REPRESENTATION THEORY OF SL, OVER A P-ADIC FIELD:
THE PRINCIPAL SERIES

ALEXANDER J. MUNK

ABSTRACT. A result concerning the irreducibility (and reducibility) of the
principal series of representations of SL2 over a p-adic field is presented (see
Theorem 4.16). An overview of the structure of p-adic fields precedes the
demonstration, as does the introduction of certain special functions on these
fields.
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1. INTRODUCTION

Let K be a locally compact Hausdorff nondiscrete topological field. The principal
series of representations of SLs (K) is a collection of continuous unitary represen-
tations of SLy (K) on L? (K). Its properties are well understood. We give here a
brief analysis of the irreducibility (and reducibility) of this series in the special case
where K is a p-adic field and p is odd. The computations and techniques employed
follow [1], [2], and [3].

Section 2 contains necessary results concerning p-adic fields. The account is terse
and proofs are not provided. Readers desirous of further information should consult

Section 3 treats certain special functions on p-adic fields. Proofs can be found
in [3].

Section 4 introduces the principal series of representations of SLs over a p-adic
field F. A convenient unitarily equivalent representation is thoroughly studied.
The paper concludes with the main result: Theorem 4.16.

2. p-ADIC FIELDS

Let p be an odd prime and F' a finite algebraic extension of @,. Denote the
additive and multiplicative groups of F' by F'* and F*, respectively. Let dx be a
fixed Haar measure on F*.
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Definition 2.1. Define || : FF — Rx¢ such that
(i) | -] is a non-Archimedean norm on F;
(ii) For any a € F*, d(az) = |a| dx.
Note 2.2. There exists exactly one such function.
Observe that dz/ |z| is a Haar measure on F*. Give F the topology induced by
this norm. Define subsets O and p of F' by
O={z:|z| <1}
p={z:|z| <1}.
O is the maximal compact subring of F; p is the unique maximal ideal of O.
Moreover, p is principal. Let 7 be a generator for p. O/p is a field with g elements,
where ¢ is some power of p. It can be shown that |7| = ¢~! and for all a € F*,

la| = ¢™, for some n € Z.
Let

U={z:|z| =1}

be the group of units in F’*. U contains an element € such that
(i) € has order g — 1

(i)
F* = (F*)* | (=7) (F*)* | (—en) (F¥)*| () (F*)*.

Definition 2.3. Let Iy = FT, F*, or U. A character of F| is a continuous
homorphism

¢Y:F — T,
where T is the group of complex numbers with norm one. Denote the set characters
of F1 by F.
Define the following sets:
pt={zeF:|z|<q¢ "}, nek
Uy={zeU:|l-z|<q¢"}=1+p", n>1

If x € F'*, there exists s € R with

—<s< —
Ing ~ Ing
and x* € U such that
X () = l2|” X" (u)
for all 2 € F*, where |z| = ¢~™ and 2¢~" = u. For any nontrivial y* € U, there
exists [ > 1 such that x* is trivial on U; and nontrivial on U;_;. For any nontrivial

P € F+, there is an m € Z such that 1 is trivial on p™ and nontrivial on p™ 1.
The following definitions are thus sensible.

Definition 2.4. Let y € F*. y is said to be unramified if x* is the trivial character,
and ramified of degree | otherwise, where x* and [ are as above.

Definition 2.5. Let ¢ € F'" be nontrivial. Then p™ is said to be the conductor
of ¢, where m is as above.
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The three characters of degree two in Fx figure prominently below. Denote

them by sgn_, sgn_, and sgn__, where

Sgne(x):{ 1 ifze(F*) U () (FX)

—1 otherwise

and

sgng (z) = { 1_1 i)ftiefw(i}st) U (=6) (F™)

for 6 =7 or er. A
Fix ¢ € F'T with conductor O. For all u € F, define v, € F'* by

u (2) = ¢ (uz)

for all x € F.
Definition 2.6. Let f € L' (F). The Fourier transform of f, Ff = f, is defined
by
— [ f@ @) do
for all u € F. !

F restricted to L' (F) () L? (F) extends to an isometry of L? (F). Denote this
extension by F as well. Without loss of generality, assume that dx is normalized

so that f (z) = f (—z) for all f € L2 (F) and z € F.

Definition 2.7. The Schwarz-Bruhat space of F', S, is the set of all complex-valued,
compactly supported, locally constant functions on F'.

Theorem 2.8. S is dense in L? (F), for 1 < p < oo.
Theorem 2.9. The map defined by ¢ — @ for all ¢ € S is a bijection of S onto
itself.

3. SPECIAL FUNCTIONS ON p-ADIC FIELDS

Note 3.1. The special functions below are vital to section 4. This section charac-
terizes them more fully than required there, as they are also of independent interest.

