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Abstract. A result concerning the irreducibility (and reducibility) of the

principal series of representations of SL2 over a p-adic field is presented (see
Theorem 4.16). An overview of the structure of p-adic fields precedes the

demonstration, as does the introduction of certain special functions on these
fields.
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1. Introduction

LetK be a locally compact Hausdorff nondiscrete topological field. The principal
series of representations of SL2 (K) is a collection of continuous unitary represen-
tations of SL2 (K) on L2 (K). Its properties are well understood. We give here a
brief analysis of the irreducibility (and reducibility) of this series in the special case
where K is a p-adic field and p is odd. The computations and techniques employed
follow [1], [2], and [3].

Section 2 contains necessary results concerning p-adic fields. The account is terse
and proofs are not provided. Readers desirous of further information should consult
[3].

Section 3 treats certain special functions on p-adic fields. Proofs can be found
in [3].

Section 4 introduces the principal series of representations of SL2 over a p-adic
field F . A convenient unitarily equivalent representation is thoroughly studied.
The paper concludes with the main result: Theorem 4.16.

2. p-adic Fields

Let p be an odd prime and F a finite algebraic extension of Qp. Denote the
additive and multiplicative groups of F by F+ and F×, respectively. Let dx be a
fixed Haar measure on F+.
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Definition 2.1. Define | ·| : F −→ R≥0 such that
(i) | · | is a non-Archimedean norm on F;
(ii) For any a ∈ F×, d (ax) = |a| dx.

Note 2.2. There exists exactly one such function.

Observe that dx/ |x| is a Haar measure on F×. Give F the topology induced by
this norm. Define subsets O and p of F by

O = {x : |x| ≤ 1}
p = {x : |x| < 1} .

O is the maximal compact subring of F; p is the unique maximal ideal of O.
Moreover, p is principal. Let τ be a generator for p. O/p is a field with q elements,
where q is some power of p. It can be shown that |τ | = q−1 and for all a ∈ F×,
|a| = qn, for some n ∈ Z.

Let
U = {x : |x| = 1}

be the group of units in F×. U contains an element ε such that
(i) ε has order q − 1
(ii)

F× =
(
F×
)2 ⋃ (−τ)

(
F×
)2⋃ (−ετ)

(
F×
)2⋃ (ε)

(
F×
)2
.

Definition 2.3. Let F1 = F+, F×, or U . A character of F1 is a continuous
homorphism

ψ : F1 −→ T,
where T is the group of complex numbers with norm one. Denote the set characters
of F1 by F̂1.

Define the following sets:

pn =
{
x ∈ F : |x| ≤ q−n

}
, n ∈ Z

Un =
{
x ∈ U : |1− x| ≤ q−n

}
= 1 + pn, n ≥ 1.

If χ ∈ F̂×, there exists s ∈ R with
−π
ln q

< s ≤ π

ln q

and χ∗ ∈ Û such that
χ (x) = |x|is χ∗ (u)

for all x ∈ F×, where |x| = q−n and xq−n = u. For any nontrivial χ∗ ∈ Û , there
exists l ≥ 1 such that χ∗ is trivial on Ul and nontrivial on Ul−1. For any nontrivial
ψ ∈ F̂+, there is an m ∈ Z such that ψ is trivial on pm and nontrivial on pm−1.
The following definitions are thus sensible.

Definition 2.4. Let χ ∈ F̂×. χ is said to be unramified if χ∗ is the trivial character,
and ramified of degree l otherwise, where χ∗ and l are as above.

Definition 2.5. Let ψ ∈ F̂+ be nontrivial. Then pm is said to be the conductor
of ψ, where m is as above.
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The three characters of degree two in F̂× figure prominently below. Denote
them by sgnε, sgnτ , and sgnετ , where

sgnε (x) =
{

1 if x ∈ (F×)2
⋃

(ε) (F×)2

−1 otherwise

and

sgnθ (x) =
{

1 if x ∈ (F×)2
⋃

(−θ) (F×)2

−1 otherwise
for θ = τ or ετ .

