,1}.

(2) The Mobius band = {(z,3) : 0 <2 <1,0<y <1}/(0,y) ~ (1,1 —y).

(3) S D2/Sl

(4) P 0/ ~, where x ~ Az for A € R. P2, the projective plane, cannot
be embedded in 3 dimensions.

01 (x.y) @
™ (1, 0)—» (1,0)
— Q (0' 0) (XY y)

0 1
a1y
©y

(0,0) (1,0)

FiGURE 1. The quotient spaces of Example 2.8
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3. COMPLEXES AND SURFACES

We begin this section with a series of defintions working our way up to surfaces.
We then show that surfaces can be represented by planar diagrams, providing a
relatively simple way of manipulating surfaces.

Definition 3.1. A cell is a space whose interior is homeomorphic to the unit
n-dimensional ball of the Euclidean space R™. The boundary of a cell must be
composed of a finite number of lower-dimensional cells, the faces of the cell, where
0, 1, 2, 3-dimensional cells are as defined below:

(1) A 0-dimensional cell is a point or vertex (normally labelled with a capital
letter)

(2) A I-dimensional cell is a line segment AB starting and ending at two 0-
dimensional cells (A, B). Note that vertices A and B are faces of AB

(3) A 2-dimensional cell is a polygon of line segments. For example, the quadri-
lateral defined by the line segments AB, BC, CD, and DA. Note that line
segments AB, BC, CD, DA are faces of the quadrilateral ABCD, as well as
A, B, C,D.

(4) A 3-dimensional cell is a solid polyhedron of polygons. Note again that
vertices, line segments, and polygons are all the faces of the polyhedron.

Definition 3.2. A complexr K is a finite set of cells with the following properties:

(1) The faces of the cells of K are also cells of K.
(2) If o and T are cells in K, then int (o) Nint (1) = .

A complex where all cells have dimension at most n is an n-complex. For K a
complex, we write | K| to denote the geometry resulting from gluing cells together.

FIGURE 2. Two complexes. The first is a 1-complex, the second a
2-complex.

Definition 3.3. A planar diagram is a polygon with 2n edges where pairs of edges
are identified with either the same or opposite orientation. Given the quotient
topology, the labelled edges are identified or glued together.

Planar diagrams are 2-complexes that code the gluing instructions needed for
the construction of 2-manifolds. Below is an example of a planar diagram.

Dy
Dy

FIGURE 3. The planar diagram of and surface represented by aba~1b~".
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Definition 3.4. An n-dimensional manifold is a topological space satisfying two
properties:
(1) every point has a neighborhood that is topologically equivalent to an n-
dimensional open disc.
(2) any two distinct points can be contained by disjoint neighborhoods.

A 2-manifold is a surface. We will be dealing with compact and connected surfaces
in our classification of surfaces.

Example 3.5. The following are compact, connected surfaces along with common
planar diagram representations.

(1) S? the sphere in R? represented by the circle in R? with the upper hemi-
sphere edge identified with the lower hemisphere edge.

(2) T? the torus in R? represented by the two pairs of opposite edges identified
together.

(3) P2 the projected plane in R* represented by circle in R? with the upper
hemisphere edge identified opposingly with the lower hemisphere edge. P?
can also be defined in terms of the quotient topology, as above.

@)
. aj a
a a .
b
(1) ) (3)
A Mobius Band A
a
& a
A Klein Bottle A

FIGURE 4. The planar diagrams of some important compact, con-
nected surfaces, the sphere, the torus, the projective plane. The
cylinder, Mobius band, and Klein bottle are also included.

The neighborhoods of points on the planar diagram can be used to check whether
a space is a surface, as illustrated in the following theorem.

Pe) q -

FIGURE 5. The neighborhoods of an interior point, an edge point,
and a vertex point of a planar diagram.

