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1 Introduction

Perhaps the first problem we encounter in set theory is that of the definition of a set. It
is a remarkable (although not altogether curious) fact that most books on set theory either
actively decline to define a set, or else neglect to mention the problem of definition altogether.
Intuitively, we know that sets contain things–elements, or objects, and so in some sense, we
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can define a set as a collection of objects. Yet this can lead us into trouble: we shall see that
there are collections of objects that are not sets, that are “too big” to be sets, that create
paradoxes if we regard them as sets.

For example, although Cantor’s original development of set theory was not axiomatic, it
is clear that he relied implicitly on three assumptions: the axiom of extension (more later),
the axiom of abstraction, and the axiom of choice. The axiom of abstraction in particular
causes problems: for any given property, it postulates the existence of a set containing all
elements for which the property holds. Bertrand Russell pointed out the problem with this
in 1901: consider the set of all sets which are not members of themselves. This may be
more familiar as the “barber” paradox. If Fred the barber shaves all men who do not shave
themselves, then who shaves Fred the barber? At any rate, this results in a paradox, and
will not do as it stands.

The lesson to be learned from this is as follows. While we have some strong intuitive
ideas about sets and set theory, it will not do to work from those alone; we must formulate
a set of axioms from which to develop our theory. Moreover, these axioms must be carefully
examined in order to avoid paradoxes such as the one above. A desire to clear up confusion is,
hopefully, is enough to motivate the following standard axioms. We will use the quantifiers
∀,∃,∃! freely, as well as the symbols =⇒ and ⇐⇒ .

2 The Axioms

2.1 The Axioms

We begin, perhaps obviously, by postulating that we are not, in fact, wasting our time.

Axiom 2.1. Axiom of Existence. ∃A such that A is a set.

Our intuition has given us one binary relation at the moment: given a set A, either an
elements a is contained in A, or it is not contained in A. We represents this as follows: a ∈ A
or a /∈ A. This seems reasonable, and is moreover compatible with the intuitive notion that
sets are somehow uniquely defined by their membership. This gives us a way of comparing
sets. We would like to consider two sets as equal if they have the same elements: that is,
given two set A and B, we want a ∈ B for all a ∈ A and b ∈ A for all b ∈ B to be the
necessary and sufficient condition that A = B. We formalize this as follows:

Axiom 2.2. Axiom of Extension. Given any two sets A and B, A = B if and only if
A ⊆ B and B ⊆ A.

The symbol ⊆ represents the subset relation. A ⊆ B means that A is a subset of B:
alternatively, that every element in A is also in B. A might constitute all of B, or it might
not. We use A ⊂ B to indicate that A is a proper subset of B; that is, that all of A is
contained in B, but that A does not constitute all of B.

We next move to a modification of the aforementioned axiom of abstraction.
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Axiom 2.3. Axiom of Separation. For every set A and every condition S(a), there
exists a set B whose elements are those elements a ∈ A for which S(a) holds. That is,
B = {a ∈ A : S(a)}.

What do we mean by a condition? Informally, just a sentence involving the element
a, usually referring to some property of the element. For example, consider the following
“condition”:

S(a) : a /∈ a (1)

Now consider two sets A and B, where B = {a ∈ A : S(a)}. We can rewrite this as
follows:

B = {a ∈ A : a /∈ a} (2)

What is an element of B, in this case? An element b is in B if and only if b ∈ A and
b /∈ b. Is B ∈ A? Is B ∈ B? If B ∈ A, then either B ∈ B, or B /∈ B. But B ∈ B is only
true if B /∈ B; hence B /∈ B. But then, by definition of B, B ∈ B. Thus B cannot be in
A. (This should seem familiar; it’s the barber paradox reformulated.) A was an arbitrary
set; hence our conclusion generalizes to this: A cannot contain everything. That is, there is
no set which contains everything. And we somehow appear to have learned something more
about what constitutes a set.

The axiom of specification does something else for us as well: it gives us a way of building
new sets from old. Given any set, however, we can only create a new set that is “smaller.” As
we’ve just shown that there is no set that contains everything, this appears to be a problem.
It is a straightforward thing to postulate the existence of an “empty set.” Using the axiom
of specification, we consider an arbitrary set A and consider:

B = {a ∈ A : a /∈ A} (3)

But there is nothing in A that is also not in A, hence B is empty. We can write this
either as B = {} or as B = ∅.

Knowing nothing about the elements in A, however, this is about all we can do. We need
a way to construct sets “up;” that is, we need a way of making larger sets from smaller.

Axiom 2.4. Axiom of Pairing. Given any two sets, there is a set to which they both
belong. That is, for any two sets A and B, there exists a set C such that A ∈ C and B ∈ C.

Using the Axiom of Separation, we can in fact make this more particular: given A and
B, we can specify a set D which contains A,B and nothing else. We do this by setting:

D = {c ∈ C : c = A or c = B} (4)

We now have a way of creating sets from other sets. But something doesn’t seem quite
satisfying yet; we want a way of building sets out of the elements of other sets, just as we
did in the axiom of separation. That is, we want the concept of unions.
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Axiom 2.5. Axiom of Unions. For any collection of sets, there exists a set which contains
all elements which are contained in at least one set of the collection. Formally, if F is a
collection (usually called a family) of sets, there exists a set U such that a ∈ U if and only
if a ∈ A for some set A ∈ F .

U is referred to as the union of the family F ; by the axiom of extension, there is only
one such U . We write U as follows:

U =
⋃
A∈F

A (5)

So far, we have postulated the existence of some set. From this, using the axiom of
separation, we can get the empty set. Using the axiom of pairing, we can create the set:
{∅, ∅}. However, something weird happens here. The axiom of extension tells us that two
sets are empty if they have the same elements. Does this mean that {∅, ∅} = {∅}? As it
happens, it doesn’t matter, since we don’t have a way of creating {∅} yet. The next axiom
allows us to do that, as well as create a number of other sets.

Axiom 2.6. Axiom of Powers. For any set A, there is a set P(A) such if B ⊆ A, then
B ∈ P(A).

That is, P(A) is the set which consists of all subsets of A. Hence {∅} = P(∅). P(A) is
called the power set of A. It is unique by the axiom of extension (and hence, the answer to
the question above is yes, apparently {∅, ∅} = {∅}).

Example 2.7. Let us use the axiom of pairing to create the following set:

A = {{∅}, ∅} (6)

What is P(A)? Certainly it contains ∅.

P(A) = {∅, {∅}, {{∅}}, {{∅}, ∅}} (7)

There are two more axioms which must be listed before continuing with our development:
these two are listed last because they are the least intuitive, and, particularly in the case of
the first one, lead to some rather peculiar results. We will not discuss these in detail here,
but save such a discussion for later.

Axiom 2.8. Axiom of Choice. Let U be a set such that every A ∈ U is nonempty and
such that any two sets A and B which share an element a are in fact equal. Then there
exists a set C such that for every set A in U , there is exactly one a ∈ C with a ∈ A.

We finish with an axiom that reminds us of where we started: its goal is to eliminate
circular sets (such as the one giving rise to Russell’s paradox. This makes it unique among
the axioms–it is the only one that asserts the nonexistence of certain sets.

