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Abstract. This paper is a simple summary of the first most basic definitions

in Algebraic Geometry as they are presented in Dummit and Foote ([1]), with a

focus on establishing a dictionary between algebra and geometry. In particular
this dictionary helps in visualizing certain computations that take place in

polynomial rings. Among these are decomposing ideals in a manner analogous

to prime factorization, and determining when coordinate rings are integrally
closed.
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1. Defining the dictionary

This section very closely follows the first two sections of Chapter 15 of Dummit
& Foote [1] with some omission and reordering. Some of the ideas also come from
[2]. Everything is presented at the level of a student who has had a first course in
Abstract Algebra.

The first place in which most people encounter a geometric interpretation of an
algebraic object is in the Fundamental Theorem of Algebra:

Theorem 1.1 (Fundamental Theorem of Algebra). Let k be a field with algebraic
closure k̄. Then if f(x) ∈ k[x] is a polynomial, f has exactly n roots in k̄.

This theorem establishes a correspondence between algebra (the polynomial ring
k[x]), and geometry (the set of roots in one dimensional affine space over k). The
polynomial ring in n variables over a field k is closely associated with n-dimensional
affine space An(k), since a polynomial in the ring can be evaluated at a point in
the space. A solution to a polynomial is a point at which it evaluates to zero.

Definition 1.2. Let S ⊆ k[x1, . . . , xn]. Then

Z(S) = {(a1, . . . , an) ∈ An(k)|f(a1, . . . , an) = 0 for all f ∈ S}

A set of the form Z(S) for some S is called an algebraic set.
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The set of roots of a polynomial in one variable is an algebraic set.
Z is a surjective map from the power set of k[x1, . . . , xn] to the set of algebraic

subsets of An(k). This map reverses inclusions, since if more polynomials are added
to a set of polynomials there can be no new points at which they are all zero, and
there could be fewer. Using this fact, we can show the following:

Lemma 1.3. Let S ⊆ k[x1 . . . , xn]. If I is the ideal generated by S, then Z(S) =
Z(I).

Proof. We already have Z(I) ⊆ Z(S), since S ⊆ I. Now suppose (a1, . . . , an) ∈
Z(S). Every element f of I is a finite linear combination of elements of S, so
f(a1, . . . , an) = 0, so Z(S) ⊆ Z(I). Therefore Z(S) = Z(I). �

This shows that when Z is restricted to the set of ideals of k[x1, . . . , xn], it
remains surjective. It is not injective: Z(x) = Z(x2) = {0} in R, but x and x2

generate different ideals in R[x].

Example 1.4. Not every subset of n-dimensional affine space is an algebraic set.
In 1-dimension, the algebraic sets are the finite sets, the empty set, and the whole
space. This is because k is a field, so k[x] is a PID, so every ideal is generated by
only one polynomial. Therefore every algebraic set Z(S) is equal to Z(f) for some
polynomial f ∈ k[x]. f can only have finitely many roots. In the special cases
where f is a constant polynomial, Z(f) is either k or ∅, depending on whether f is
zero or not.

Z gives us a way to interpret algebra geometrically. We still need a way to
interpret geometry algebraically.

Definition 1.5. Let A ⊆ An(k). Then

I(A) = {f ∈ k[x1, . . . , xn]|f(a1, . . . , an) = 0 for all (a1, . . . , an) ∈ A}

Proposition 1.6. I(A) is an ideal for all A ⊆ An(k)

Proof. The zero polynomial is in I(A) for any A, so I(A) 6= ∅. Suppose f, g ∈ I(A),
h ∈ k[x1 . . . , xn]. Then for any (a1 . . . , an) ∈ A, we have (f − hg)(a1 . . . , an) =
f(a1 . . . , an)− h(a1, . . . , an)g(a1, . . . , an) = 0, so f − hg ∈ I(A). Therefore I(A) is
an ideal. �

I is not surjective from the power set of An(k) to the set of ideals of k[x1, . . . , xn]:
In R[x], the ideal (x2 + 1) is not in the image of I. This is because x2 + 1 has no
roots in R.