Theorem 3.6. The topological space represented by a planar diagram is a compact,
connected surface.
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Proof. Figure 5 shows that every point has a neighborhood topologically equiva-
lent to a 2-dimensional open disc. The figure also demonstrates that the space is
Hausdorff. Using the quotient topology, we have a continuous function mapping
the planar diagram to the topological space. Since the planar diagram is compact
and connected, we have that the space is compact and connected. (I

Definition 3.7. A 2-dimensional topological space X is triangulable if a 2-complex
structure K can be found with X = |K| where K only has triangular cells and
identification between triangles occurs only along a single edge or a single vertex.
Such a K is called a triangluation of X. A triangulated surface is a surface X with
a triangulation.

By cutting and gluing, we can combine two surfaces to form a new surface using
the quotient topology.

Definition 3.8. A connected sum is the new surface formed by combining two
or more compact, connected surfaces in the following manner. Remove small discs
from S7, S2, the two original surfaces, and glue the boundary circles together. When
dealing with triangulated surfaces, we can take the discs to be triangles. We write
S1#.S, for the connected sum of two surfaces and nS for S#S# - - - #S5 n times.

FIGURE 6. The connected sum of two tori.

With the understanding of surfaces given above, we can now begin to show
how any compact, connected surface can be homeomorphically reduced to three
elementary types of surfaces, the primary goal of this paper. The following lemmas
will justify the steps of our proof of Thm 4.1.

Lemma 3.9. If a set D has a discrete topology, then D is compact if and only if
D is finite.

Proof. This proof follows from clever choices of open covers.

Given D compact and the discrete topology, we choose an open cover {Ua},c;
such that only one point of D is in U,. Since D is compact, we have a finite subcover
of this cover, say Uq,, ..., Uy, . Since these sets cover D and there are finitely many
of them, D is finite.

Let D be finite. If {Uas},; is an open cover, for each d; € D, let d; € U,,.
Then, U,,, ..., Uy, is an open subcover. Thus, D is compact. O

Lemma 3.10. Let P be a set consisting of one interior point from each triangle in
a finite triangulation. Then P is closed and discrete.

Proof. 1t is clear that P is closed. P is discrete by considering the interior of each
triangle. O

Lemma 3.11. FEvery compact, connected surface can be represented as a planar
diagram.

Proof. We will prove the following two results.
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A surface is compact if and only if any triangulation uses a finite number
of triangles.

A surface is connected if and only if a triangulation can be arranged in
order T, Ts, ... T, with each triangle having at least one edge identified to
an edge of a triangle listed earlier.

With these two results, we have an ordered list of triangles with which to work.
Placing the triangles in order as listed, we see we have both inner and outer edges.
These inner edges are already identified together and so we need only consider outer
edges. Thus we have a polygon with labelled edges that, when correctly identified,
form a surface. In other words, we have a planar diagram, as desired.

(1)

A surface is compact if and only if any triangulation uses a finite number
of triangles.

Take any arbitrary triangulation. In order to show that it uses a finite
number of triangles, it suffices to show either that P, the set of one in-
terior point for each triangle, is finite. From Lemma 3.10, P is compact,
since closed subsets of compact sets are compact, and discrete. Then by
Lemma 3.9, P is finite.

Take an open cover of a triangulation. Given finitely many triangles in
all triangulations, it is easy to show that each triangle has a finite subcover.
It then follows that we have a finite subcover for the entire space.

A surface is connected if and only if a triangulation can be arranged in
order 11,75, ...T, with each triangle having at least one edge identified to
an edge of a triangle listed earlier.

Assuming S is connected, we will relabel the triangles so that at least one
edge of a triangle is identified to an edge of a triangle listed earlier. Start
with the triangle T7. Since S is connected, there exists a Ty glued to T}
along an edge. Let our inductive hypothesis be that there are n—1 triangles
arranged as desired. We then need only to glue a triangle T,,. Assume we
cannot. Then S can be expressed as the disjoint union of Ui:ll T; and
Ty. This contradicts S being connected, and so we have that T, can be
connected to the list of triangles T,,_1. In other words, we have ordered
triangles Ty, ... T, as desired.