Axiom 2.9. Axiom of Foundation. Given a set A 6= ∅, there exists a ∈ A such that there
is no set b with the property that b ∈ A and b ∈ a.
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2.2 Some Consequences

2.2.1 Intersections, Unions and Complements

We are still missing some things that seem standard; the Axiom of Unions above provides
us (indirectly) with the union operator, but we do not seem to have yet discovered the
intersection operator which is in some sense its complement. Why do we have an axiom for
unions but not for intersections? It turns out that the intersection operator can be developed
as a consequence of the Axioms of Extension and Separation.

Theorem 2.10. Given two sets A and B, ∃!C such that x ∈ C if and only if x ∈ A and
x ∈ B.

Proof. Letting x ∈ A and x ∈ B be our condition, the Axiom of Separation gives us:

∃C such that x ∈ C ⇐⇒ x ∈ A and x ∈ B (8)

In order to show that C is unique, we assume there exists a setD with the same properties.
That is,

x ∈ D ⇐⇒ x ∈ A and x ∈ B (9)

Then we have

x ∈ D =⇒ x ∈ A and x ∈ B (10)

=⇒ x ∈ C (11)

=⇒ D ⊆ C (12)

and similarly,

x ∈ C =⇒ x ∈ A and x ∈ B (13)

=⇒ x ∈ D (14)

=⇒ C ⊆ D (15)

and by the Axiom of Extension, we have

C = D (16)

Thus C is unique.

We notice that C is in fact what we think of as the intersection of A and B, and formalize
this with the following definition:

Definition 2.11. The intersection of two sets A and B is the set A ∩ B comprising all
elements common to A and B. That is, A ∩B = {x : x ∈ A and x ∈ B}.
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We can now prove some facts about the ∩ operator:

Proposition 2.12. Let A,B,C be sets.

1. ∩ is commutative. That is, A ∩B = B ∩ A.

2. ∩ is associative. That is, (A ∩B) ∩ C = A ∩ (B ∩B).

3. ∩ is idempotent: A ∩ A = A.

4. A ∩ ∅ = ∅

5. A ∩B ⊆ A

Proof. 1. A ∩B = {x : x ∈ A and x ∈ B} = {x : x ∈ B and x ∈ A} = B ∩ A.

2. (A∩B)∩C = {x : x ∈ A∩B and x ∈ C} = {x : x ∈ A and x ∈ B and x ∈ C} = {x :
x ∈ A and x ∈ B ∩ C} = A ∩ (B ∩ C).

3. A ∩ A = {x : x ∈ A and x ∈ A} = {x : x ∈ A} = A

4. A ∩ ∅ = {x : x ∈ A and x ∈ ∅}. But there is no x such that x ∈ ∅; hence there is no x
such that x ∈ A and x ∈ ∅. Thus A ∩ ∅ = ∅.

5. x ∈ A ∩B =⇒ x ∈ A and x ∈ B =⇒ x ∈ A =⇒ A ∩B ⊆ A.

Proposition 2.13. A ⊆ B ⇐⇒ A ∩B = A

Proof. Let A ⊆ B. Then, ∀x ∈ A, we have x ∈ B. A∩B ⇐⇒ x ∈ A and x ∈ B. But since
x ∈ A =⇒ x ∈ B, we have A ∩B ⇐⇒ x ∈ A. Thus, A ∩B = A.

For the reverse direction, assume A∩B = A. By the Axiom of Extension, A∩B ⊆ A and
A ⊆ A∩B. A ⊆ A∩B implies that, ∀x ∈ A, we have x ∈ A∩B. That is, x ∈ A =⇒ x ∈ A
and x ∈ B. That is, x ∈ A =⇒ x ∈ B, and so A ⊆ B.

It is clear that A∩B = ∅ iff A and B have no elements in common. In this case, we refer
to A and B as pairwise disjoint.

We proceed to establish the union operator:

Theorem 2.14. Given two sets A and B, ∃!C such that x ∈ C if and only if x ∈ A or
x ∈ B.

Proof. Using the axiom of unions, we have

∃C such that x ∈ C ⇐⇒ x ∈ A or x ∈ B (17)

To prove uniqueness, we assume there exists a set D with the same properties:

x ∈ D ⇐⇒ x ∈ A or x ∈ B (18)
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Then we have

x ∈ D =⇒ x ∈ A or x ∈ B (19)

=⇒ x ∈ C (20)

=⇒ D ⊆ C (21)

and similarly,

x ∈ C =⇒ x ∈ A or x ∈ B (22)

=⇒ x ∈ D (23)

=⇒ C ⊆ D (24)

and by the Axiom of Extension, we have

C = D (25)

Thus C is unique.

C, as above, is clearly the set that we think of as the union of A and B. We formally
define the union operator:

Definition 2.15. The union of two sets A and B is the set A ∪ B comprising all elements
contained in at least one of A and B. That is, A ∪B = {x : x ∈ A or x ∈ B}.

In particular, A ∪ B is the smallest set containing all the elements in at least one of A
and B. We prove some facts about the ∪ operator:

Proposition 2.16. Let A,B,C be sets.

1. ∪ is commutative. That is, A ∪B = B ∪ A.

2. ∪ is associative. That is, (A ∪B) ∪ C = A ∪ (B ∪B).

3. ∪ is idempotent: A ∪ A = A.

4. A ∪ ∅ = A

5. A ⊆ A ∪B

Proof. 1. A ∪B = {x : x ∈ A or x ∈ B} = {x : x ∈ B or x ∈ A} = B ∪ A.

2. (A ∪ B) ∪ C = {x : x ∈ A ∪ B or x ∈ C} = {x : x ∈ A or x ∈ B or x ∈ C} = {x : x ∈
A or x ∈ B ∪ C} = A ∪ (B ∪ C).

3. A ∪ A = {x : x ∈ A or x ∈ A} = {x : x ∈ A} = A
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4. A ∪ ∅ = {x : x ∈ A or x ∈ ∅}. But there is no x such that x ∈ ∅; hence A ∩ ∅ = {x :
x ∈ A} = A

5. x ∈ A =⇒ x ∈ A or x ∈ B =⇒ x ∈ A ∪B =⇒ A ⊆ A ∪B.

Proposition 2.17. A ⊆ B ⇐⇒ A ∪B = B

Proof. Let A ⊆ B. Then, ∀x ∈ A, we have x ∈ B. A ∪ B ⇐⇒ x ∈ A or x ∈ B. But since
x ∈ A =⇒ x ∈ B, (x ∈ A or x ∈ B) is equivalent to x ∈ B. Thus, A∪B = {x : x ∈ B} = B.

For the reverse direction, assume A∪B = B. By the Axiom of Extension, A∪B ⊆ B and
B ⊆ A∪B. We have from above that A ⊆ A∪B, and therefore, by transitivity, A ⊆ B.

It turns out, in addition, that the intersection and union operations are distributive:

Proposition 2.18. Let A,B and C be sets.

1. (A ∪B) ∩ C = (A ∩ C) ∪ (B ∩ C)

2. (A ∩B) ∪ C = (A ∪ C) ∩ (B ∪ C)

Proof. The proofs are somewhat syntactic in nature.

1. (A ∪ B) ∩ C = {x : x ∈ A ∪ B and x ∈ C} = {x : x ∈ A or B and x ∈ C} = {x : x ∈
A andC or x ∈ B and C} = {x : x ∈ A ∩ C and x ∈ B ∩ C} = (A ∩ C) ∪ (B ∩ C)}

2. (A ∩ B) ∪ C = {x : x ∈ A and B or x ∈ C} = {x : x ∈ A or C and x ∈ B or C} =
(A ∪ C) ∩ (B ∪ C)

Finally, we justify the operation of complementation:

Theorem 2.19. Given two sets A and B, ∃!C such that x ∈ C ⇐⇒ x ∈ A and x /∈ B.

