# Dependance Rank 

Korei Klein

August 3, 2008

Let $\phi: V \rightarrow W$ be a linear transformation where $n=\operatorname{dim}(V)$ and $m=$ $\operatorname{dim}(W)$, and let $M$ be the matrix corresponding to $\phi$ written using the basis vectors $\left\{\hat{v}_{i}\right\}$ for $V$, and $\left\{\hat{w}_{i}\right\}$ for $W$.

I would like in this paper to present a method for determining the dimension $d$ of the Kernel of $\phi$ by looking at $M$.
One idea for how to count to $d$ is to count the number of linearly dependent row vectors in $M$.
The problem with this idea is that a set of row vectors $a$ and a superset of $a$, $b$, could be linearly dependent for the same reason, motivating the following counterexample:

$$
M=\left[\begin{array}{ll}
1 & 2 \\
2 & 4 \\
3 & 7
\end{array}\right]
$$

If we let $a=\left\{M_{0}, M_{1}\right\}$ and $b=\left\{M_{0}, M_{1}, M_{2}\right\}$, then we would count two linearly dependent sets of row vectors, but all elements of the Kernel of $M$ are of the form,

$$
r=\left[\begin{array}{c}
2 c \\
-c \\
0
\end{array}\right]
$$

and are thus one dimensional.
This problem of overlapping sets of linearly dependant vectors motivates the following definition:

Definition. A set of vectors $S$ is a minimal linearly dependent set iff no proper subset of $S$ is linearly dependent.

The idea behind minimal linear dependence is that a minimal linearly dependent set of row vectors of $M$ represents a reason why the Kernel of $M$ should have an extra dimension, without any meaningless garbage rows included by accident. Indeed, were we to count the minimal linearly dependent sets of $M$ in our previous example, we would count only $a$, and properly compute 1 to be the dimension of the Kernel of $M$.
Counting minimal linearly dependent sets is still problematic for the following
reason (among others). Let $M$ be a $7 \cdot 1$ matrix containing all 1 s . Each of the $\binom{7}{2}=21$ pairs of row vectors is minimal linearly dependent, which implies a 21 dimensional Kernel, yet the dimension of $V$ is only 7, and the Kernel of $M$ is a subspace of $V$. The extra counting that we did in this case seems to be a result of the high degree of overlapping of our minimal linearly dependent sets. Motivating the following, and final, method for counting to $d$ :

Theorem 1. Count minimal linearly dependent sets of row vectors of $M\left(S_{0}, S_{1} \ldots S_{l}\right)$ such that $(\forall j)\left(S_{j} \cap \bigcup_{i} S_{i} \neq S_{j}\right)$. Then $l=d$.

To address this theorem we will need a few definitions.
Definition. If $S=\left\{\hat{s}_{1}, \hat{s}_{2}, \cdots\right\}$ is a set of row vectors of matrix $M=\left\{\hat{m}_{1}, \hat{m}_{2}, \cdots\right\}$, then a vector $\hat{v} \neq \hat{0}$ is a dependency in $S$ iff $M \cdot \hat{v}=0$ and $\hat{m_{i}} \notin S \Rightarrow \hat{v(i)}=\hat{0}$.
Definition. If $S=\left\{\hat{s_{1}}, \hat{s_{2}}, \cdots\right\}$ is a set of row vectors of matrix $M=\left\{\hat{m_{1}}, \hat{m_{2}}, \cdots\right\}$, then the dependence multiplicity of $S$, (dep-mult $(S)$ ) is the rank of its dependencies.

Definition. If $v$ is a vector of $R^{n}$, then $v^{\text {supp }}$ is a vector containing only those elements in the support of $v$, indexed in the same order.