Definition 3.2. Let f: F — C be locally integrable, except (possibly) at 0. For
all n >0, [f],, : F — C is defined by

[f]n(x):{ g(x) £ " <3< g

otherwise.

If the limit in () exists, define the principal value integral of f by

P.V. / f(x)de= lim [ [f], (x) dz. (%)

n—oo F

Theorem 3.3. Let f € L?(F). Suppose

}IVij;(f(x)ﬁm(x)dx

exists for almost all uw € F. Then

f(u)=P. V./Ff(x) Yy () da

for almost all u € F.
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Note 3.4. This is part of a result known as Plancherel’s theorem.
Definition 3.5. Let x be a nontrivial character of F*. Then
TO)=TK"|I") =Ty (5)

is defined as follows:
(i) if x is ramified,

() = PV/w

Iff\

(ii) if x is unramified and R (s) >

T'(y) = =P.V. / P (x (xx)
(iii) if x is unramified and R (s) <0,
I'(x) =T1(s)
is given by the analytic continuation of (k).
Note 3.6. The above is well-defined. It is known as the gamma function. See [3].

Definition 3.7. Define ¢’ € R by

qa q

Theorem 3.8. Let x = x*|-|* be a nontrivial multiplicative character on F*.
(i) If x is ramified of degree h > 1,

I (x) =Ty (s) = Cy- ¢"0072),

where
Cy- =T+ (1/2).
Note that
|Cy-| =1
and

C(X*)AC'X* = X* (—1) .

(ii) If x is unramified,

s—1
=T = ==
T’y (s) has a simple pole at s = 0 with residue
1
¢'Ing’
1/ (T1(s)) has a simple pole at s = 1 with residue
-1
¢'Ing’

The only singularity of T'1 (s) occurs at s = 0; the only zero occurs at s = 1.
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(iir) If x (x) # ||, then
L= () = X" (=1) (o)1 (5)
FX* (8) F(X*)—l (1 — S) = X* (—1) .
Hence,
I'v-(s) Ty» (1-5)=1.
Definition 3.9. For x € F* and u,v € F*, define the Bessel function J, (u,v) as
follows:

Jy (u,v) = P.V./

F1/) (u:c + g) x (@) |z 7" da.

Note 3.10. The Bessel function is well-defined. See [3].

Lemma 3.11. Let u,v € F'*. Then
(i) Jy (u,v) = Jy—1 (v,u).
(i6) X () Ty, (4, ) = x () Jy (v, ).
(iii) Jy (u,v) = Jy-1 (—u, —v) = x (1) Jy-1 (u,v).
() If x (—1) =1 (resp. —1), then J, (u,u) is real-valued (resp. pure imaginary-
valued).

Definition 3.12. Let k € Z~g, y € F'%, and v € F*. Then
v _
Felbo)= [ @ (2)x@lel™ do
lz|=q" z

Lemma 3.13. Suppose that [v] = ¢™ and 1 < k < m.
(i) If x is unramified, then F\ (k,v) # 0 if and only if m is even and k = m/2.
(1t) If x is ramified of degree h > 1, then F\ (k,v) # 0 if and only if one of the
following holds:
(a) m is even, m > h, and k =m/2
(b)) m <2h <2m and k =h or k=m —h.

Theorem 3.14. If y € F'* is unramified, x #1, and u,v € F*, then

XOT () +x T () Ju<q
Iy (w,v) =4 x7t(w) Fy (%, uwv) |luv| = ¢™, m > 1, m even
|luv| = ¢™, m > 1, m odd.

If x =1, then the first case becomes
m+1 2 1] In|ul 2
7 g =— |- +1| — -

J1 (u,v) =

a q Ing

for Juv| = ¢~™ < q. The other cases remain valid as stated.

Theorem 3.15. If x € F* is ramified of degree h > 1, and u,v € F*, then

X)) () +x ()T (x) uv| < ¢
T, (0, 0) = X1 (u) [Fy (hyuv) + Fy, (m — hyuv)]  |uv| = ¢™, h <m < 2h
XA x ! (u) Fy (%, w) |luv| = ¢™, m > 2h, m even
0 luv| = ¢™, m > 2h, m odd.
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4. THE PRINCIPAL SERIES OF REPRESENTATIONS OF SLs (F)

Theorem 4.1. Let x € F*, feL?(F),x€F, and
a f
(’Y 6>ESL2(F)

[ (: >] )X(ﬂx+5)ﬂx+5|_lf<;xig)
)(a
[

If

for all f € L?(F) and (almost all) x € F, then Ty 18 a continuous unitary repre-
sentation of SLy (F) on L (F).