Proof. We use the Axiom of Separation to postulate the existence of such a C, and then the
Axiom of Extension to prove its uniqueness.

Definition 2.20. For two sets A and B, the complement of B in A is the set A−B comprising
all elements contained in A and not B. That is, A−B = {x : x ∈ A and x /∈ B}.

We also talk about the complement of a set without referring to the set from which to
“subtract” it; in these circumstances, we are considering a set as part of a larger “universe,”
the nature of which should be apparent from the context. For example, we might refer to
the complement of the even numbers: the natural name for this set is the odd numbers, and
we have assumed that we are in the “universe” of natural numbers. We will refer to the
universe as E (for “everything”). In these cases, we write the complement of A as A′. This
allows us to state some facts:
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Proposition 2.21. Let A and B be sets.

1. (A′)′ = A

2. ∅′ = E

3. E ′ = ∅

4. A ∩ A′ = ∅

5. A ∪ A′ = E.

Proof. 1. x ∈ (A′)′ ⇐⇒ x /∈ A′ ⇐⇒ x ∈ A. Therefore, (A′)′ = A.

2. ∅′ = {x : x ∈ Eandx /∈ ∅}. But there is no x such that x ∈ ∅, so ∅′ = {x : x ∈ E} = E.

3. This follows from 2.

4. A ∩ A′ = {x : x ∈ A and x ∈ A′} = {x : x ∈ A and x ∈ E and x /∈ A}. But there is
no x such that x ∈ A and x /∈ A, hence A ∩ A′ = ∅.

5. A ∪ A′ = {x : x ∈ A or x ∈ A′} = {x : x ∈ A or x ∈ E and /∈ A} = {x : x ∈ A or /∈
A and x ∈ A or x ∈ E} = {x : x ∈ E} = E.

Proposition 2.22. A ⊂ B ⇐⇒ B′ ⊂ A′.

Proof. Assume A ⊂ B. Then x ∈ A =⇒ x ∈ B. Thus x /∈ B =⇒ x /∈ A. ∀x, x ∈ E, so
we can write x ∈ E and x /∈ B =⇒ x ∈ E and x /∈ A. Therefore, B′ ⊂ A′.

The reverse follows by remembering that (A′)′ = A.

The most important laws about complements are the De Morgan laws, which are gener-
alizable to infinite collections of sets:

Proposition 2.23. (De Morgan Laws) Let A,B be sets.

1. (A ∪B)′ = A′ ∩B′

2. (A ∩B)′ = A′ ∪B′

Proof. 1. (A ∪ B)′ = {x : x ∈ E and x /∈ A ∪ B} = {x : x ∈ E and x /∈ A and
x /∈ B} = {x : x ∈ A′ and x ∈ B′} = A′ ∩B′.

2. (A∩B)′ = {x : x ∈ E and x /∈ A∩B} = {x : x ∈ E and x /∈ A or x /∈ B} = {x : x ∈ A′
or x ∈ B′} = A′ ∪B′.
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2.2.2 Ordered Pairs and Cartesian Products

We noticed one of the unexpected consequences of the Axiom of Extension when we examined
the natural numbers in the previous section: namely, that a set {a, a} is the same as the set
{a}. Another consequence is that the set {a, b} is equivalent to the set {b, a}. This satisfies
our ideas about sets as collections of objects, but does not give us a way of representing
ordered pairs. In particular, then, we want a way of ordering a set so that the order we
intend is obvious from the set itself.

Suppose we want to consider

a b

in that order. We can, for each spot in the order, consider the set of elements that occur
in or before that spot:

Definition 2.24. The ordered pair (a, b) is represented by the set {{a}, {a, b}}. That is,
(a, b) = {{a}, {a, b}}.

This seems satisfactory, but we need to check that it does not lead to contradictions. In
particular, we need to be sure that if (a, b) = (c, d), then a = c and b = d:

Proof. If a = b, then (a, b) = {{a}, {a, a}} = {{a}, {a}} = {{a}}, and if (a, b) is represented
by a singleton set {{a}}, then {{a}} = {{a}, {a}} = {{a}, {a, a}} = {{a}, {a, b}}, so in
particular, {a} = {a, b} and a = b.

Assume (a, b) = (c, d). If a = b, then for (a, b) = (c, d), we must have both (a, b)
and (c, d) represented by singletons. In particular, (a, b) = {{a}} and (c, d) = {{c}}, so
(a, b) = (c, d) =⇒ a = c and since a = b and c = d, reflexivity and transitivity of equality
gives b = d.

If a 6= b, then the sets (a, b) and (c, d) each contain one singleton set: {a} and {c},
respectively, so (a, b) = (c, d) requires that the singletons be equal. That is, a = c. Each of
(a, b) and (c, d) contain exactly one pair: {a, b} and {c, d}, respectively. (a, b) = (c, d) gives
us that {a, b} = {c, d}, and since a = c, b and d must be equal (by the Axiom of Extension).

Thus, ordered pairs are well-defined.

This begs the question: Given two sets A and B, can we construct a set containing all the
ordered pairs (a, b) where a ∈ A and b ∈ B? Certainly: if a ∈ A and b ∈ B, then {a} ⊆ A
and {b} ⊆ B, and clearly {a, b} ⊆ A∪B. But then both {a} and {a, b} are subsets of A∪B,
so by the Axiom of Powers, {a} and {a, b} are in P(A ∪ B), so {{a}, {a, b}} ⊂ P(A ∪ B)
and (a, b) ∈ P(P(A ∪B)).

This a bit complicated, and really, we’d like a set that consists of the aforementioned
ordered pairs and nothing. We can apply the Axiom of Separation to P(P(A∪B)) to achieve
the desired result:

Definition 2.25. The Cartesian product of two sets A and B is the set consisting of ordered
pairs (a, b) where a ∈ A and b ∈ B. We write this set as A× B. That is, A× B = {x : x =
(a, b) with a ∈ A and b ∈ B}.
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This leads us to a “converse” proposition:

Proposition 2.26. If C is a set such that every element of C is an ordered pair, then ∃A,B
sets such that C ⊆ A×B.

Proof. Let c ∈ C. Then c = (a, b) = {{a}, {a, b}} for some a, b. Thus, the elements of C are
sets. Consider D =

⋃
c∈C c. For any c = (a, b) ∈ C as above, {a} ∈ D and {a, b} ∈ D. We

notice that the elements of D are again sets, so we take F =
⋃
d∈D d. For any c = (a, b) ∈ C,

a ∈ F and b ∈ F . Set A = F = B. Then C ⊆ A×B.

We can, in fact, be more specific: using the Axiom of Separation, we can set A = {a :
∃b with (a, b) ∈ C} and B = {b : ∃a with (a, b) ∈ C}. If we define A and B this way, it
becomes clear that C = A×B. This seems somewhat redundant, but will be useful later.

We prove a few standard results about Cartesian products:

Proposition 2.27. Let A,B,C,D be sets.

1. (A ∪B)× C = (A× C) ∪ (B × C)

2. (A ∩B)× (C ∩D) = (A× C) ∩ (B ×D)

3. (A−B)× C = (A× C)− (B × C).