Fix ψ ∈ F̂+ with conductor O. For all u ∈ F , define ψu ∈ F̂+ by

ψu (x) = ψ (ux)

for all x ∈ F .

Definition 2.6. Let f ∈ L1 (F ). The Fourier transform of f , Ff = f̂ , is defined
by

f̂ (u) =
∫

F

f (x)ψu (x) dx

for all u ∈ F .

F restricted to L1 (F )
⋂
L2 (F ) extends to an isometry of L2 (F ). Denote this

extension by F as well. Without loss of generality, assume that dx is normalized
so that ˆ̂

f (x) = f (−x) for all f ∈ L2 (F ) and x ∈ F .

Definition 2.7. The Schwarz-Bruhat space of F , S, is the set of all complex-valued,
compactly supported, locally constant functions on F .

Theorem 2.8. S is dense in Lp (F ), for 1 ≤ p <∞.

Theorem 2.9. The map defined by ϕ 7→ ϕ̂ for all ϕ ∈ S is a bijection of S onto
itself.

3. Special Functions on p-adic Fields

Note 3.1. The special functions below are vital to section 4. This section charac-
terizes them more fully than required there, as they are also of independent interest.

Definition 3.2. Let f : F −→ C be locally integrable, except (possibly) at 0. For
all n ≥ 0, [f ]n : F −→ C is defined by

[f ]n (x) =
{
f (x) if q−n ≤ x ≤ qn

0 otherwise.

If the limit in (∗) exists, define the principal value integral of f by

P.V.
∫

F

f (x) dx = lim
n→∞

∫
F

[f ]n (x) dx. (∗)

Theorem 3.3. Let f ∈ L2 (F ). Suppose

P.V.
∫

F

f (x) ψu (x) dx

exists for almost all u ∈ F . Then

f̂ (u) = P.V.
∫

F

f (x) ψu (x) dx

for almost all u ∈ F .
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Note 3.4. This is part of a result known as Plancherel’s theorem.

Definition 3.5. Let χ be a nontrivial character of F×. Then

Γ (χ) = Γ (χ∗ | · |s) = Γχ∗ (s)

is defined as follows:
(i) if χ is ramified,

Γ (χ) = Γχ∗ (s) = P.V.
∫

F

ψ (x)χ (x)
dx

|x|
.

(ii) if χ is unramified and < (s) > 0,

Γ (χ) = Γ1 (s) = P.V.
∫

F

ψ (x) χ (x)
dx

|x|
. (∗∗)

(iii) if χ is unramified and < (s) ≤ 0,

Γ (χ) = Γ1 (s)

is given by the analytic continuation of (∗∗).

Note 3.6. The above is well-defined. It is known as the gamma function. See [3].

Definition 3.7. Define q′ ∈ R by
1
q

+
1
q′

= 1.

Theorem 3.8. Let χ = χ∗ | · |s be a nontrivial multiplicative character on F×.
(i) If χ is ramified of degree h ≥ 1,

Γ (χ) = Γχ∗ (s) = Cχ∗ q
h(s− 1

2 ),

where
Cχ∗ = Γχ∗ (1/2) .

Note that
|Cχ∗ | = 1

and
C(χ∗)−1Cχ∗ = χ∗ (−1) .

(ii) If χ is unramified,

Γ (χ) = Γ1 (s) =
1− qs−1

1− q−s
.

Γ1 (s) has a simple pole at s = 0 with residue
1

q′ ln q
.

1/ (Γ1 (s)) has a simple pole at s = 1 with residue
−1
q′ ln q

.

The only singularity of Γ1 (s) occurs at s = 0; the only zero occurs at s = 1.
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(iii) If χ (x) 6= |x|, then

Γχ∗ (s) = χ∗ (−1) Γ(χ∗)−1 (s)

Γχ∗ (s) Γ(χ∗)−1 (1− s) = χ∗ (−1) .