Proof. See [1] or [3]. O
Definition 4.2. The collection of representations
{7TX xEF X}
is called the principal series of representations of SLg (F).
Definition 4.3. For all x € F* and g € SL, (F), set
i (9) = Fry (9) F

Note 4.4. Let y € F*. 7, is a representation of SLy (F) on L? (F). It is unitarily
equivalent to 7, and more tractable, computationally.

Lemma 4.5. Let vy € F, p € S, cmdxeﬁ’x. Then for all x € F,

() ] )e@=vme@.

Proof. Suppose ¢ = f . Forall z € F,

7Tx< i (1) )flw(x) =Flo(x+7).

Hence,
w3 D) ew=rn (] 1) ew
[x() 0)F e
:/Ff(er'y)wm(y)dy
= (=) f ()
=t (=) ¢ (2)
forall z € F. [l

Lemma 4.6. Let o« € F*, o €S, and x € F*. Then for allz € F,

w0 )@ =x@lale (o).

o



REPRESENTATION THEORY OF SL; OVER A P-ADIC FIELD: THE PRINCIPAL SERIES 7
Proof. Suppose ¢ = f. For all x € F,
-1
a 0 1 -1 1 -2
n( % o) F @ =l F e (0

=x (@) |oz|_1 f (a_zx) .

Hence,
W% o )e@=rn (% 0 )F e
~[= (% 5 )F e
—x a>|a|*1/f(a y) e ()
=x (a Ial/f a’y) dy
—x (@) ol (a%)
for all z € F. [l

Lemma 4.7. Suppose L : L? (F) — L? (F) is a bounded linear operator such that
forallyve F, a € F*, and x € F*,

(1 0\ . (10
ﬁ”*(ﬁ 1)”*(7 1>£
. a0 . a”t 0
EWX( 0 a)zwx( 0 a)ﬁ'

Then there exists m € L™ (F) such that for all f € L? (F),
Lf () =m(z)f(x)

for almost all x € F and m is almost everywhere constant on the cosets of (FX)2
in F*.

and

Proof. Lemma 4.5 implies the first half. The required details are intricate. See
[1] or [3]. To obtain the second half, take the first as given and note that for all
a€ F*, o€ S and almost all x € F,

() 0 )| @=m@x@iale o),

(07

while

(0 ) o] @ = x@lalm (02 o (a%a)
by Lemma 4.6. O

Note 4.8. Examination of the algebra of bounded linear operators on L? (F') com-
muting with 7, for x € F* not of order 2, ultimately yields the proof of the
irreducibility of 7.

Recall the following from [4]:
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Theorem 4.9. Let y € F* z e F*, and p € S. The principal value integral

P. v./Fw (Z) X @) [y~ e (y) dy

exists. Moreover,
X -1 .
Py [ () x @l e dr= [ e () du
F ) F
Note 4.10. f € S implies that
[ £ ) u
F

is absolutely convergent for all y € F* and z € F*. See [4].

Lemma 4.11. Let p € S and x € E*. For almost all x € F,
N 0 1
Tx ~1 0 cp(x) = cp(u) JX (x,u) du
F
Proof. Suppose ¢ = f By Theorems 2.9 and 4.9,

ey [ (3) rene (2 ay

exists for all z € F*. Clearly,

pv. [ (;) £ (o) (5) o™y =PV [ ) f (o) v ol

Theorem 3.3 implies

f(ﬂx( _01 (1) )f> (x) :P-V-/Fx(y)f(—y’l)w(xy)\yl_1 dy

for almost all x € F. Theorem 4.9 and Lemma 3.11 give
1 T _
P-V-/x <) f=y)v () ly| ™" dy
F Y Y
—1 2 z —1
2. [ F e (2) i a

f(u) Jy-1 (u, ) du

for all x € F*. Hence,

for almost all x € F. O

Lemma 4.12. Let x € F* have order different from 2. If C1 and Cy are distinct

cosets of (FX)2 in F'*, then there exist sets Ay C C1 and As C Cy of positive
measure such that x € Ay and u € Ay implies J,, (z,u) # 0.



REPRESENTATION THEORY OF SL, OVER A P-ADIC FIELD: THE PRINCIPAL SERIES 9

Proof. Take C; = (FX)2 and Cy = (e (FX)Z. The other cases are similar.
Suppose x = 1. Let N = max (0, 27‘1’ — 1). Set

M={yeF:ly<a® } ) (F)’
and
Agz{yEF:|y|§q%}ﬂ(e)(FX)Q.

Theorem 3.14 gives the result.
Suppose x #Z 1 is unramified. Set

Av={yeF:ly>q} ) (F)
and
Ay={yeF:lyl=q (0 (F).