Proof. 1. (A ∪ B) × C = {x : x = (y, z) with y ∈ A ∪ B and z ∈ C} = {x : x =
(y, z) with y ∈ A or B and z ∈ C} = {x : x = (y, z) with y ∈ A and z ∈ C ory ∈
B and z ∈ C} = {x : x ∈ A× C or x ∈ B × C} = (A× C) ∪ (C × C).

2. (A ∩ B) × (C ∩ D) = {x : x = (y, z) with y ∈ A ∩ B and z ∈ C ∩ D} = {x : x =
(y, z) with y ∈ A and B and z ∈ C and D} = {x : x = (y, z) with y ∈ A and z ∈
C and y ∈ B and z ∈ D} = {x : x ∈ A× C and x ∈ B ×D} = (A× C) ∩ (B ×D).

3. (A− B)× C = {x : x = (y, z) with y ∈ A− B and z ∈ C} = {x : x = (y, z) with y ∈
A and y /∈ B and z ∈ C} = {x : x = (y, z) with y ∈ A and z ∈ C and y /∈ B and z ∈
C} = {x : x ∈ A× C and x /∈ B × C} = (A× C)− (B × C).

2.2.3 Relations and Functions

Armed with ordered pairs, we can now define a relation

Definition 2.28. A set R is a relation if every element of R is an ordered pair.

Example 2.29. The Cartesian product A×B of two sets A and B is a relation. This should
be obvious.

11



If R is a relation, we often represent (a, b) ∈ R by aRb.
We recall from Proposition 2.26 that, given a set R consisting of ordered pairs, we can

define sets A and B such that R = A× B. In this case, we say that R is a relation from A
to B. We let A and B be defined as above; they are referred to, respectively, as the domain
and range of the relation R:

domR = {a : ∃b with aRb} (26)

ranR = {b : ∃a with aRb} (27)

Consider for a moment a relation R for which domR = ranR. There are some properties
that such relations commonly have:

Definition 2.30. Let A be a set and let R be a relation from A to A. That is, domR =
A = ranR.

1. R is reflexive if ∀a ∈ A, aRa.

2. R is symmetric if ∀a, b ∈ A, aRb =⇒ bRa.

3. R is transitive if ∀a, b, c ∈ A, aRb and bRc =⇒ aRc.

4. If R is reflexive, symmetric and transitive, we call R an equivalence relation

An equivalence relation on a set A divides up A in a very particular fashion: into a
pairwise disjoint collection of subsets C such that

⋃
C = A. (This is called a partition.) If R

is an equivalence relation on A, then for each a ∈ A, we refer to the set of all elements b ∈ A
for which aRb as the equivalence class of a with respect to the relation R. The equivalence
classes are the pairwise disjoint subsets. To prove this, we need the following proposition:

Proposition 2.31. Let A be a set and let R be an equivalence relation on A. For any a ∈ A,
we represent the equivalence class of a by π(a). If a, b ∈ A, π(a)∩π(b) 6= ∅ =⇒ π(a) = π(b).

Proof. If π(a) ∩ π(b) 6= ∅, then ∃c such that c ∈ π(a) and c ∈ π(b). Then we have aRc and
bRc. R is an equivalence relation, so aRc =⇒ cRa and thus bRa by transitivity. But then,
by transitivity, bRd∀d ∈ π(a) and π(a) ⊆ π(b).

To get the reverse inclusion, we note that, by symmetry, bRa =⇒ aRb. Thus aRf∀f ∈
π(b), so π(a) ⊆ π(b).

Thus, by the Axiom of Extension, π(a) ∩ π(b) 6= ∅ =⇒ π(a) = π(b).

We can also define a more specific kind of a relation:

Definition 2.32. A function from A to B (abbreviated f : A → B) is a relation f such
that domf = A and for each a ∈ A,∃!b ∈ B with (a, b) ∈ f . If (a, b) ∈ f , we write f(a) = b.

Note that ranf is not specified to be B: we refer to the subset of B comprised of b ∈ B
such that ∃a ∈ A with f(a) = b as the image of f (denoted im(f)).

12



Definition 2.33. Let A,B be sets. Let f : A→ B.

1. f is injective if f(a1) = f(a2) =⇒ a1 = a2∀a1, a2 ∈ A.

2. f is surjective if ∀b ∈ B, ∃a ∈ A such that f(a) = b.

3. f is bijective if it is injective and surjective.

It is easy enough (if perhaps circular) to note that f : A→ im(f) is surjective.
We can now reformulate the Axiom of Choice in terms of functions:

Axiom 2.34. Axiom of Choice. For every set A, there exists a choice function f :
(P(A)− {0} → A such that ∀B ⊂ A, f(B) ∈ A.

Writing f(B) is a slight abuse of notation: it represents the image of the subset B.
Formulating the Axiom of Choice in this manner will allows us to work more comfortably
with it later.

2.3 An Axiom for the Natural Numbers

Building from sets, we seem to have captured a number of standard mathematical concepts.
We still seem to be missing numbers, however. How are we to capture numbers from sets?
The most logical connection seems to be to equate a number with the number of elements
contained in a given set. (We can say, without confusion that two sets have the same
“number” of elements if we can put a bijection between them. This would give us some
concept of the natural numbers. But then are we to consider {a, b} equal to {c, d} merely
because we can put a bijection between them? This doesn’t seem right. Moreover, what
is the relationship to be between one number and the next? Intuitively, we think that 2
contains 1, and 3 contains 1 and 2, etc. This idea motivates the following definition:

Definition 2.35. For any set n, we call n+ the successor of n if n+ = n ∪ {n}.

Now we can try assigning numbers to sets. The first is easy:

0 = ∅ (28)

From here, we simply use the definition of successor. Thus we set

1 = 0+ = {∅} = {0} (29)

2 = 1+ = {∅, {∅}} = {0, 1} (30)

3 = 2+ = {∅, {∅}, {{∅}}} = {0, 1, 2} (31)

and so on. It is part of our intuition about the natural numbers that they form a set.
Nothing said so far appears to justify this; in fact, we need a new axiom:

Axiom 2.36. Axiom of Infinity. There exists a set N such that ∅ ∈ N and for all n ∈ N,
n+ is in N.

13



Here we have used the standard notation for the natural numbers. We shall return to
examine this axiom in greater detail later.

We notice that the set corresponding to each natural number seems, intuitively, to have
the correct number of elements in it. While our definition of N prevents such things as
{a, b} = {c, d}∀a, b, c, d (which is a good thing!), we want to have some idea of similarity
between two sets with the same number of elements. This follows from before.

Definition 2.37. Two set A and B are similar if ∃f : A→ B such that f is a bijection. In
this case, we write: A ∼ B.

Thus, {a, b} ∼ {c, d} ∼ 2. In fact, we refer to an arbitrary set A as finite if it is equivalent
to a natural number; else A is infinite. It is clear that N is infinite.

3 Order

We now have a concept of the natural numbers and of the equivalence of sets. It would be
nice to have a way of comparing sets that tells us more about them than simply whether or
not they are equivalent. To this end, we provide the following definitions.

Definition 3.1. A relation R on a set A is antisymmetric if, ∀a, b ∈ AaRb and bRa =⇒
a = b.

We can now define the concept of order.

Definition 3.2. A relation R on a set A is a partial order if it is reflexive, antisymmetric,
and transitive.

Example 3.3. Consider N. The inclusion (⊆) relation is a partial order on this set:

Proof. Let n,m, k ∈ N.

1. x ∈ n =⇒ x ∈ n. Therefore, n ⊆ n.