Thus if

$$
v=\left[\begin{array}{l}
0  \tag{1}\\
0 \\
2 \\
4 \\
0 \\
8
\end{array}\right]
$$

Then

$$
v^{\text {supp }}=\left[\begin{array}{l}
2  \tag{2}\\
4 \\
8
\end{array}\right]
$$

First we will show that every minimal linearly dependent set counted has a single dependency.
Theorem 2. If $S=\left\{\hat{s}_{1}, \hat{s}_{2}, \cdots\right\}$ is a set of row vectors of $n \times n$ matrix $M=$ $\left\{\hat{m}_{1}, \hat{m}_{2}, \cdots\right\}$, and $S$ is minimal linearly dependent, then $\operatorname{dep}-m u l t(S)=1$

Proof. Let $\hat{v}, \hat{w}$ be two dependencies of $S$
To show that dep-mult $(S)=1$ is suffices to show that $\hat{v}$ and $\hat{w}$ are linearly dependent.
We know that

$$
\begin{equation*}
0=\sum_{i=0}^{n-1} \hat{v}^{\text {supp }}(i) \cdot \hat{s}_{i}=\hat{v}^{\text {supp }}(0) \cdot \hat{s}_{0}+\sum_{i=1}^{n-1} \hat{v}^{\text {supp }}(i) \cdot \hat{s}_{i} \tag{3}
\end{equation*}
$$

Also,

$$
\begin{equation*}
0=\sum_{i=0}^{n-1} \hat{w}^{\text {supp }}(i) \cdot \hat{s}_{i}=\hat{w}^{\text {supp }}(0) \cdot \hat{s}_{0}+\sum_{i=1}^{n-1} \hat{w}^{\text {supp }}(i) \cdot \hat{s}_{i} \tag{4}
\end{equation*}
$$

Thus, multiplying (4) by $\frac{\hat{v}^{\text {supp }}(0)}{\hat{w} s u p p(0)}$
$\frac{\hat{v}^{\text {supp }}(0)}{\hat{w}^{\text {supp }}(0)} \cdot \hat{w}^{\text {supp }}(0) \cdot \hat{s}_{0}+\sum_{i=1}^{n-1} \frac{\hat{v}^{\text {supp }}(0)}{\hat{w}^{\text {supp }}(0)} \cdot \hat{w}^{\text {supp }}(i) \cdot \hat{s}_{i}=\hat{v}^{\text {supp }}(0) \cdot \hat{s}_{0}+\sum_{i=1}^{n-1} \frac{\hat{v}^{\text {supp }}(0)}{\hat{w}^{\text {supp }}(0)} \cdot \hat{w}^{\text {supp }}(i) \cdot \hat{s}_{i}=0$
And subtracting (5) from (3) we have,
$0=\operatorname{supp}(0) \cdot \hat{s}_{0}-\hat{v}^{\text {supp }}(0) \cdot \hat{s}_{0}+\sum_{i=1}^{n-1} \frac{\hat{v}^{\text {supp }}(0)}{\hat{w}^{\text {supp }}(0)} \cdot \hat{w}^{\text {supp }}(i) \cdot \hat{s}_{i}-\hat{v}^{\text {supp }}(i) \cdot \hat{s}_{i}$
$0=\sum_{i=1}^{n-1} \frac{\hat{v}^{\text {supp }}(0)}{\hat{w}^{\text {supp }}(0)} \cdot \hat{w}^{\text {supp }}(i)-\hat{v}^{\text {supp }}(i) \cdot \hat{s}_{i}$
And since $\left\{\hat{s}_{1}, \cdots, \hat{s}_{n-1}\right\}$ is linearly independent, we know that

$$
\begin{gather*}
\forall i \frac{\hat{v}^{\text {supp }}(0)}{\hat{w}^{\text {supp }}(0)} \cdot \hat{w}_{i}-\hat{v}_{i}=0  \tag{5}\\
\forall i \frac{\hat{v}^{\text {supp }}(0)}{\hat{w}^{\text {supp }}(0)} \cdot \hat{w}_{i}=\hat{v}_{i}  \tag{6}\\
\hat{v}=\frac{\hat{v}^{\text {supp }}(0)}{\hat{w}^{\text {supp }}(0)} \cdot \hat{w} \tag{7}
\end{gather*}
$$

And thus $\hat{v}$ and $\hat{w}$ are linearly dependent.
We can also prove that by including extra row vectors in a minimal linearly dependent set $S$, we increase the dependence rank of $S$ only if the new set has more minimal linearly dependent subsets than the old one.