Here are some basic, easily verified, and useful facts, each with a one sentence
explanation by way of proof:

Proposition 1.7. For all of the following, I and J are ideals with I ⊆ J ⊆
k[x1, . . . , xn], (we only need to consider ideals, because of Lemma 1.3) and A ⊆
B ⊆ An(k).

(1) Z(J) ⊆ Z(I) and I(B) ⊆ I(A).
(2) Z(I ∪ J) = Z(I) ∩ Z(J), and I(A ∪B) = I(A) ∩ I(B).
(3) Z(0) = An(k) and Z(k[x1, . . . , xn]) = ∅. Also I(∅) = k[x1, . . . , xn].
(4) Z(I) ∪ Z(J) = Z(IJ) = Z(I ∩ J).
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Proof. (1) We have already used the first fact, but here is a more precise
proof of it: Let (a1, . . . , an) ∈ Z(J), and let f ∈ I. Then f ∈ J , so
f(a1, . . . , an) = 0, so (a1, . . . , an) ∈ Z(I).

For the second, if f ∈ I(B), f(a1, . . . , an) = 0 for (a1, . . . , an) ∈ B ⊆ A,
so f ∈ I(A).

(2) Z(I ∪ J) ⊆ Z(I) ∩ Z(J) and I(A ∪B) ⊆ I(A) ∩ I(B) because of (1).
If (a1, . . . , an) ∈ Z(I)∩Z(J), then for all f ∈ I and all g ∈ J , f(a1, . . . , an) =

0 and g(a1, . . . , an) = 0, so (a1, . . . , an) ∈ Z(I ∪ J).
If f ∈ I(A)∩I(B), then for all (a1, . . . , an) ∈ A, and all (b1, . . . , bn) ∈ B,

f(a1, . . . , an) = 0 and f(b1, . . . , bn) = 0, so f ∈ I(A ∪B).
(3) The zero polynomial is zero on all of An(k).

1 ∈ k[x1, . . . , xn], and the constant polynomial 1 never evaluates to zero.
1 ∈ I(∅), and 1 is a unit so it generates the whole ring k[x1, . . . , xn].

(4) IJ ⊆ I and J so by (1), Z(I) ∪ Z(J) ⊆ Z(IJ). The same argument works
with I ∩ J substituted for IJ .

If (a1, . . . , an) ∈ Z(IJ), then (fg)(a1, . . . , an) = 0 whenever f ∈ I, g ∈ J
which means (a1, . . . , an) ∈ Z(I) or Z(J).
IJ ⊆ I ∩ J so by (1), Z(I ∩ J) ⊆ Z(IJ)−Z(I) ∪ Z(J).

�

Now it makes sense to return to the question of when Z and I are surjective and
injective.

Theorem 1.8. I restricted to the set of algebraic sets and Z restricted to the image
of I are both bijections, and they are inverses of each other.

Proof. To see that I restricted to the image of Z is surjective, pick I(A) in the image
of I. Let V = Z(I(A)). If f ∈ I(A) then f(a1, . . . , an) = 0 for all (a1, . . . , an) ∈ V ,
so f ∈ I(V ), so I(A) ⊆ I(V ). A ⊆ V , so I(V ) ⊆ I(A). Therefore I(A) = I(V ).
V is an algebraic set, so I restricted to the set of algebraic sets is surjective onto
the image of I without the restriction.

We already have that I is injective, so I is a bijection between the set of algebraic
sets and ideals of the form I(A).

Now, let V = Z(I) be an algebraic set, where I ⊆ k[x1, . . . , xn] is an ideal. If
f ∈ I, f(a1, . . . , an) = 0 for (a1, . . . , an) ∈ V , so f ∈ I(V ). Then I ⊆ I(V ), so
Z(I(V )) ⊆ Z(I). If (a1, . . . , an) ∈ V , then f(a1, . . . , an) = 0 for f ∈ I(V ), so
(a1, . . . , an) ∈ Z(I(V )). Therefore Z restricted to the image of I is surjective.
Furthermore, since Z(I(V )) = V if V is an algebraic set, Z is the inverse of I. �

Definition 1.9. An algebraic set is called reducible if it can be written as the
union of proper algebraic subsets. An algebraic set that is not reducible is called a
variety.