Lemma 3.13 and Theorem 3.14 finish this case.
Suppose x is ramified of degree h > 1. Set

A ={yeF:lyl>q"} () (F)
and
Av={yeF:lyl >} (e (F)".
Lemma 3.13 and Theorem 3.15 complete the proof. (]

Note 4.13. The result above requires the hypothesis concerning the order of x.
Take Cy = (FX)2, Cy = (—7) (FX)Q, and x = sgn, to observe this. The computa-
tion is easy.

Theorem 4.14. Let x € F*. Suppose that x is not of order 2. Then Ty 18
irreducible.

Proof. Suppose £ : L? (F) — L?(F) is a bounded linear operator such that £
commutes with

. 1 0 . a”t 0 d 4 0 1
"y 1) ™0 o) Y™ —1 0
for all v € F and o € F*. By Lemma 4.7, there exists m € L* (F) such that for
all f € L?(F),
Lf(x) =m(z)f(z)

for almost all € F' and m is almost everywhere constant on the cosets of (FX)2
in F*. Tt suffices to show that m is almost everywhere constant on F.
For ¢ € § and almost all x € F,

/cp(u)m(u)JX (z,u) duz/(p(u)m(ﬂﬁ)JX(m,u) du
F

F
by Lemma 4.11. Hence,

m (u) Jy (z,u) = m (x) Jy (z,u)
for almost all z,u € F. The result follows by Lemma 4.12. O

Theorem 4.15. Let x € F* have order 2. Then ry 15 reducible.
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Proof. The characters of order 2 on F' are sgn,, sgn_, and sgn,.. sgn_ and sgn,_ are
ramified of degree 1. sgn_ is unramified. Let § =€, 7, or er. Let ¢ € §S. Theorems
3.14 and 3.15 and Lemma 4.11 give

w00 ) e = [ e o
- / P T () g (1) +-amy ()] do

+ Z / ¢ (u) sgng () Fsgn, (%7 mu) du

m>0, m even lzul=q™

for almost all z € F.
Suppose that ¢ is supported on ker (sgn,). Then

/| _ )T (sgmy) sgny 1) + sy (0)]

T (sgny) [1 + sgny (2)] /A o) du  (x)

where
A = ker (sgny) ﬂ {ueF:|zul <gq}.

If ¢ ker (sgny), () vanishes.
Let n > 0, n even. Fix u € ker (sgny) and suppose |zu| = ¢, where z € F*.

Then
ru dy
/yl_qmw(y)di ( " )sgne (v) W

_ Tu zu) dy
_/y_qn/zw < y )w(y) e ( y ) [yl

_ au @
=sgny (z) /y_qn/2 V(Y)Y ( ’ ) sgng (y) |
Hence, if = ¢ ker (sgny),

ru dy _
/y|=qn/2 vy ( y ) sgny (y) Iv] 0.
/xu_q"@(u) sgny (2) Fsgn, (g,xu) du

_ /m_qn i (u) sgng () ( /_ ¥ () ¥ (y“) semy (3) fj) du.

Hence, x ¢ ker (sgny), implies that

m
> / ¢ (u) sgny (v) Fsgn, (—2 xu) du = 0,
Tu|=q™

m>0, m even ‘

But

L2 (ker (sgny))
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. 0 1
™\ -1 0
by Theorem 2.8.

Theorem 2.8 and Lemmas 4.5 and 4.6 indicate that

. (1 0 dAoFlO
WX'yl and T

also fix this space. Since matrices of the form

10 al 0 i 0 1
N1 ) 0 a ) ™ ~1 0 )

where v € F and a € F*, generate SLy (F'), the result follows. O

is invariant under the action of

Theorem 4.16. Let x € Fx. If x has order 2, then m, is reducible. Otherwise,
Ty 15 irreducible.

Proof. 7, is unitarily equivalent to 7. Cite Theorems 4.14 and 4.15. (I

5. ACKNOWLEDGEMENTS

We are indebted to Professor Sally. Without his suggestion of the project, care-
ful supervision and unceasing encouragement, this endeavor would not have been
possible.

6. REFERENCES

[1] Boyarchenko, Dmitriy. “Irreducibility of the Principal Series Representations of SLa over a
Local Field.” Unpublished Notes. (2008), 1-19.

[2] Gel'fand, I.M. and Graev, M.I. “Representations of a Group of Matrices of the Second Order
with Elements from a Locally Compact Field, and Special Functions on Locally Compact
Fields.” Uspehi Matematichesm Nauk. 18 (1963), 29-100.

[3] Sally, Jr. P.J. “An Introduction to p-adic Fields, Harmonic Analysis and the Representation
Theory of SLy.” Letters in Mathematical Physics. 46 (1998), 1-47.

[4] Sally, Jr. P.J. and Taibleson, M.H. “Special Functions on Locally Compact Fields.” Acta.
Math. 116 (1966), 279-309.