2. Suppose n ⊆ m and m ⊆ n. By the Axiom of Extension, n = m.

3. Suppose n ⊆ m and m ⊆ k. x ∈ n =⇒ x ∈ m and x ∈ m =⇒ x ∈ k, hence
x ∈ n =⇒ x ∈ k and n ⊆ k.

In fact, for N, the partial order ⊆ is the familiar inequality: ≤. On N this order has an
additional property: given any n,m ∈ N, either n ≤ m or m ≤ n.

Definition 3.4. A partial order ≤ on a set A is called a total order if, ∀a, b ∈ A, either
a ≤ b or b ≤ a.
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So ≤ on N is a total order. Essentially, a total order allows us to compare any two
elements in a set. We refer to a set A as partially ordered or totally ordered if it has a
partial order or total order (respectively) on it.

Definition 3.5. If A is a partially ordered set, and if a ∈ A, the set {x ∈ A|x < a} is the
initial segment or prefix determined by a; we denote it by s(a).

For n ∈ N with the ≤ ordering, we notice that s(n) = n.
N has another nice property: every subset of N contains a smallest element. This allows

us to use induction.

Theorem 3.6. Induction. Let A ⊆ N. If ∀n ∈ N, we have the property that s(n) ⊆ A =⇒
n ∈ A, then A = N.

Proof. Suppose not. Then N − A 6= ∅, and since N − A ⊆ N, N − A contains a smallest
element n. But then s(n) ⊆ A, and so, by hypothesis, n ∈ A. But n cannot belong to both
mathbbN − A and A; hence our assumption is false, and N− A = ∅.

A set in which we can use the inductive principle is called well-ordered.

Definition 3.7. A set W is well-ordered if, for any A ⊆ W such that A 6= ∅, A contains a
smallest element.

This allows us to state a generalized version of the inductive principle:

Theorem 3.8. Principle of Transfinite Induction. Let A ⊆ B, where B is well-
ordered. If ∀b ∈ B, we have the property that s(b) ⊆ A =⇒ b ∈ A, then A = B.

The proof follows from above.

Proposition 3.9. A totally ordered set is well-ordered if and only if the initial segment of
each element is well-ordered.

Proof. Let A be a totally ordered set which is well-ordered. Consider an arbitrary element
a ∈ A. The set s(a) is a subset of A; hence, by transitivity of the ⊆ relation, B ⊆ s(a) =⇒
B ⊆ A. A is a well-ordering; hence any subset has a smallest element. Thus any subset of
s(a) has a smallest element, and s(a) is well-ordered. The choice of a was arbitrary, so the
initial segment of every element of A is well-ordered.

For the reverse, assume that the initial segment of every element of A is well-ordered.
Consider a nonempty subset B of A. Let b ∈ B, and assume that B has no smallest element.
Then s(b)∩B 6= ∅ (else b would be the smallest element in B). In particular, s(b)∩B ⊆ s(b),
and since s(b) is well-ordered, s(b)∩B has a smallest element, c. But c ≤ b (since c ∈ s(b)),
so if c is the smallest element in s(b) ∩ B, s(c) ∩ B = ∅. But then c is the smallest element
in B, and A is well-ordered.

Proposition 3.10. Given two well-ordered sets A and B, either A ∼ B or one of A and B
is isomorphic to a prefix of the other.
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Proof. Let A0 be the set of elements of A for which there exists b ∈ B with s(a) ∼ s(b). A0

is nonempty; A,B well-ordered implies that ∃a0 ∈ A, b0 ∈ B such that if a ∈ A, b ∈ B, then
a0 < a and b0 < b; i.e., there exist smallest elements a0 and b0 in A and B, respectively.
Consider their initial segments: s(a0) = ∅, s(b0) = ∅, hence s(a0) ∼ s(b0). Thus a0 ∈ A0.

For each a ∈ A0, write f(a) for the corresponding b in B, and let B0 be the range of f .
This is well-defined: if ∃b, d ∈ B such that s(b) ∼ s(a) f and s(d) ∼ s(a) or some particular
a ∈ A0, then s(b) ∼ s(d). But B is well-ordered, so s(b) ∼ s(d) for b, d ∈ B =⇒ b = d.

We claim that both A0 and B0 are closed downwards. That is, if a ∈ A0, then s(a) ⊆ A0

and b ∈ B0 =⇒ s(b) ⊆ B0.
Assume a ∈ A0 such that ∃z ∈ A − A0 with z < a. a ∈ A0 =⇒ ∃b ∈ B with

s(a) ∼ s(b). Let φ be the isomorphism between the initial segments: φ : s(a)→ s(b). Then
s(z) ∼ s(φ(z)), and z ∈ A0.

Similarly, let b ∈ B0 such that ∃y ∈ B − B0 with y < b. Then ∃a ∈ A0 s.t. s(a) ∼ s(b).
Let ψ be the isomorphism: ψ : s(b)→ s(a). Then s(y) ∼ s(ψ(y)), and y ∈ B0.

If A0 = A, or B = B0 then we are done, so assume both A−A0 and B−B0 are nonempty.
Let x,w be the smallest elements in A−A0 and B−B0, respectively. It is clear from above
that s(x) = A0 and s(w) = B0. But by construction, it is clear that A0 ∼ B0. Hence
s(x) ∼ s(w), and x ∈ A0, w ∈ B0. Thus we cannot have both A−A0 and B−B0 nonempty;
either one or both is empty. Thus, either A ∼ B or one of A and B is isomorphic to a prefix
of the other.

We now state a particularly useful theorem, although one with some peculiar baggage.

Theorem 3.11. Well-Ordering Theorem Every set can be well-ordered.

The proof relies (indirectly) on the Axiom of Choice, and we will return to it in the final
section.

4 Ordinals and Cardinals

4.1 Ordinals

We defined the successor of a set n as n ∪ {n}, and then constructed the natural numbers
to contain 0 = ∅ and to containn+ whenever it contains n. This property allowed us to use
the inductive principle, which we saw above generalized to well-ordered sets.

We have been thinking of N as a set containing numbers; yet from our construction,
n ∈ N is a set containing all predecessors of n. We rename the set N as ω: this set contains
the natural numbers, so we may think of ω as the set containing all the predecessor of ω. It
seems only logical, then, that we may form ω+ = ω ∪ {ω}. We appear to be able to count,
then, beyond the natural numbers.

For each natural number, we note that m < n is the same statement as m ∈ n and
m ⊂ n. Since ω is well-ordered by ∈, Proposition 3.9 give us that, for any n ∈ ω, s(n) is
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well-ordered by ∈. Moreover, s(n) = n by construction. These are the properties we want
to extend.

4.1.1 Ordinal Numbers

Definition 4.1. An ordinal number is a well-ordered set α such that s(β) = β ∀β ∈ α.

Proposition 4.2. ∀n ∈ ω, n is an ordinal. ω is an ordinal.

Proof. ω is a well-ordered set; hence the prefix of any element n ∈ ω is well-ordered. For
any m ∈ ω, s(m) = m; hence, for all m ∈ ω such that m ∈ n(m < n), s(m) = m. It follows
that ω is an ordinal.

Proposition 4.3. If α is an ordinal, α+ is an ordinal.