There is an associated algebraic idea of an irreducible ideal, which is kind of like
a prime ideal.

Definition 1.10. An ideal I is called irreducible if it cannot be written as the
intersection of two ideals in which it is properly contained.

All prime ideals are irreducible, since if P ⊂ R is a prime ideal with P = Q1∩Q2,
then Q1Q2 ⊆ P . If P is properly contained in Q1, pick q1 ∈ Q1 − P . Then
q1q2 ∈ Q1Q2 ⊆ P for all q2 ∈ Q2, but since P is prime this implies q2 ∈ P , so
Q2 = P .
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It would be nice to know how the dictionary works when it comes to irreducible
varieties. To explore this further, we need a few more tools.

Definition 1.11. An ideal I is in a commutative ring with 1 is called primary if
whenever ab ∈ I either a ∈ I or bn ∈ I for some n.

Lemma 1.12. In a Noetherian ring, irreducible ideals are primary.

Proof. Take an irreducible ideal I and an element ab ∈ I. If b /∈ I, construct
an ascending chain of ideals Ai = {x ∈ R|aix ∈ I} ⊆ Ai+1. By the ACC, this
stabilizes at some n. If anx+ y ∈ ((an) + I)∩ ((b) + I) for some x ∈ R, y ∈ I, then
an+1x + ay ∈ I, since (ab) + I = I. But y ∈ I, so an+1x ∈ I, so x ∈ An+1 = An,
so anx ∈ I, so anx+ y ∈ I. Therefore I = ((an) + I) ∩ ((b) + I).
I ⊂ (b)+I properly since b /∈ I, so since I is irreducible and I = (an)+I, an ∈ I.

�

Definition 1.13. An ideal I has a primary decomposition if it can be written as the
intersection of finitely many primary ideals. The primary decomposition is called
minimal if none of the primary ideals is contained in any other.

Proposition 1.14. Every proper ideal in a Noetherian ring R is a finite intersec-
tion of irreducible ideals.

Proof. This is sort of like an inductive proof. Let A be the set of ideals in R that
don’t have a primary decomposition. If A is nonempty, it has a maximal element I
by the ACC, which cannot itself be irreducible. Then I is a proper intersection of
two ideals I = J∩K. But J,K /∈ A, so J and K both have primary decompositions.
The intersection of these primary decompositions is itself a primary decomposition
for I, so A is empty. �

Definition 1.15. Let I be an ideal in the commutative ring with 1, R. Then the
radical of I, radI is the set of all elements r ∈ R such that rn ∈ I for some n.
rad(0) is the set of all nilpotent elements of R and is called the nilradical of R. I
is called a radical ideal if I = radI.

The following three facts follow immediately from the definition, but are very
important:

(1) radI is an ideal for any I.
This is because 0 ∈ radI, so radI 6= ∅. If r, s ∈ radI, t ∈ R then rn ∈ I,

and sm ∈ I for some m,n ∈ N, then (r − st)m+n ∈ I, since every term in
the binomial expansion is either a multiple of rn or sm.

(2) I ⊆ radI.
(3) (radI)/I is the nilradical of R/I.

This is because if r + I ∈ (radI)/I, then r ∈ radI, sorn ∈ I for some n.
(r + I)n = rn + I = I.

Definition 1.16. The polynomial ring k[x1, . . . , xn] is the coordinate ring of the
space1An(k). For a variety V , the coordinate ring of V is k[V ] = k[x1, . . . , xn]/I(V ).
k[V ] is a ring of k valued functions on V , since for f and g ∈ k[x1, . . . , xn],
f̄ ∼ ḡ ∈ k[V ] if f |V = g|V .

Proposition 1.17. If V is an algebraic set, I(V ) is always a radical ideal.