Hence,
Γχ∗ (s) Γχ∗ (1− s) = 1.

Definition 3.9. For χ ∈ F̂× and u, v ∈ F×, define the Bessel function Jχ (u, v) as
follows:

Jχ (u, v) = P.V.
∫

F

ψ
(
ux+

v

x

)
χ (x) |x|−1

dx.

Note 3.10. The Bessel function is well-defined. See [3].

Lemma 3.11. Let u, v ∈ F×. Then
(i) Jχ (u, v) = Jχ−1 (v, u).
(ii) χ (u) Jχ (u, v) = χ (v) Jχ (v, u).
(iii) Jχ (u, v) = Jχ−1 (−u,−v) = χ (−1) Jχ−1 (u, v).
(iv) If χ (−1) = 1 (resp. −1), then Jχ (u, u) is real-valued (resp. pure imaginary-

valued).

Definition 3.12. Let k ∈ Z>0, χ ∈ F̂×, and v ∈ F×. Then

Fχ (k, v) =
∫
|x|=qk

ψ (x)ψ
( v
x

)
χ (x) |x|−1

dx.

Lemma 3.13. Suppose that |v| = qm and 1 ≤ k < m.
(i) If χ is unramified, then Fχ (k, v) 6= 0 if and only if m is even and k = m/2.
(ii) If χ is ramified of degree h ≥ 1, then Fχ (k, v) 6= 0 if and only if one of the

following holds:
(a) m is even, m ≥ h, and k = m/2
(b) m < 2h < 2m and k = h or k = m− h.

Theorem 3.14. If χ ∈ F̂× is unramified, χ 6≡ 1, and u, v ∈ F×, then

Jχ (u, v) =

 χ (v) Γ
(
χ−1

)
+ χ−1 (u) Γ (χ) |uv| ≤ q

χ−1 (u)Fχ

(
m
2 , uv

)
|uv| = qm, m > 1, m even

0 |uv| = qm, m > 1, m odd.

If χ ≡ 1, then the first case becomes

J1 (u, v) =
m+ 1
q′

− 2
q

=
1
q′

[
− ln |uv|

ln q
+ 1
]
− 2
q

for |uv| = q−m ≤ q. The other cases remain valid as stated.

Theorem 3.15. If χ ∈ F̂× is ramified of degree h ≥ 1, and u, v ∈ F×, then

Jχ (u, v) =


χ (v) Γ

(
χ−1

)
+ χ−1 (u) Γ (χ) |uv| ≤ qh

χ−1 (u) [Fχ (h, uv) + Fχ (m− h, uv)] |uv| = qm, h < m < 2h
χ−1 (u)Fχ

(
m
2 , uv

)
|uv| = qm, m ≥ 2h, m even

0 |uv| = qm, m > 2h,m odd.
.
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4. The Principal Series of Representations of SL2 (F )

Theorem 4.1. Let χ ∈ F̂×, f ∈ L2 (F ), x ∈ F , and(
α β
γ δ

)
∈ SL2 (F ) .

If [
πχ

(
α β
γ δ

)
f

]
(x) = χ (βx+ δ) |βx+ δ|−1

f

(
αx+ γ

βx+ δ

)
for all f ∈ L2 (F ) and (almost all) x ∈ F , then πχ is a continuous unitary repre-
sentation of SL2 (F ) on L2 (F ).

Proof. See [1] or [3]. �

Definition 4.2. The collection of representations{
πχ : χ ∈ F̂×

}
is called the principal series of representations of SL2 (F ).

Definition 4.3. For all χ ∈ F̂× and g ∈ SL2 (F ), set

π̂χ (g) = Fπχ (g)F−1.

Note 4.4. Let χ ∈ F̂×. π̂χ is a representation of SL2 (F ) on L2 (F ). It is unitarily
equivalent to πχ and more tractable, computationally.

