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Let ¢ : V. — W be a linear transformation where n = dim(V') and m =
dim(W), and let M be the matrix corresponding to ¢ written using the basis
vectors {9;} for V, and {w;} for W.

I would like in this paper to present a method for determining the dimension
d of the Kernel of ¢ by looking at M.
One idea for how to count to d is to count the number of linearly dependent
row vectors in M.
The problem with this idea is that a set of row vectors a and a superset of a,
b, could be linearly dependent for the same reason, motivating the following
counterexample:
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If we let a = { My, M; } and b = { My, M7, Ms}, then we would count two linearly
dependent sets of row vectors, but all elements of the Kernel of M are of the
form,

2c

and are thus one dimensional.
This problem of overlapping sets of linearly dependant vectors motivates the
following definition:

Definition. A set of vectors S is a minimal linearly dependent set iff no proper
subset of S is linearly dependent.

The idea behind minimal linear dependence is that a minimal linearly depen-
dent set of row vectors of M represents a reason why the Kernel of M should
have an extra dimension, without any meaningless garbage rows included by
accident. Indeed, were we to count the minimal linearly dependent sets of M
in our previous example, we would count only a, and properly compute 1 to be
the dimension of the Kernel of M.

Counting minimal linearly dependent sets is still problematic for the following



reason (among others). Let M be a 7 - 1 matrix containing all 1s. Each of the

2
21 dimensional Kernel, yet the dimension of V is only 7, and the Kernel of M
is a subspace of V. The extra counting that we did in this case seems to be a
result of the high degree of overlapping of our minimal linearly dependent sets.
Motivating the following, and final, method for counting to d:

(7 = 21 pairs of row vectors is minimal linearly dependent, which implies a

Theorem 1. Count minimal linearly dependent sets of row vectors of M (Sp, St .. .

such that (Vj) (S; N, Si #S;). Then | =d.

To address this theorem we will need a few definitions.

Definition. If S = {51, §2, - - - } is a set of row vectors of matrix M = {miq, mg, - -

then a vector © # 0 is a dependency in S iff M - =0 and m; ¢ S = v(i) = 0.

Definition. If S = {1, $3, - - - } is a set of row vectors of matrix M = {m, ma, - -

then the dependence multiplicity of S, (dep-mult(S)) is the rank of its depen-
dencies.

Definition. If v is a vector of R™, then v*“PP is a vector containing only those
elements in the support of v, indexed in the same order.

Thus if
0
0
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First we will show that every minimal linearly dependent set counted has a
single dependency.

Theorem 2. If S = {51,582, -} is a set of row vectors of n X n matrizx M =
{ry,ma, -}, and S is minimal linearly dependent, then dep-mult(S) =1

Proof. Let 0,0 be two dependencies of S

To show that dep-mult(S) = 1 is suffices to show that ¢ and @ are linearly
dependent.

We know that

n—1 n—1
0= " 0%PP(i) - 5 = 0°"PP(0) - S0 + Y _ 0°"PP(i) - §; (3)
i=0 1=1
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Also,

n—1
0= Z WPP(7) - 3 = W*PP(0) - S0 + Z PP () - & (4)
=0
. . 'L/jsupp(o)
Thus, multiplying (4) by T5upp(0)
,&supp(o) Asupp supp 0 PP B Asupp HsupPP O Jr— B
wsTp(O) So+z 5 (0) (1)-8; =0 so—i-z G5 (0) (i)-8, =0

(5)
And subtracting (5) from (3) we have,

0 = 22(0) - 3 — 577 (0) - fo + 15, ey - @) - 8 = 07P(E) -4

_1 pSupp ~ . ~ . a
0= SISt - 0°7(0) = 0°72(0) - 5

And since {81, -+ ,8,-1} is linearly independent, we know that
Asupp( ) o A
Vzwsupp( 0) —0;,=0 (5)
supp( ) . A
Vi WP ( ) FWi = (6)
R su (0) )

(8)
And thus v and @ are linearly dependent. O

We can also prove that by including extra row vectors in a minimal linearly
dependent set S, we increase the dependence rank of S only if the new set has
more minimal linearly dependent subsets than the old one.

Theorem 3. If S = {31, 82, - } is a minimal linearly dependent set of row vec-
tors of nxn matrix M = {mq,Mma, -}, and k = my, and Vsa proper subset of S, {k}U
S is linearly independent, and K = {k U S} then dep-mult(K) =1

Proof. Clearly, there is a one dimensional set of dependencies of K, namely the

dependencies of S.

Assume that ¢ is a dependency of K, then we need to show that o(k) = 0.

We have

0=k 0™PP(k) + & - 0°"PP(1) + Y _ & - 0°PP( (9)

i#k
i#1

Also, for some ), a dependency of S, which we can choose such that w**PP(1) =

vin(1),

0=0"PP(1)- 81+ »_w™P(i) - 3 (10)

i#1
ik



Subtracting (10) from (9) we get,

0=0+k-o(k)+ > (8(i) — (i) - 5 (11)

Since we have | S| terms in this sum, the vectors (9; — ;) U k must be linearly
independent and 9(k) = 0. O

Theorem 4. If S is a set of row vectors and we count minimal linearly depedent
subsets (s1,$82,...51) of it as described above, then the dependencies of the s;,
namely (01, g, ...0;) are linearly independent.

Proof. Assume that for some (a;) we have

0=> ai-0]""" (12)

And now we wish to show that (Vj)a,; = 0.

We know because of the way in which the s; were generated that there is some
w such that ni,, is an element of s; if and only if 4 = j. This is true because if
it were not the case, then s; would be a subset of the union of the other s;, and
we have prohibited this in our construction of the s;. Let A be a matrix whose
w row is equal to that of M, but contains 0 everywhere else. Thus:

0=0%A=a; """ A+ a; 0] A (13)
i#]

Uj - A # 0 because otherwise {ni,, } C s; would be a linearly dependent set, and
thus s; would not be a minimal linearly dependent set.
Also, for i # j we have ¥; - A = 0 because 9;(w) = 0 and all the non-w rows of
A are 0 vectors.
Thus we can conclude that a; = 0, and this must be true for all j.

O

Now proving our original theorem is trivial. We can start off considering
any minimal linearly dependent set S in M, and start extending it with more
rows of M. We know that every time we extend S, its dependence rank would
be equal to the number of minimal linear dependent subsets of S that we would
count. Thus by something equivalent to induction, the number of minimal linear
dependent subsets of M that we would count would be equal to the dependence
rank of M which is equal to the dimension of the Kernel of ¢.