1The topology on An(k) is the one where the closed sets are the algebraic sets.
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Proof. If fn ∈ I(V ) for some f ∈ k[x1, . . . , xn] then fn(a1, . . . , an) = 0 for
(a1, . . . , an ∈ V . But then f(a1, . . . , an) = 0 since f is k−valued. Therefore
f ∈ I(V ), so I(V ) is a radical ideal. �

Now we have what we need to prove the following:

Proposition 1.18 (This is exercise 15 on page 689 of [1]). Suppose V ⊆ An(k)
is an algebraic set with I(V ) = (f) (note that this means V = Z(f)) for some
nonconstant polynomial f . Then V is an irreducible variety if and only if f is
irreducible.

Proof. First suppose f is irreducible but V = U ∪W , where U and W are algebraic
sets, and both are properly contained in V (so neither one is empty). Then neither
U nor W is contained in the other. Since I reverses inclusions and is injective on
the set of algebraic sets, I(U) and I(W ) are not equal, both properly contain (f) =
I(V ), and neither is contained in the other. I(U) and I(W ) have minimal primary
decompositions

⋂
Q′i and

⋂
Q′′j respectively. Since neither ideal is contained in the

other and both properly contain (f), their intersection
⋂
Q′i ∩

⋂
Q′′j , when reduced

(by removing any ideal in the decomposition that is contained in any other) has at
least two ideals. But this is a contradiction since (f) is irreducible. Therefore if f
is irreducible, so is V .

Now suppose V is irreducible and (f) = I ∩ J . Then V = Z(f) = Z(I ∩ J) =
Z(I)∪Z(J). Since V is irreducible, Z(I) = V or Z(J) = V . WLOG Z(I) = V , so
I ⊆ I(Z(I)) = I(V ) = (f), so (f) is irreducible. Therefore if V is irreducible, so is
f . �

In the second half of the proof, it would be nice to be able to argue that I(Z(I)) =
I because I is a radical ideal. It is not true in general, however, that I surjects
onto the set of radical ideals. For example, take g = x2 + 1 ∈ R[x], Z(g) = ∅ ⊂ R,
so I(Z(g)) = R[x]. Indeed, the radical ideal (g) does not arise as the ideal of any
subset of R. Any such set would be a subset of Z(g) = ∅.

Now suppose that g ∈ k[x] is some separable polynomial that splits over k. Then
Z(g) is the set of roots of g, and I(Z(g)) is the ideal generated by (x − α1) · . . . ·
(x − αm) where αi ∈ Z(g), which is exactly (g), so the radical ideals I ⊆ k[x] for
which I(Z(I)) = I are exactly those that are separable and split over k.

Note that polynomials in k[x] that split over k but are not separable do not gener-
ate radical ideals. If f = (x−α1)e1 . . . (x−αm)em , then ((x− α1) . . . (x− αm))maxiei ∈
(f).

Proposition 1.19. If radI is in the image of I, then I(Z(I)) = radI.

Proof. Since radI is in the image of I, we have radI = I(Z(radI)). Since I ⊆ radI,
Z(radI) ⊆ Z(I). Let (a1, . . . , an) ∈ Z(I), and let f ∈ radI. Then fm ∈ I for some
m, so fm(a1, . . . , an), so f(a1, . . . , an) ∈ Z(radI), so Z(I) ⊆ Z(radI). so

Z(I) =Z(radI)

I(Z(I)) =I(Z(radI))
=radI

�
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2. Computing Intersections of Ideals

In this section, I’ll describe how to take the intersection of two ideals in a polyno-
mial ring in a few different situations. Intersections come up in computing things to
do with algebraic sets because of primary decomposition of ideals in a polynomial
ring. In the world of PIDs, the difference between the product of ideals and the
intersection of ideals is the same as the difference between the product of two num-
bers and their least common multiples. A polynomial ring in two or more variables
over a field is not a PID, but intuitively what is going on is much the same.

