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Let φ : V → W be a linear transformation where n = dim(V ) and m =
dim(W ), and let M be the matrix corresponding to φ written using the basis
vectors {v̂i} for V , and {ŵi} for W .

I would like in this paper to present a method for determining the dimension
d of the Kernel of φ by looking at M .
One idea for how to count to d is to count the number of linearly dependent
row vectors in M .
The problem with this idea is that a set of row vectors a and a superset of a,
b, could be linearly dependent for the same reason, motivating the following
counterexample:

M =

1 2
2 4
3 7


If we let a = {M0,M1} and b = {M0,M1,M2}, then we would count two linearly
dependent sets of row vectors, but all elements of the Kernel of M are of the
form,

r =

2c
−c
0


and are thus one dimensional.
This problem of overlapping sets of linearly dependant vectors motivates the
following definition:

Definition. A set of vectors S is a minimal linearly dependent set iff no proper
subset of S is linearly dependent.

The idea behind minimal linear dependence is that a minimal linearly depen-
dent set of row vectors of M represents a reason why the Kernel of M should
have an extra dimension, without any meaningless garbage rows included by
accident. Indeed, were we to count the minimal linearly dependent sets of M
in our previous example, we would count only a, and properly compute 1 to be
the dimension of the Kernel of M .
Counting minimal linearly dependent sets is still problematic for the following
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reason (among others). Let M be a 7 · 1 matrix containing all 1s. Each of the(
7
2

)
= 21 pairs of row vectors is minimal linearly dependent, which implies a

21 dimensional Kernel, yet the dimension of V is only 7, and the Kernel of M
is a subspace of V . The extra counting that we did in this case seems to be a
result of the high degree of overlapping of our minimal linearly dependent sets.
Motivating the following, and final, method for counting to d:

Theorem 1. Count minimal linearly dependent sets of row vectors of M (S0, S1 . . . Sl)
such that (∀j) (Sj ∩

⋃
i Si 6= Sj). Then l = d.

To address this theorem we will need a few definitions.

Definition. If S = {ŝ1, ŝ2, · · · } is a set of row vectors of matrix M = {m̂1, m̂2, · · · },
then a vector v̂ 6= 0̂ is a dependency in S iff M · v̂ = 0 and m̂i /∈ S ⇒ ˆv(i) = 0̂.

Definition. If S = {ŝ1, ŝ2, · · · } is a set of row vectors of matrix M = {m̂1, m̂2, · · · },
then the dependence multiplicity of S, (dep-mult(S)) is the rank of its depen-
dencies.

Definition. If v is a vector of Rn, then vsupp is a vector containing only those
elements in the support of v, indexed in the same order.

Thus if

v =


0
0
2
4
0
8

 (1)

Then

vsupp =

2
4
8

 (2)

First we will show that every minimal linearly dependent set counted has a
single dependency.

Theorem 2. If S = {ŝ1, ŝ2, · · · } is a set of row vectors of n × n matrix M =
{m̂1, m̂2, · · · }, and S is minimal linearly dependent, then dep-mult(S) = 1

Proof. Let v̂, ŵ be two dependencies of S
To show that dep-mult(S) = 1 is suffices to show that v̂ and ŵ are linearly
dependent.
We know that

0 =
n−1∑
i=0

v̂supp(i) · ŝi = v̂supp(0) · ŝ0 +
n−1∑
i=1

v̂supp(i) · ŝi (3)
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Also,

0 =
n−1∑
i=0

ŵsupp(i) · ŝi = ŵsupp(0) · ŝ0 +
n−1∑
i=1

ŵsupp(i) · ŝi (4)

Thus, multiplying (4) by v̂supp(0)
ŵsupp(0)

v̂supp(0)
ŵsupp(0)

·ŵsupp(0)·ŝ0+
n−1∑
i=1

v̂supp(0)
ŵsupp(0)

·ŵsupp(i)·ŝi = v̂supp(0)·ŝ0+
n−1∑
i=1

v̂supp(0)
ŵsupp(0)