Given an ordered triangulation, suppose that S is not connected. Then
S has at least two connected parts. Let the first part be 13,75, ..., Ty and
the second part Tx41,Tk+2,- .-, . Because these are disjoint parts of S,
T)+1 cannot be connected to any of 11,75, ..., Tk, thus contradicting the
ordered triangulation of the hypothesis. We then conclude that our original
assumption was incorrect, and that S is connected.

O

Lemma 3.12. The following manipulations of planar diagrams do not change the
homeomorphism type of the surfaces the diagrams represent. The lower-case letters

a or b are single edges. w is a word, that is, a sequence of letters grouped together.

(1) Renaming edges. wiwwowws = w1cwaCws OF Wi Wwow w3 = wicwac ™ tws.
(2) Collapsing edges. wiaa™ we = wiws
(3) General starting point. wiws = wawn
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(4) Cutting and gluing. Cutting is of the form wiwswsws = (wiwsa and
awswy), where a is the cut edge. Gluing along a is of the form (wijws2a
and awswy) = wiwawszwy or (wiwaa and wia twz) = wiwew4ws3.

Proof. We need to show that the changes undergone in the planar diagram represent
homeomorphic changes undergone in the surface. Note: for the remainder of the
paper, the planar diagrams will be composed of three types of lines. Continuous
lines for single edges, dashed lines for cut edges, and double-dotted-and-dashed
lines for words.

(1) This is easily a homeomorphism since it is merely a relabelling of the rep-
resentative planar diagram.
(2) Figure 7 shows that this step is a homeomorphism.

FiGURE 7. Illustration of the homeomorphism, collapsing.

(3) This is easily a homeomorphism since it is merely a relabelling of the rep-
resentative planar diagram.

(4) Tt suffices to check continuity for points on the cut edge. We have that the
map is a local homeomorphism by seeing we have half disc neighborhoods at
the two cut edges. When re-glued, these are full discs. Figure 8 illustrates
this proof.

F1GURE 8. The neighborhood around a point along a cut edge
remains a full disc.

4. CLASSIFICATION OF SURFACES

In proving the Classification of Surfaces, we will assume the non-trivial result
that all compact, connected surfaces allow a triangulation. With this result, we
will be able to use the lemmas on triangulations proved in the previous section.

Theorem 4.1. Fvery compact connected surface is homeomorphic to a sphere, a
connected sum of tori, or a connected sum of projective planes.
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Proof. The manipulations below are those from Lemma 3.12 and we have shown
above that these represent homeomorphisms. All we need to show now is a con-
structive proof illustrating that the surfaces can be reduced to S?, connected sums
of T?, or connected sums of P2. As a constructive proof, steps are provided for a
methodological approach to this reduction. An example of this step-wise process is
given after the proof.

Step 1: A Planar Model

Lemma 3.11 states that S has a planar diagram. Without loss of generality, using
Lemma 3.12 (1), we can assume that there are no repeated words.

Step 2: Adjacent Opposing Pairs

Definition 4.2. A twisted pair of edges is a pair of the same, non-adjacent edges
that point in the same direction, for example, ...a...a.... An opposing pair of
edges is a pair of the same, non-adjacent edges that point in ‘opposing’ directions,
for example, ...a...a" ...

By Lemma 3.12 (2), without loss of generality, we have eliminated all adjacent
opposing pairs. If all we had to begin with were adjacent opposing pairs, then we
have S2.

Step 3: Reduce to One Vertex

~oP

SR

FIGURE 9. We begin with 3 Q vertices and 2 R vertices. We end
with 2 Q vertice and 3 R vertices. By induction, we result in only
the R vertex.

We can now relabel the vertices. We do this by picking a vertex and calling it
P. Note that P begins an edge and ends an edge. Label every vertex that begins
or ends these edges P and continue in this manner until all possible P vertices are
labelled. If there are no more vertices, we have reduced the polygon to one vertex.
If not, label vertices Q in a similar fashion and so on.
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We wish now to reduce the number of vertices to one without changing the
homeomorphism type of the diagram. We employ Lemma 3.12 (4), the cutting and
gluing step, to reduce n vertices of an undesirable letter to n — 1 vertices of that
letter and k vertices of a desirable letter to k + 1 vertices of that letter. The steps
are illustrated in Figure 9. By induction, we continue this process until only one
vertex remains.