Example 2.1. Compute (x, y) ∩ (x, z) in the ring R[x, y, z]:
The ideal generated by the least-common-multiple of the pairs of generators is

(x, xz, xy, yz). Since xy, xz ∈ (x, yz) we don’t need all the generators: (x, xz, xy, yz) =
(x, yz). (x, yz) looks like it should be the intersection, but so far all we know is
that (x, yz) ⊆ (x, y) ∩ (x, z).

To get the reverse inclusion, we can use a few things from the previous section as
well as Gröbner bases. Here I have included the relevant definitions and statements
of the relevant theorems. The proofs are long and can be found in section 9.6 of
[1]. The numbers from that text are included for easy reference.

For the rest of this section, we are working in the ring R[x1, . . . , xn], a polynomial
ring in n variables where R is a commutative ring with 1 (usually, R will be a field,
k). For all proofs, assume R is Noetherian, so that we have R[x1, . . . , xn] is also
Noetherian by the Hilbert Basis Theorem.

Definition 2.2. For a monomial M = rxe11 x
e2
2 . . . xen

n , the multidegree of M is∑n
i=1 ei.

To order the the monomials in R[x1, . . . , xn], fix an order x1 > . . . > xn (renum-
ber for convenience). For monomials M and M ′, M > M ′ if deg(M) > deg(M ′).
If deg(M) = deg(M ′), then M = xα1

1 . . . xαn
n > xβ1

1 . . . xβn
n = M ′ when αi = βi

for 1 ≤ i ≤ j and αj > βj , 1 ≤ j ≤ n. For a polynomial f ∈ R[x1, . . . , xn], the
leading term LT (f) is the largest term with respect to this ordering. For any ideal
I ∈ R[x1 . . . xn] we can form LT (I), the ideal generated by {LT (f)|f ∈ I}.

Assume we have fixed a monomial ordering with x1 > . . . > xn for the rest of
this section.

Definition 2.3 (Gröbner basis). Let I be an ideal in R[x1, . . . , xn]. A Gröbner Ba-
sis for I is a finite generating set {g1, . . . , gm} for I such that {LT (g1), . . . , LT (gm)}
generates LT (I).

Theorem 2.4 (9.6.24 in [1]). Every ideal in k[x1, . . . , xn] has a Gröbner basis.

There is an algorithm for computing Gröbner bases given a generating set for an
ideal. It requires the use of the general polynomial division algorithm. I haven’t
included it here, and the calculations involving it are omitted. The algorithm can
be found on pages 320 and 324 of [1]. Part of the algorithm involves knowing when
to stop, that is, knowing when the generating set you have is a Gröbner basis. A
simple case is that when every generator is a monomial, the set is a Gröbner basis.
(In this case, the ideal of leading terms is the ideal itself.)

Lemma 2.5 (9.6.29 in [1]). If G = {g1, . . . , gm} is a Gröbner basis for I in
k[x1, . . . , xn], then G ∩ k[x1, . . . , xi] is a Gröbner basis for I ∩ k[x1, . . . , xi] in
k[x1, . . . , xi].
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Gröbner bases behave nicely under sums and products:

Lemma 2.6 (page 330 in [1]). For ideals I and J with Gröbner bases {f1, . . . , fp}
and {g1, . . . , gq} respectively, {f1, . . . , fp, g1, . . . , gq} is a Gröbner basis for I + J ,
and {f1g1, f1, g2, . . . , f1gn, f2, g1, . . . , fngn} is a Gröbner basis for IJ .