Proof. If α+ = α∪ {α}. Then α∩ α+ = α, so every element in α+ except for α is contained
in α, and α is the largest element in α+ under the ∈ ordering. Consider a subset A of α+. If
A∩α ⊆ α, so if A∩α nonempty, the smallest element of A is the smallest element of A∩α.
If A ∩ α = ∅, then, since A ⊆ α+, A = {α} and hence α is the smallest element of A. Thus,
every subset of α+ has a smallest element, and so α+ is well-ordered under the ∈ ordering.

For all β ∈ α, s(β) = β, so we only need to verify this property for α ∈ α+. From above,
we have that α is the largest element in α+, so s(α) in α+ is precisely everything in α+ that
is not α. But α+ = α ∪ {α}, hence s(α) = α, and α+ is an ordinal.

Thus, ω+ is an ordinal. All ordinals greater than or equal to ω are called transfinite.
Unlike the finite ordinals (every element of ω), not all transfinite ordinals have an immediate
predecessors. For example, ω+ has predecessor ω, but ω has no largest element and hence
no immediate predecessor. An ordinal with an immediate predecessor is called a successor
ordinal; the others (such as ω) are called limit ordinals. It is clear that the ordinals are
well-ordered; that is, that any set of ordinals has a smallest element by extension of the ∈
ordering.

Just as we found ω to be the set of all natural numbers, is there a set containing all of
the ordinals? As it turns out, it doesn’t make any sense to talk about such a set.

Proposition 4.4. There is no set comprised precisely of all the ordinal numbers.

Lemma 4.5. If α is an ordinal, α /∈ α.

Proof. If α is an ordinal, then α+ is also an ordinal, so s(α) = α. Then α ∈ α =⇒ α ∈ s(α),
which contradicts the definition of s(α).

Proof. Suppose there does exist such a set Ω. Then Ω itself is an ordinal: it is well-ordered,
and ∀β ∈ Ω, s(β) = β. Then Ω ∈ Ω, and so by the previous lemma, Ω cannot be an ordinal.
Hence there cannot be such a set Ω.

In fact, the collection of all ordinals is called a class. We will refer to this class when
necessary, but otherwise we are not concerned with the notion of a class.
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Lemma 4.6. If α is an ordinal, s(α) is an ordinal.

Proof. α well-ordered implies that every subset of α is well-ordered. Thus s(α) is well-
ordered. As above, α an ordinal implies that α+ is an ordinal, hence s(α) = α. Hence,
∀β ∈ s(α), β ∈ α. But α an ordinal implies that ∀β ∈ α, s(β) = β, hence for all β ∈
s(α), s(β) = β, and s(α) is an ordinal.

Theorem 4.7. Counting Theorem Each well-ordered set is isomorphic to a unique ordinal
number.

Proof. Let A be a well-ordered set. Assuming it is isomorphic to some ordinal, uniqueness
is easy: A ∼ α and A ∼ β for α, β ordinals implies that α ∼ β by transitivity, and since the
ordinals are well-ordered, α ∼ β =⇒ α = β.

We recall Proposition 3.10. We let A be our well-ordered set, and construct a subset A0

as before, where A0 is the set of a ∈ A such that s(a) ∼ s(α) for α an ordinal. We define a
function f : A0 → ordinals where, for each a ∈ A0, f(a) = α such that s(a) ∼ s(α). By the
above uniqueness argument, f is well-defined. Let Ω0 be the image of A0 under f .

By the argument in Proposition 3.10, both A0 and Ω0 are closed downwards. If A = A0,
then we are done, so assume not. Then let x be the smallest element in A − A0. Ω0 is an
ordinal, by construction, so Ω+

0 is the smallest ordinal not in Ω0. Then, using the argument
in Proposition 3.10, s(x) ∼ s(Ω0), so x ∈ A0. Hence A − A0 cannot contain a smallest
element, and is therefore empty. Then A = A0, and A is isomorphic to a unique ordinal (Ω0

by construction).

4.1.2 Ordinal Arithmetic

When we are talking about natural numbers, we generally represent the successor of n ∈ ω
as n+ 1, not n+. The problem with this is that we have not made sense of the + operator.
Our intuition tells us that n+1 should just mean to adjoin 1 to the set n. But 1 ∈ n already,
so doing this would mean that n + 1 = n. What we need n + 1 to mean is to add one new
element to the set n. Thus, using n− to represent the predecessor of n (which existd because
n is finite, if n = {0, 1, 2, . . . , n−}, then we could write n + 1 = {0, 1, 2, . . . , n−, a} where
a /∈ n. Ideally, we would like a = n, but by demanding that a be the largest element in the
set n+ 1, we do not upset the well-ordering, and hence, by Theorem 4.7. n+ 1 is isomorphic
to a unique ordinal; namely, n+. Note that we are regarding ∼ as equivalent to =.

This idea can be generalized.

Definition 4.8. For two ordinals α and β, α + β := α t β.

t represents the disjoint union of the sets α and β; since for any two ordinals, either
α ∈ β, α = β, or β ∈ α, α and β are not a priori disjoint: we can achieve this very easily by
replacing β with β × {1}. The two are isomorphic, so this is not a problem.

Ideally, we would hope that the class of ordinals is closed under this addition operation:

Proposition 4.9. If α and β are ordinals, α + β is an ordinal.
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Proof. We retain the well-ordering on α and on β, respectively. Replacing β with β × {1}
does not disrupt this at all: we simply order β×{1} by the first coordinate of every ordered
pair. Then we require that, for b ∈ β the smallest element, a < (b, 1) for all a ∈ α. Consider
a subset A of α + β. If A ∩ α is nonempty, then the smallest element of A is the smallest
element of A∩ α. If A∩ α is empty, then A ⊆ β × {1}, and since β × {1} is well-ordered, A
has a smallest element. Hence α + β is well-ordered.

Next, consider s(γ) for some γ in α + β. If γ ∈ α, then we already have s(γ) = γ. Now
suppose γ = (b, 1) where b is as defined above. Then s(γ) = α, and by Theorem 4.7, γ ∼ α,
so s(γ) = γ. This argument extends by induction, and hence ∀γ ∈ α + β, s(γ) = γ.

Consider, then, ω and 1 + ω, and consider the inclusion mapping between them. Since
neither has a last element, and neither contains any limit ordinals, this mapping is a bijection,
and hence ω = 1 + ω. Clearly, however ω + 1 is the successor of ω: ω has no last element,
but ω + 1 does. Addition, therefore, is not commutative.

We now write α+ as α + 1. This allows us to write ω + 1, ω + 2(= (ω + 1)+), ω + 3, . . . .
It is easy to see in this way that we will come eventually to ω + ω, usually written as ω ∗ 2,
and gives us some idea of what it means to multiply ordinals.

Definition 4.10. For α and β ordinals, α∗β := α+α+ · · ·+α, where there are β additions
of α.

Thus ω ∗ 2 = ω + ω, but 2 ∗ ω = 2 + 2 + · · · + 2 ω times. It is clear from this that
multiplication is not commutative: adding two together ω times will never allow us to get
beyond the natural numbers; hence 2 ∗ ω = ω, while w ∗ 2 does not.

We have one more arithmetic definition:

Definition 4.11. For α, β ordinals, αβ := α∗α∗· · ·∗α, where the multiplication is performed
β times.

Again, just as addition and multiplication do not quite work in the familiar way, not all
of the usual properties of exponentiation hold: for example, (α ∗ β)γ 6= αγ ∗ βγ in general.