Lemma 4.5. Let γ ∈ F , ϕ ∈ S, and χ ∈ F̂×. Then for all x ∈ F ,

π̂χ

(
1 0
γ 1

)
ϕ (x) = ψ (−γx)ϕ (x) .

Proof. Suppose ϕ = f̂ . For all x ∈ F ,

πχ

(
1 0
γ 1

)
F−1ϕ (x) =F−1ϕ (x+ γ) .

=f (x+ γ) .

Hence,

π̂χ

(
1 0
γ 1

)
ϕ (x) =Fπχ

(
1 0
γ 1

)
F−1ϕ (x)

=
∫

F

πχ

(
1 0
γ 1

)
F−1ϕ (y)ψx (y) dy

=
∫

F

f (y + γ)ψx (y) dy

=ψx (−γ) f̂ (x)

=ψ (−γx)ϕ (x)

for all x ∈ F . �

Lemma 4.6. Let α ∈ F×, ϕ ∈ S, and χ ∈ F̂×. Then for all x ∈ F ,

π̂χ

(
α−1 0
0 α

)
ϕ (x) = χ (α) |α|ϕ

(
α2x

)
.
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Proof. Suppose ϕ = f̂ . For all x ∈ F ,

πχ

(
α−1 0
0 α

)
F−1ϕ (x) =χ (α) |α|−1 F−1ϕ

(
α−2x

)
=χ (α) |α|−1

f
(
α−2x

)
.

Hence,

π̂χ

(
α−1 0
0 α

)
ϕ (x) =Fπχ

(
α−1 0
0 α

)
F−1ϕ (x)

=
∫

F

πχ

(
α−1 0
0 α

)
F−1ϕ (y)ψx (y) dy

=χ (α) |α|−1
∫

F

f
(
α−2y

)
ψx (y) dy

=χ (α) |α|
∫

F

f (y)ψx

(
α2y

)
dy

=χ (α) |α|ϕ
(
α2x

)
for all x ∈ F . �

Lemma 4.7. Suppose L : L2 (F ) −→ L2 (F ) is a bounded linear operator such that
for all γ ∈ F , α ∈ F×, and χ ∈ F̂×,

Lπ̂χ

(
1 0
γ 1

)
= π̂χ

(
1 0
γ 1

)
L

and

Lπ̂χ

(
α−1 0
0 α

)
= π̂χ

(
α−1 0
0 α

)
L.

Then there exists m ∈ L∞ (F ) such that for all f ∈ L2 (F ),

Lf (x) = m (x) f (x)

for almost all x ∈ F and m is almost everywhere constant on the cosets of (F×)2

in F×.

Proof. Lemma 4.5 implies the first half. The required details are intricate. See
[1] or [3]. To obtain the second half, take the first as given and note that for all
α ∈ F×, ϕ ∈ S and almost all x ∈ F ,[

Lπ̂χ

(
α−1 0
0 α

)
ϕ

]
(x) = m (x)χ (α) |α|ϕ

(
α2x

)
,

while [
π̂χ

(
α−1 0
0 α

)
Lϕ
]

(x) = χ (α) |α|m
(
α2x

)
ϕ
(
α2x

)
by Lemma 4.6. �

Note 4.8. Examination of the algebra of bounded linear operators on L2 (F ) com-
muting with π̂χ, for χ ∈ F̂× not of order 2, ultimately yields the proof of the
irreducibility of π̂χ.

Recall the following from [4]:
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Theorem 4.9. Let χ ∈ F̂×, x ∈ F×, and ϕ ∈ S. The principal value integral

P.V.
∫

F

ψ

(
x

y

)
χ (y) |y|−1

ϕ (y) dy

exists. Moreover,

P.V.
∫

F

ψ

(
x

y

)
χ (y) |y|−1

ϕ̂ (y) dy =
∫

F

ϕ (u) Jχ (u, x) du.