Now we have what we need to finish example 2.1. Recall from the previous section
that for ideals I and J ⊆ k[x1, . . . , xn, we have Z(I ∩ J) = Z(IJ) = Z(I) ∪ Z(J),
and that I(A ∪ B) = I(A) ∩ I(B). Suppose I and J are both in the image of I.
Then since I and Z are inverses in this situation,

I ∩ J =I(Z(I)) ∩ I(Z(J))

=I(Z(I) ∪ Z(J))

=I(Z(IJ))

The two ideals from Example 2.1 are (x, y) = I({(a, b, c) ∈ R3|a = b = 0}) and
(x, z) = I({(a, b, c) ∈ R3|a = c = 0}), so the above applies. Both are written in
terms of Gröbner bases, since all the generators are monomials. By Lemma 2.6,
(x, y)(x, z) = (x2, xy, xz, yz) is a Gröbner basis for the product, so

(x, y) ∩ (x, z) = I(Z(x2, xy, xz, yz))

= I(Z(x2) ∩ Z(xy) ∩ Z(xz) ∩ Z(yz))

= I(yz − plane
∩ (yz − plane ∪ xz − plane)
∩ (yz − plane ∪ xy − plane)
∩ (xz − plane ∪ xy − plane))

= I(yz − plane ∩ (xz − plane ∪ xy − plane))
= (x, yz)

In this calculation, what we’re really using is that (x, yz) = rad(x2, xy, xz, yz)
which is true because if x2 is a generator of an ideal, x is in the radical of that
ideal.

This is a good method, but it only works for ideals in the image of I. We’d like
to be able to calculate intersections for more than just this special group of ideals.

Theorem 2.7 (9.6.30 in [1]). Let I, J ⊆ R[x1, . . . , xn]. We can form the ideal
tI + (1− t)J in the ring R[t, x1, . . . , xn]. The intersection I ∩ J = (tI + (1− t)J)∩
R[x1, . . . , xn].

Proof. Without really showing what is going on, we can show both inclusions. First
pick f ∈ I ∩ J . Let D = tI + (1− t)J ∩ k[x1, . . . , xn]. Then f = tf + (1− t)f ∈ D.
For the other direction, consider an element g = tf1 + (1− t)f2 ∈ D (D 6= ∅ since
0 ∈ D), where f1 ∈ I, f2 ∈ J . Then (tricky!) t(f1 − f2) = g − f2 ∈ k[x1, . . . , xn] so
f1 = f2 = g, so all are in I ∩ J . �

Theorem 2.7 is technical and unsatisfactory. The rough geometric picture of
what it describes is that there is a copy of Z(I) at t = 1 and copy of Z(J) at t = 0.
Taking the intersection tI + (1− t)J ∩ k[x1, . . . , xn] sort of super-imposes the two,
resulting in the union Z(I)∪Z(J), which is predicted by Z(I ∩ J) = Z(I)∪Z(J).

The proof itself does not use any of the Gröbner basis tools, but we will need
them in order to carry out any calculations:
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Example 2.8. It is easy to see that (x2) ∩ (x3) = (x3) in the ring R[x], but this
can’t be computed using first method, since rad(x2) = rad(x3) = (x). Using the
second method, t(x2) + (1− t)(x3) = (tx2, tx3−x3). A Gröbner basis for this ideal
is (tx2, tx3 − x3, x3). By 2.5, (tx2, tx3 − x3, x3) ∩ R[x] = (x3).

3. Integrally Closed and not Integrally closed things

This last section follows two examples of how the algebraic geometry dictionary
can work for us.

Definition 3.1. Let R be an integral domain, and let F be its field of fractions
with algebraic closure F . s ∈ F is integral over R if it is the root of a monic
polynomial with coefficients in R. R is called integrally closed if whenever s ∈ F
is integral over R, s ∈ R. In an extension E of F , the integral closure of R is
{s ∈ E| s is integral over R}.

Example 3.2. By the rational root theorem, Z is integrally closed in Q.

Example 3.3. Consider R = C[x, y]/(x2 − y3). Let F be the field of fractions of
R. The polynomial t3 − x ∈ R[t] is monic, and has 3

√
x as a root, so 3

√
x is integral

over R.

3
√
x =

3
√
x

4

x
=

3
√
x2

2

x
=

3
√
y3

2

x
=
y2

x
=
y3

xy
=
x2

xy
=
x

y
∈ F

t3 − x is irreducible over R, so 3
√
x /∈ R, so R is not integrally closed.