Step 4: Collecting Twisted Pairs

We again employ cutting and gluing multiple times to bring all twisted pairs
together, as shown in Figure 10.

> AN

F1GURE 10. Bringing non-adjacent twisted pairs together.

We continue by induction, and if the only edges that remain are adjacent twisted
pairs, then the surface is nlP2.

Yo

FIGURE 11. A word consisting of adjacent twisted pairs is the
connected sum of multiple projective planes.

Step 5: Collecting Pairs of Opposing Pairs

Given Steps 1 through 4, we know that these pairs of opposing pairs exist.

The alternative, that is, a single opposing pair, means that the remaining edges
will be twisted pairs. We then have a word of the form wjawsa™' where w; and
wy are words consisting of adjacent twisted pairs. We will see that if Step 3 were
carried out, then this is impossible, that is, we will find more than one vertex.
Label the vertex between w; and a P. P begins a and is found throughout w; since
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FIGURE 12. Manipulating a Pair of Opposing Pairs to form cde='d~!.

w1 consists of adjacent twisted pairs, where there are vertices both beginning and
ending the same edge. Since no edge in w; is identified to an edge in wsy, we have
to start labelling with another vertex, 2, and so we have clearly not carried out
Step 3.

We perform a series of cutting and gluing maneuvers to bring pairs of opposing
pairs into the form aba~'b~'. By induction, we have combinations of adjacent
opposing pairs and adjacent twisted pairs.

Step 6: T? and P? At this point we either have S?, connected sums of T?,
or a planar diagram with twisted pairs and pairs of opposing pairs. The following
lemma shows that these can be reduced to twisted pairs.
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Lemma 4.3. The connected sums T2#P? and P2#P2#P2 are homeomorphic.

FIGURE 13. The reduction of T24P? to P24P2#4P?.

Proof. This proof begins with the planar model of the torus and the projected
plane. Through a series of clever cuts and glues as shown in Figure 13, we arrive
at the connected sum of three projected planes. ([

After these steps have been executed in order, we have found either the sphere,
the connected sum of tori, or the connected sum of projective plane as the classifi-
cation of our unknown surface. O
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5. THE EULER CHARACTERISTIC

We have accomplished the first task of finding elementary forms under which all
surfaces can be classified: the sphere, the connected sum of tori, and the connected
sum of projective planes. However, the complementary task of ensuring that any
two of these elementary forms are not homeomorphic remains. We now turn to
the Euler characteristic to further differentiate surfaces with very little information
- namely, the underlying structure defined by vertices, edges, and faces of planar
diagrams.

Definition 5.1. A quantity « is a topological invariant if a(X) = a(Y’) whenever
X and Y are topologically equivalent.

A significant topological invariant is the Euler characteristic.

Definition 5.2. The Euler characteristic of a finite complex K is

X(K) =D (=1) # (j—cell)
§=0
where (j—cell) refers to the number of n-cells in the complex K.

If we focus on 2-complexes, that is, surfaces, as we have throughout this paper,
we can restrict the Euler characteristic to surfaces and examine the equation

X (K) = v(K) —e(K) + f(K)

where v(K) is the number of vertices of K, e(K) the number of edges of K, and
f(K) the number of faces of K.

Theorem 5.3. If |K| and |L| are compact, connected surfaces and |K| = |L|, then
X(K) = x(L).

Proof. This proof closely follows the proof to Thm 4.1 and shows that each of
the types of manipulations taken by the proof results in no change in the Euler
characteristic. In each case, a step will take a complex K to a complex L with cells
fye,vof K and cells f’,¢e’,v" of L. The types of steps are triangulation, adding an
edge between two vertices, adding a vertex in the interior of a polygon and an edge
from the new vertex to an original vertex, and adding a vertex in the interior of an
edge. These types were noted throughout the proof of Thm 4.1.