The above definitions can all also be formulated recursively, which will make them easier
to work with:

Definition 4.12. Let α, β be ordinals

1. If β is a successor ordinal (i.e. β = γ + 1), then α + β = (α + γ) + 1. If β is a limit
ordinal, then α + β = supγ<β α + γ.

2. If β = γ + 1, then α ∗ β = (α ∗ γ) + α. Else, α ∗ β = supγ<β α ∗ γ.

3. If β = γ + 1, then αβ = αγ ∗ α. Else, αβ = supγ<β α
γ.
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4.1.3 Countability

Definition 4.13. Let α be an ordinal, and A be a set.

1. We call α countably infinite if there exist injections from ω to α and α to ω.

2. We call α countable if α is either finite or countably infinite.

3. We call α uncountable if it is not countable. We define ω1 as the smallest uncountable
ordinal (the set of all countable ordinals); thus, ω1 = supα, where α are countable
ordinals.

Lemma 4.14. There is no countable sequence of countable ordinals such that their sup is
ω1.

Proof. Assume so. Then we have a monotone increasing function f : ω → ω1 such that
supα∈ω f(α) = ω1. Consider U =

⋃
α<ω s(f(α)). Note that ∀α < ω, f(α) ∈ ω1, so f(α) is

countable, and hence s(f(α)) is a countable set. Thus U is a countable union of countable
sets, and is hence countable by the following “diagonalization” argument:

Send 1 to the smallest element in s(f(1)), 2 to the smallest element in s(f(2)), 3 to
the smallest remaining element in s(f(1)), 4 to the smallest element in s(f(3)), 5 to the
smallest remaining element in s(f(2)), and so on. If there is no smallest remaining element
in some set, then it is empty since it is an ordinal by Lemma ?? and hence well-ordered. If
this happens, then send n ∈ ω to the next item on the list as ordered above. This gives a
bijection between ω and U .

Now, ∀α < ω1,∃β such that α < f(β) by definition of our function f . Thus, ∀α <
ω1,∃β < ω such that α ∈ s(f(β)). Thus, ∀α < ω1, α ∈ U , and ω1 ⊆ U . But then U is
uncountable.

Hence there can exist no function f with the properties we assumed, and there is no
countable sequence of countable ordinals with supremum ω1. In general, the supremum of a
countable sequence of countable things is countable.

Lemma 4.15. If α is an ordinal, ωα ≥ α

Proof. We use induction. Let α be such that for all ordinals β < α, ωβ ≥ β.
ωα = supβ<α ω

β, and α = supβ<α β. By the induction hypothesis, ωβ ≥ β for each β < α,
so supβ<α ω

β ≥ supβ<α β. But then ωα ≥ α.

Proposition 4.16. If α and β are both countable ordinals, then αβ is countable.

Proof. In order to use induction, assume αγ is countable ∀γ < β.
Suppose β is a successor ordinal, β = γ + 1. Then αβ = αγ ∗ α, and αγ is countable

by the induction hypothesis. But then αγ ∗ α is countable by a diagonalization argument
similar to the one from Lemma 4.14: send 1 to the smallest element in the “first” αγ, 2 to
the smallest element in the “second” αγ, 3 to the smallest remaining element in the first αγ,
4 to the smallest element in the “third” αγ, and so on. Since α is countable, this gives a
bijection between ω and α.
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Suppose β is a limit ordinal. Then αβ = supγ<β α
γ. But by the induction hypothesis,

and β countable, this is the supremum of a countable sequence of countable ordinals; hence,
by Lemma 4.14, αβ is countable.

Definition 4.17. ε0 is defined as the smallest ordinal such that ωα = α.

Lemma 4.18. ωω1 = ω1

Proof. ωω1 = supα<ω1
ωα. Every element in this sequence is countable, so ωω1 ≤ ω1. But

we have an uncountably long sequence, which cannot be indexed by any countable ordinal,
hence ωω1 ≥ ω1, and so ωω1 = ω1.

Lemma 4.19. Let β = sup{α0, α1, α2, . . . } where the αs are not necessarily all the ordinals
less than β.. Then ωβ = sup{ωα0 , ωα1 , ωα2 , . . . }.

Proof. It is clear that ωβ ≥ sup{ωα0 , ωα1 , ωα2 , . . . }.
Now assume that ωβ > sup{ωα0 , ωα1 , ωα2 , . . . }. We will refer to the set {α0, α1, α2, . . . }

as A. By definition, ωβ = supγ<β ω
γ. But β = supA, so ωβ = supγ<supA ω

γ, and our
assumption becomes: supγ<supA ω

γ > supα∈A ω
α.

sup
γ<supA

ωγ > sup
α∈A

ωα

=⇒ ∃γ < supA such that ωγ > sup
α∈A

ωα

and
γ < supA =⇒ ∃α ∈ A such that α > γ

But then ωγ < ωα for some α ∈ A, so ωγ > supα∈A ω
α cannot hold, and our assumption is

false. Hence ωβ ≤ sup{ωα0 , ωα1 , ωα2 , . . . }.
Then we have ωβ ≥ sup{ωα0 , ωα1 , ωα2 , . . . } and ωβ ≤ sup{ωα0 , ωα1 , ωα2 , . . . }, so ωβ =

sup{ωα0 , ωα1 , ωα2 , . . . }.

Proposition 4.20. ε0 is countable.

Proof. Consider γ = sup{1, ω, ωω, ωωω
, . . . }. Then, by Lemma 4.19, ωγ = sup{ω, ωω, ωωω

, . . . }.
It is clear that sup{1, ω, ωω, ωωω

, . . . } = sup{ω, ωω, ωωω
, . . . }, so ωγ = γ. Thus ε0 ≤ γ.

For efficiency’s sake, we will write ωω as 2ω, ωω
ω

as 3ω, and so on. By repeated application
of Proposition 4.16, nω is countable for any finite ordinal n.

γ is countable: it is the supremum of a countable (the bijection sends 0 to 1, 1 to ω, 2
to 2ω, etc) sequence of countable ordinals. By definition, ε0 ≤ γ, so γ countable =⇒ ε0
countable.

Proposition 4.21. ε0 = γ, where γ is defined as in the proof of Proposition 4.20.
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Proof. We know that ε0 ≤ γ since ωγ = γ and ε0 is defined as the smallest ordinal α for
which ωα = α. From Lemma 4.15, we know that ωα ≥ α in general. Thus, to show that
ε0 = γ, we need to show that, ∀α < γ, ωα > α.

Let α < γ. If α = kω for some finite k, then ωα = k+1ω, and ωα > α.
Assume that α 6= kω. Then, ∃n finite such that nω > α > n−1ω. But then ω

nω > ωα >
ω

n−1ω; that is, n+1ω > ωα > nω, and since nω > α, ωα > α.
Thus, ∀α < γ, ωα > α, and ε0 = γ.

Theorem 4.22. Cantor’s Theorem. ∀A sets, A < P(A).

Proof. It is clear that A ≤ P(A), since we have the injective function f : A → P(A) with
f(a) = {a} for all a ∈ A.

Now assume there exists a surjective map g from A to P(A). B = {a ∈ A : a /∈ g(a)}.B ∈
P(A), and g onto, so ∃b ∈ A such that f(b) = B. If b ∈ B, then by definition of B, b /∈ g(b),
and since g(b) = B this cannot happen. If b /∈ B, then b ∈ g(b), which is also impossible.
Hence, there exists no such g, and A � P(A).

Hence A < P(A).

This leads us into the next concept.