Theorem 3. If $S=\left\{\hat{s}_{1}, \hat{s}_{2}, \cdots\right\}$ is a minimal linearly dependent set of row vectors of $n \times n$ matrix $M=\left\{\hat{m}_{1}, \hat{m}_{2}, \cdots\right\}$, and $\hat{k}=\hat{m}_{k}$, and $\forall$ sa proper subset of $S,\{\hat{k}\} \cup$ $S$ is linearly independent, and $K=\{\hat{k} \cup S\}$ then dep-mult $(K)=1$

Proof. Clearly, there is a one dimensional set of dependencies of $K$, namely the dependencies of $S$.
Assume that $\hat{v}$ is a dependency of $K$, then we need to show that $\hat{v}(k)=0$.
We have

$$
\begin{equation*}
0=\hat{k} \cdot \hat{v}^{\text {supp }}(k)+\hat{s}_{1} \cdot \hat{v}^{\text {supp }}(1)+\sum_{\substack{i \neq k \\ i \neq 1}} \hat{s}_{i} \cdot \hat{v}^{\text {supp }}(i) \tag{9}
\end{equation*}
$$

Also, for some $\hat{w}$, a dependency of $S$, which we can choose such that $\hat{w}^{\text {supp }}(1)=$ $v^{\text {supp }}(1)$,

$$
\begin{equation*}
0=\hat{v}^{\text {supp }}(1) \cdot \hat{s}_{1}+\sum_{\substack{i \neq 1 \\ i \neq k}} \hat{w}^{\text {supp }}(i) \cdot \hat{s}_{i} \tag{10}
\end{equation*}
$$

Subtracting (10) from (9) we get,

$$
\begin{equation*}
0=0+\hat{k} \cdot \hat{v}(k)+\sum_{\substack{i \neq 1 \\ i \neq k}}(\hat{v}(i)-\hat{w}(i)) \cdot \hat{s}_{i} \tag{11}
\end{equation*}
$$

Since we have $|S|$ terms in this sum, the vectors $\left(\hat{v}_{i}-\hat{w}_{i}\right) \cup \hat{k}$ must be linearly independent and $\hat{v}(k)=0$.

Theorem 4. If $S$ is a set of row vectors and we count minimal linearly depedent subsets $\left(s_{1}, s_{2}, \ldots s_{l}\right)$ of it as described above, then the dependencies of the $s_{i}$, namely $\left(\hat{v}_{1}, \hat{v}_{2}, \ldots \hat{v}_{l}\right)$ are linearly independent.
Proof. Assume that for some $\left(a_{i}\right)$ we have

$$
\begin{equation*}
0=\sum a_{i} \cdot \hat{v}_{i}^{\text {supp }} \tag{12}
\end{equation*}
$$

And now we wish to show that $(\forall j) a_{j}=0$.
We know because of the way in which the $s_{i}$ were generated that there is some $w$ such that $\hat{m_{w}}$ is an element of $s_{i}$ if and only if $i=j$. This is true because if it were not the case, then $s_{j}$ would be a subset of the union of the other $s_{i}$, and we have prohibited this in our construction of the $s_{i}$. Let $A$ be a matrix whose $w$ row is equal to that of $M$, but contains 0 everywhere else. Thus:

$$
\begin{equation*}
0=0 * A=a_{j} \cdot \hat{v}_{j}^{\text {supp }} \cdot A+\sum_{i \neq j} a_{i} \cdot \hat{v}_{i}^{\text {supp }} \cdot A \tag{13}
\end{equation*}
$$

$\hat{v_{j}} \cdot A \neq 0$ because otherwise $\left\{\hat{m_{w}}\right\} \subset s_{j}$ would be a linearly dependent set, and thus $s_{i}$ would not be a minimal linearly dependent set.
Also, for $i \neq j$ we have $\hat{v}_{i} \cdot A=0$ because $\hat{v}_{i}(w)=0$ and all the non- $w$ rows of $A$ are 0 vectors.
Thus we can conclude that $a_{j}=0$, and this must be true for all $j$.

Now proving our original theorem is trivial. We can start off considering any minimal linearly dependent set $S$ in $M$, and start extending it with more rows of $M$. We know that every time we extend $S$, its dependence rank would be equal to the number of minimal linear dependent subsets of $S$ that we would count. Thus by something equivalent to induction, the number of minimal linear dependent subsets of $M$ that we would count would be equal to the dependence rank of $M$ which is equal to the dimension of the Kernel of $\phi$.