·ŵsupp(i)·ŝi = 0

(5)
And subtracting (5) from (3) we have,
0 = supp(0) · ŝ0 − v̂supp(0) · ŝ0 +

∑n−1
i=1

v̂supp(0)
ŵsupp(0) · ŵ

supp(i) · ŝi − v̂supp(i) · ŝi

0 =
∑n−1

i=1
v̂supp(0)
ŵsupp(0) · ŵ

supp(i)− v̂supp(i) · ŝi

And since {ŝ1, · · · , ŝn−1} is linearly independent, we know that

∀i v̂supp(0)
ŵsupp(0)

· ŵi − v̂i = 0 (5)

∀i v̂supp(0)
ŵsupp(0)

· ŵi = v̂i (6)

v̂ =
v̂supp(0)
ŵsupp(0)

· ŵ (7)

(8)

And thus v̂ and ŵ are linearly dependent.

We can also prove that by including extra row vectors in a minimal linearly
dependent set S, we increase the dependence rank of S only if the new set has
more minimal linearly dependent subsets than the old one.

Theorem 3. If S = {ŝ1, ŝ2, · · · } is a minimal linearly dependent set of row vec-
tors of n×n matrix M = {m̂1, m̂2, · · · }, and k̂ = m̂k, and ∀sa proper subset of S, {k̂}∪
S is linearly independent, and K = {k̂ ∪ S} then dep-mult(K) = 1

Proof. Clearly, there is a one dimensional set of dependencies of K, namely the
dependencies of S.
Assume that v̂ is a dependency of K, then we need to show that v̂(k) = 0.
We have

0 = k̂ · v̂supp(k) + ŝ1 · v̂supp(1) +
∑
i 6=k
i 6=1

ŝi · v̂supp(i) (9)

Also, for some ŵ, a dependency of S, which we can choose such that ŵsupp(1) =
ˆvsupp(1),

0 = v̂supp(1) · ŝ1 +
∑
i 6=1
i 6=k

ŵsupp(i) · ŝi (10)
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Subtracting (10) from (9) we get,

0 = 0 + k̂ · v̂(k) +
∑
i 6=1
i 6=k

(v̂(i)− ŵ(i)) · ŝi (11)

Since we have |S| terms in this sum, the vectors (v̂i − ŵi) ∪ k̂ must be linearly
independent and v̂(k) = 0.

Theorem 4. If S is a set of row vectors and we count minimal linearly depedent
subsets (s1, s2, . . . sl) of it as described above, then the dependencies of the si,
namely (v̂1, v̂2, . . . v̂l) are linearly independent.

Proof. Assume that for some (ai) we have

0 =
∑

ai · v̂supp
i (12)

And now we wish to show that (∀j) aj = 0.
We know because of the way in which the si were generated that there is some
w such that m̂w is an element of si if and only if i = j. This is true because if
it were not the case, then sj would be a subset of the union of the other si, and
we have prohibited this in our construction of the si. Let A be a matrix whose
w row is equal to that of M , but contains 0 everywhere else. Thus:

0 = 0 ∗A = aj · v̂supp
j ·A +

∑
i 6=j

ai · v̂supp
i ·A (13)

v̂j ·A 6= 0 because otherwise {m̂w} ⊂ sj would be a linearly dependent set, and
thus si would not be a minimal linearly dependent set.
Also, for i 6= j we have v̂i · A = 0 because v̂i(w) = 0 and all the non-w rows of
A are 0 vectors.
Thus we can conclude that aj = 0, and this must be true for all j.

Now proving our original theorem is trivial. We can start off considering
any minimal linearly dependent set S in M , and start extending it with more
rows of M . We know that every time we extend S, its dependence rank would
be equal to the number of minimal linear dependent subsets of S that we would
count. Thus by something equivalent to induction, the number of minimal linear
dependent subsets of M that we would count would be equal to the dependence
rank of M which is equal to the dimension of the Kernel of φ.
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