Note 4.10. f ∈ S implies that∫
F

f (u) Jχ (u, x) du

is absolutely convergent for all χ ∈ F̂× and x ∈ F×. See [4].

Lemma 4.11. Let ϕ ∈ S and χ ∈ F̂×. For almost all x ∈ F ,

π̂χ

(
0 1
−1 0

)
ϕ (x) =

∫
F

ϕ (u) Jχ (x, u) du

Proof. Suppose ϕ = f̂ . By Theorems 2.9 and 4.9,

P.V.
∫

F

χ

(
1
y

)
f (−y)ψ

(
x

y

)
|y|−1

dy

exists for all x ∈ F×. Clearly,

P.V.
∫

F

χ

(
1
y

)
f (−y)ψ

(
x

y

)
|y|−1

dy = P.V.
∫

F

χ (y) f
(
−y−1

)
ψ (xy) |y|−1

dy.

Theorem 3.3 implies

F
(
πχ

(
0 1
−1 0

)
f

)
(x) = P.V.

∫
F

χ (y) f
(
−y−1

)
ψ (xy) |y|−1

dy

for almost all x ∈ F . Theorem 4.9 and Lemma 3.11 give

P.V.
∫

F

χ

(
1
y

)
f (−y)ψ

(
x

y

)
|y|−1

dy

=P.V.
∫

F

χ−1 (y) ˆ̂
f (y)ψ

(
x

y

)
|y|−1

dy

=
∫

F

f̂ (u) Jχ−1 (u, x) du

=
∫

F

f̂ (u) Jχ (x, u) du

for all x ∈ F×. Hence,

π̂χ

(
0 1
−1 0

)
ϕ (x) =

∫
F

ϕ (u) Jχ (x, u) du

for almost all x ∈ F . �

Lemma 4.12. Let χ ∈ F̂× have order different from 2. If C1 and C2 are distinct
cosets of (F×)2 in F×, then there exist sets A1 ⊂ C1 and A2 ⊂ C2 of positive
measure such that x ∈ A1 and u ∈ A2 implies Jχ (x, u) 6= 0.
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Proof. Take C1 = (F×)2 and C2 = (ε) (F×)2. The other cases are similar.
Suppose χ ≡ 1. Let N = max

(
0, 2q′

q − 1
)
. Set

A1 =
{
y ∈ F : |y| ≤ q

−N
2

} ⋂ (
F×
)2

and
A2 =

{
y ∈ F : |y| ≤ q

−N
2

} ⋂
(ε)
(
F×
)2
.

Theorem 3.14 gives the result.
Suppose χ 6≡ 1 is unramified. Set

A1 = {y ∈ F : |y| ≥ q}
⋂ (

F×
)2

and
A2 = {y ∈ F : |y| ≥ q}

⋂
(ε)
(
F×
)2
.

Lemma 3.13 and Theorem 3.14 finish this case.
Suppose χ is ramified of degree h ≥ 1. Set

A1 =
{
y ∈ F : |y| ≥ qh

} ⋂ (
F×
)2

and
A2 =

{
y ∈ F : |y| ≥ qh

} ⋂
(ε)
(
F×
)2
.

Lemma 3.13 and Theorem 3.15 complete the proof. �

Note 4.13. The result above requires the hypothesis concerning the order of χ.
Take C1 = (F×)2, C2 = (−τ) (F×)2, and χ = sgnε to observe this. The computa-
tion is easy.

Theorem 4.14. Let χ ∈ F̂×. Suppose that χ is not of order 2. Then π̂χ is
irreducible.