(1) Type 1: Adding an edge between two vertices of a polygon. We have that
ff=f+1,¢ =e+1,and v = v, so that
X(L)=[f =+ =(f+D)—(e+D)+v=[—-e+v=x(K)
This type of move occurs in Steps 3, 4, and 5 of Thm 4.1.
(2) Type 2: Adding a vertex in the interior and an edge from a new vertex
to a boundary vertex of a polygon. We have that f' = f, ¢/ = e+ 1, and
v = v+ 1, so that
X(L)=f—e+v'=f—(e+1)+(v+1)=x(K)
This type of move occurs in Steps 1 and 2 of Thm 4.1.
(3) Type 3: Adding a vertex in the interior of an edge. We have that ' = f,
e =e+1,and v = v+ 1, so that, as above,
X(L)=f—e+v'=f—(e+1)+(v+1)=x(K)
This type of move occurs in Step 1 of Thm 4.1.
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All of the steps of Thm 4.1 thus have no effect on the Euler characteristic. We now
have that the Euler characteristic is invariant for compact, connected surfaces. [

Definition 5.4. If S is a compact, connected surface, and S 2 | K| for a complex
K, define x(5) = x(K).

Thm 5.3 tells us that this is well-defined, and furthermore, that it is a topological
invariant.

There is another powerful result of the Euler characteristic that relates the Euler
characteristic of a connected sum of surfaces and the Euler characteristics of both
surfaces.

Corollary 5.5. x(S1#S2) = x(S1) + x(S2) — 2.

Proof. Recall that connected sums are formed by removing discs from two surfaces
and gluing the surfaces together at these removed discs. Without loss of generality,
take triangulated complexes representing S; and So, K7 and K5. Take the removal
of the discs to be removals of the faces of triangles on the complexes. We have
S1#S2 = (K1 — triangle) U (K2 — triangle) where the union is at the missing
triangle. Call this complex K.

(1) the vertices of K are v(K) = v(K7) + v(K2) — 3.

(2) the edges of K are e(K) = e(K1) + e(K2) — 3.

(3) the faces of K are f(K) = f(K1)+ f(K2) — 2.
Therefore, x(S1#S2) = x(K) = x(K1) + x(K2) — 2. O

_

We now have had enough experience with the Euler characteristic to tackle the
question that has provided the motivation for this section, namely, whether or not
the elementary types of surfaces (the sphere, the connected sum of tori, and the
connected sum of projective planes) are really different. We begin by calculating
the Euler characteristic for these surfaces.

a Torus a —
P Projective
Plane a
P b P
b P Sphere P
P P P Q
Klein Mobius
a Bottle a a Band a 2
P
P s Q P

FIGURE 14. The planar diagrams of the sphere, torus, projective
plane, Klein bottle, and Mobius band.

Example 5.6. What is the Euler characteristic for the torus, the projective plane,
the Klein bottle, and the Mobius strip? We use the normal planar diagrams of
these surfaces illustrated in Figure 14.
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(1) Looking at the planar diagram of the sphere, we see that it has two vertices
P and @, one edge a, and one face. Thus, x(S?) =2—-1+1=2.

(2) Looking at the planar diagram of the torus, we see that it has one vertex
P, two edges a and b, and one face. Thus, x(T?) =1—-2+1=0.

(3) Looking at the planar diagram of the projective plane, we see that it has
one vertex P, one edge a, and one face. Thus, x(P?)=1-1+1=1.

(4) Looking at the planar diagram of the Klein bottle, we see that it has one
vertex P, two edges a and b, and one face. Thus, yx(Klein) =1—-2+4+1=0.

(5) Looking at the planar diagram of the Mobius strip, we see that it has two
vertices P and (), one edge a, and one face. Thus, x(Mobius) =2—1+1=
2.

Theorem 5.7. Every compact, connected surface is homeomorphic to exactly one
of the following: S%, nT?, or nP2.

Proof. By Thm 4.1, it suffices to prove that S2, nT?, and nP? are all topologically
distinct. By Example 5.6 and Corollary 5.5, we have:

(1) x(8?) =2.

(2) x(nT?) =2 — 2n.