Example 3.4. In his (unpublished) paper, Wadsworth [3] gives many proofs that
the coordinate ring R[x, y]/(x2 + y2 − 1) is integrally closed. Here is one of them:

Lemma 3.5. Let R be a UFD in which 2 is a unit, and let a ∈ R be a squarefree
nonzero nonunit. Then R[

√
a] is the integral closure of R in the fraction field of

R[
√
a], so R[

√
a] is integrally closed.

Proof. Let F be the fraction field of R. Since a is squarefree, the minimal polyno-
mial for a over F is t2 − a. The fraction field of R[

√
a] is a proper extension of F ,

and is contained in F (
√
a), so it is equal to F (

√
a) since [F (

√
a) : F ] = 2. Let S be

the integral closure of R in F (
√
a). Then

√
a ∈ S since t2−a ∈ R[t], so R[

√
a] ⊆ S.

To get the other inclusion, let α = c + d
√
a ∈ S ⊆ F (

√
a), and let σ be the

nonidentity element of Gal(F (
√
a)/F ). Then σ : α 7→ c − d

√
a. If f(t) ∈ F [t] has

α as a root, it also has σ(α) as a root. In particular, since α is integral over R, so
is σ(α). Therefore Tr(α) and Norm(α) are both in S, so both are is S ∩ F = R.
We can compute them both:

Tr(α) = α+ σ(α) = 2c

and
Norm(α) = ασ(α) = c2 − d2a

Since 2 is a unit in R, c ∈ R. From this we get d2a ∈ R. By unique factorization,
d ∈ R. Therefore α ∈ R[

√
a], so S = R[

√
a]. �

Lemma 3.5 can be applied to the ring C[x, y]/(x2 + y2 − 1) as follows. Let
R = C[x]. Then y2 + (x2 − 1) is an irreducible polynomial in R[y], and

C[x, y]/(x2 + y2 − 1) = R[y]/(y2 + (x2 − 1)) ' R[
√
x2 − 1] = C[x,

√
x2 − 1]
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Since C[x] is a UFD, x2 − 1 = (x − 1)(x + 1) is a unique factorization. Therefore
x2 − 1 ∈ C[x] is a nonzero squarefree nonunit, and 2 is a unit, so by the lemma,
C[x,

√
x2 − 1] is integrally closed.

The fact that one of these rings is integrally closed and the other is not is reflected
in the geometry. Z(x2 + y2 − 1) is smooth, and Z(x2 − y3) has a cusp at (0, 0). In
order to establish this connection, we need a bit more machinery.

Definition 3.6. Let V be a variety, v ∈ V . Then if I(V ) = (f1, . . . , fm), the
tangent space of V at v is

Z

 m⋂
i=1

n∑
j=1

dfi
dxj

(v)xj


V is said to be smooth if for all v ∈ V , the dimension of the tangent space at V is
equal to the dimension of V .

Example 3.7. Continuing with example 3.3 from before, the tangent space to
Z(x2 − y3) at a point (a, b) ∈ Z(x2 − y3) is Z(2bx − 3b2y). At the point (0, 0),
this becomes Z(0) = A2(C) which has dimension 2. Z(x2 − y3) has dimension 1,
so Z(x2 − y3) is not smooth at (0, 0).

Furthermore, if (a, b) ∈ Z(x2 − 3) then a = 0 if and only if b = 0, so at any
nonzero point in Z(x2 − y3), the coeffecients of x and y in 2ax − 3b2y are both
nonzero, so Z(2ax− 3b2y) is a curve, which has dimension 1. Therefore Z(x2− y3)
is smooth at all other points.

Example 3.8. The same computation shows that the variety in example 3.4 is
smooth. The tangent space to Z(x2+y2−1) at (a, b) ∈ Z(x2+y2−1) is Z(2ax+2by).
For any (a, b) ∈ Z(x2 + y2 − 1) this will be a curve in A2(C). The real part will
just be the line y = −a

b x when b 6= 0, and the y-axis when b = 0.

It is not generally true that all integrally closed coordinate rings correspond to
smooth varieties, but it is true for one dimensional varieties.
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