Proof. Suppose L : L2 (F ) −→ L2 (F ) is a bounded linear operator such that L
commutes with

π̂χ

(
1 0
γ 1

)
, π̂χ

(
α−1 0
0 α

)
, and π̂χ

(
0 1
−1 0

)
for all γ ∈ F and α ∈ F×. By Lemma 4.7, there exists m ∈ L∞ (F ) such that for
all f ∈ L2 (F ),

Lf (x) = m (x) f (x)

for almost all x ∈ F and m is almost everywhere constant on the cosets of (F×)2

in F×. It suffices to show that m is almost everywhere constant on F .
For ϕ ∈ S and almost all x ∈ F ,∫

F

ϕ (u)m (u) Jχ (x, u) du =
∫

F

ϕ (u)m (x) Jχ (x, u) du

by Lemma 4.11. Hence,

m (u) Jχ (x, u) = m (x) Jχ (x, u)

for almost all x, u ∈ F . The result follows by Lemma 4.12. �

Theorem 4.15. Let χ ∈ F̂× have order 2. Then π̂χ is reducible.
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Proof. The characters of order 2 on F are sgnε, sgnτ , and sgnετ . sgnτ and sgnετ are
ramified of degree 1. sgnε is unramified. Let θ = ε, τ, or ετ . Let ϕ ∈ S. Theorems
3.14 and 3.15 and Lemma 4.11 give

π̂χ

(
0 1
−1 0

)
ϕ (x) =

∫
F

ϕ (u) Jχ (x, u) du

=
∫
|xu|≤q

ϕ (u) Γ (sgnθ) [sgnθ (u) + sgnθ (x)] du

+
∑

m>0, m even

∫
|xu|=qm

ϕ (u) sgnθ (x)Fsgnθ

(m
2
, xu

)
du

for almost all x ∈ F .
Suppose that ϕ is supported on ker (sgnθ). Then∫

|xu|≤q

ϕ (u) Γ (sgnθ) [sgnθ (u) + sgnθ (x)] du

=Γ (sgnθ) [1 + sgnθ (x)]
∫

A

ϕ (u) du (∗)

where
A = ker (sgnθ)

⋂
{u ∈ F : |xu| ≤ q} .

If x /∈ ker (sgnθ), (∗) vanishes.
Let n > 0, n even. Fix u ∈ ker (sgnθ) and suppose |xu| = qn, where x ∈ F×.

Then ∫
|y|=qn/2

ψ (y)ψ
(
xu

y

)
sgnθ (y)

dy

|y|

=
∫
|y|=qn/2

ψ

(
xu

y

)
ψ (y) sgnθ

(
xu

y

)
dy

|y|

=sgnθ (x)
∫
|y|=qn/2

ψ (y)ψ
(
xu

y

)
sgnθ (y)

dy

|y|
.

Hence, if x /∈ ker (sgnθ),∫
|y|=qn/2

ψ (y)ψ
(
xu

y

)
sgnθ (y)

dy

|y|
= 0.

But ∫
|xu|=qn

ϕ (u) sgnθ (x)Fsgnθ

(n
2
, xu

)
du

=
∫
|xu|=qn

ϕ (u) sgnθ (x)

(∫
|y|=qn/2

ψ (y)ψ
(
xu

y

)
sgnθ (y)

dy

|y|

)
du.

Hence, x /∈ ker (sgnθ), implies that∑
m>0, m even

∫
|xu|=qm

ϕ (u) sgnθ (x)Fsgnθ

(m
2
, xu

)
du = 0,

so
L2 (ker (sgnθ))
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is invariant under the action of

π̂χ

(
0 1
−1 0

)
by Theorem 2.8.

Theorem 2.8 and Lemmas 4.5 and 4.6 indicate that

π̂χ

(
1 0
γ 1

)
and π̂χ

(
α−1 0
0 α

)
also fix this space. Since matrices of the form(

1 0
γ 1

)
,

(
α−1 0
0 α

)
, and

(
0 1
−1 0

)
,

where γ ∈ F and α ∈ F×, generate SL2 (F ), the result follows. �

Theorem 4.16. Let χ ∈ F̂×. If χ has order 2, then πχ is reducible. Otherwise,
πχ is irreducible.

Proof. π̂χ is unitarily equivalent to πχ. Cite Theorems 4.14 and 4.15. �
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