(3) x(nP?) =2 —n.
The only case of overlap, then, is when x(nT?) = x(2nP?). In other words, by
Thm 5.3, we need to show that nT? is not homeomorphic to 2nP2. To see this, we
observe that nT? has a continuous outward-pointing normal vector for nT? C R?,
and so it cannot contain a Mobius band. However, P? contains a Mobius band, and
hence P?#S does as well for any surface S. In particular, 2nP? contains a Mobius
band, and therefore nT? is not homeomorphic to 2nP2. O

We now have the tools for identifying and distinguishing surfaces. With Thm 4.1,
we have found that all surfaces can be reduced to one of three classes of surfaces.
With Thm 5.3 and Thm 5.7, we have that these three classes of surfaces are the
only distinct, compact, connected surfaces.

6. APPLICATION OF THE EULER CHARACTERSTIC

As a conclusion to this paper, we give an application of the Euler characteristic.

A geographic map can be seen as a complex with vertices, edges, and faces.
Take, for example, a map of the United States. Its edges are the borders between
states, its vertices are the points where three or more states intersect, and its faces
are the states themselves. The general problem is coloring the map.

Definition 6.1. A legal coloring of a map is one such that no two adjacent faces
have the same color.

Lemma 6.2. Let S be a surface, S = |K| where the complex K has e(K) edges
and f(K) faces. If 2;((;(()) < N, then N colors are enough to color the map on S
determined by K.

Proof. Proof by Induction. Pick an integer N > 26&@ for all complexes K. Induct

on f(K), the number of faces of K. The initial cases, f(K) < N are trivial because
there are more colors than faces. Assume that we can color any map with m faces
with N colors. We will prove that we can do the same for any map with (m + 1)
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faces. We have N > ZLE), so the average number of edges per polygon is less than
N. Therefore, there exists a 2-cell (a polygon) in our complex with fewer than N
edges. Label this polygon P. Union P with a neighbor 2-cell, Q and ignore the
edge between them. The complex now has m faces, so it can be colored with IV
colors. Color as our inductive hypothesis allows. Bring back the edge separating P
from @ and remove the color from P. Since P has less than N neighbors, we can

use a color not used on any of these neighbors. ([l

Now we have a bound on the number of colors needed for a legal coloring of
a map on a surface in terms of complexes on the surface. The following theorem
2e

shows the relation between ¢ and the Euler characteristic (a function of surfaces).

Lemma 6.3. Let v(K) be the number of vertices of a complex K and e(K) the
number of edges. Then, v(K) < 26(31()

Proof. When we glue the polygons to form K, each vertex is the meeting point
of at least three polygons. Therefore, there are at least three edges meeting at
each vertex. Thus, 3v(K) < number of vertices before assembly = 2e(K), since

before assembly, we have the same number of edges as vertices. Therefore, v(K) <
2e(K) 0
=

Theorem 6.4. For S a surface and any complex K on S with e edges and f faces,

2e(K) _ 6 (1 X(S)> .

J(EK) - J(K)

Proof. By Lemma 6.3, we now have x(5) — f(K) = v(K) —e(K) < # Hence,
3(f(K)—x(9)) > e(K). Dividing by f(K) on both sides gives the desired result. O

Theorem 6.5. For a compact, connected surface S, let N(S) be the minimal num-
ber of colors needed to color all maps on S. Then, N(T?) =7 and N(P?) = 6.

FI1GURE 15. A map on the torus requiring seven colors and a map
on the projective plane requiring six colors. The vertices are the
vertices of the map or complex, not of the planar diagram.



16 JUSTIN HUANG

Proof. We show first that N(T?) < 7 and N(P?) < 6. For the torus, by Thm 6.4,

we have 2;((;5)) < 6. Hence, by Lemma 6.2, 7 colors are sufficient to color any map

on the torus. Similarly for the projective plane, N > 6 (1 - %) Thus, 6 colors

are sufficient. We prove necessity by the maps on the torus and the projective
plane shown in Figure 15. Note that every face is adjacent to every other face, and
thus these maps illustrate necessity. We then have N(T?) = 7 and N(P?) = 6 as
desired. (]
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