4.2 Cardinals

Ideas about countability lead us to questions about the relative sizes of sets. We understand
the set {a, b} as different from the set {c, d, e} not merely because they have different elements
(we do not know if any of a, b, c, d, or e are equal), but because we can see that they contain
different numbers of elements.

Definition 4.23. We write |A| ≤ |B| for two sets A and B if there is an injection from A
to B. We write |A| = |B| if there is a bijection between A and B.

Proposition 4.24. |A| ≤ |B| and |B| ≤ |A| if and only if |A| = |B|.

Proof. For the forward direction, if |A| ≤ |B| then we have f : A→ B an injection. Similarly,
if |B| ≤ |A|, we have g : B → A an injection. If either f or g is surjective, we are done, so
assume not. Assume A and B are disjoint; if not, replace A with A× {1}.

Call a ∈ A the parent of f(a) ∈ B, and similarly, b ∈ B the parent of g(b) ∈ A. Each
a ∈ A has an infinite sequence of descendants, in particular, f(a), g(f(a)), f(g(f(a))), etc.
Each term in the sequence is a descendant of all preceding terms and an ancestor of all
following terms.

For each element in A or B, one of three things must happen. If we trace it back as far
as possible, then we either come to an element of A which has no parent, or an element of
B that has no parent, or the sequence regresses infinitely. Let AA be the set of elements
of A which originate in A; that is, AA is the union of A− g(B) (nonempty by assumption)
and its descendants in A. Let AB be the set of elements of A which originate in B; AB
comprises the descendants in A of the elements of B−f(A) (nonempty by assumption), and
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let A∞ be the set of elements in A with no parentless ancestor. We partition B similarly
into BA, BB, andB∞.

If a ∈ AA, it is clear that f(a) ∈ BA. In particular, elements of BA are, by definition, of
the form f(a) for some a ∈ AA. This gives us injectivity and surjectivity, and thus, f |AA

(f
restricted to AA) is a bijection between AA and BA. If b ∈ BB, then g(b) ∈ AB. Elements
of AB are of the form g(b) for some b ∈ BB, so we have g|BB

a bijection between BB and
AB. Thus, g−1|AB

is a bijection between AB and BB. If a ∈ A∞, then f(a) ∈ B∞ and vice
versa, and f |A∞ is a bijection between A∞ and B∞. Combining these three bijections, we
get a bijection between A and B. Thus, by Definition 4.23, we have |A| = |B|.

The reverse direction is obvious: |A| = |B| implies there is a bijection f : A→ B, hence
f is an injection from A into B, and f−1 is an injection from B into A.

We have used the notation |A| for a set A without explaining what it means. From
Definition 4.23 and Proposition 4.24, it should seem apparent that |A| relates to the size of
A as a set. We formalize this below:

Definition 4.25. The cardinality of a set A, written |A|, is the smallest ordinal α such that
there is a bijection between α and A.

In particular, then, two ordinals α and β have the same cardinality if we can find an
injection from α into β and vice versa. It is apparent, then, that no two distinct finite
ordinals can have the same cardinality. This requires a simple application of the finite
pigeonhole principle: consider the two finite cardinals m > n as natural numbers, and it is
clear that we cannot map the larger into the smaller without sending at least two elements
from m to the same element in n (if we have m pigeons and n pigeonholes, then at least two
of them must share.) Similarly, no finite ordinal has the same cardinality as a transfinite
ordinal.

Can we have transfinite ordinals with the same cardinality? The answer is yes: in fact,
from our definition of countably infinite, it is apparent that any two countably infinite
ordinals have the same cardinality.

Example 4.26. Consider ω and ω + 1.
The inclusion map f : ω ↪→ ω+ 1 is clearly an injection. Consider the map g : ω+ 1→ ω

which sends ω (the largest element in ω+ 1) to 0 ∈ ω, and then ∀n ∈ ω+ 1 such that n < ω,
g(n) = n+ 1. Is this an injection?

It is clear that only ω maps to 0 since 0 has no predecessor in ω. Now suppose f(n) =
f(m) for n,m 6= 0. Then n + 1 = m + 1, and n = m. Hence g is injective, and we have an
injection from ω + 1 to ω.

But then ω and ω + 1 have the same cardinality, and since ω is the smallest transfinite
cardinal, that cardinality is ω. We refer to ω as a cardinal number.

Definition 4.27. A cardinal number is an ordinal α such that if β is an ordinal number of
the same cardinality as α, then β ≥ α.
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It is clear that the ordinals can be partitioned by cardinality, and thus that the definition
of cardinal from above simply selects the smallest representative of each equivalence class.
The equivalence classes are also called cardinals, but we use the ordinal notation when we are
speaking of their standard representative, and a different notation when we are speaking of
the equivalence class. Thus, the cardinal equivalence class of ω is written ℵ0 (aleph nought).
The finite cardinals are singleton classes and are thus written as ordinals.

The smallest uncountable number, ω1 is by definition not in bijection with any countable
ordinal; hence it must be in a different equivalence class. We call this class ℵ1. By the same
argument as above, ω1 + 1 has the same cardinality as ω1, as do ω1 +ω, and, in fact, ω1 +α,
where α is any countable ordinal.

We regard ℵ1 as the successor cardinal of ℵ0; in general, ℵβ+1 is the successor of ℵβ,
where β is an ordinal. If β is a limit ordinal, then ℵβ is a limit cardinal and ℵβ = supγ<β ℵγ.

For our purposes, when we refer to a cardinal, we will be referring to the standard
representative and not the equivalence class unless specified.

Proposition 4.28. If α is a cardinal, then α is a limit ordinal.

Proof. Suppose α is a successor ordinal. Then α = β+1, where β is an ordinal. The inclusion
map f : β ↪→ α is clearly an injection from β to α. To find an injection from α to β, send the
largest element (β) of α to 0 ∈ β. Then for each γ ∈ α, send γ to γ + 1 ∈ β. The function
g so defined is injective, as per the argument in Example 4.26. Then, by Proposition 4.24,
α has the same cardinality as β, and since β < α, α is not the smallest ordinal with this
cardinality and is hence not a cardinal. Thus, no successor ordinals can be cardinals, and
all cardinals are limit ordinals. (Note: the converse is not true).

Claim 4.29. The cardinals are well-ordered.

Proof. This is apparent: all cardinals are ordinals and hence the cardinals form a subcollec-
tion of a well-ordered collection. Thus any subset of cardinals has a least element, since it
is a subset of ordinals, and the cardinals are well-ordered.

The relationship between cardinals and cardinality is very close: in fact, for any cardinal
a, we can write a as the cardinality of some set A. This allows us to define arithmetic
operations on cardinals in terms of set operations.

Definition 4.30. Let A and B be sets:

1. |A|+ |B| = |A tB|.

2. |A| ∗ |B| = |A×B|

3. |A||B| = |AB|, where AB represents the set of all functions from B to A.

The first two of these are generalizable to families of sets:

Definition 4.31. For all i ∈ I some indexing set, let Ai be a set.
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1.
∑

i∈I |Ai| = |
⊔
i∈I Ai|

2.
∏

i∈I |Ai| = |
∏

i∈I Ai|, where the product on the right hand side represents a cartesian
product.

These definitions hold for infinite sets, but we must be a little careful, as some things
work counterintuitively.

Example 4.32. Let I = ω and |Bi| = 1, |Ai| = 2 for all i. Then, ∀i, |Bi| < |Ai|, which
would suggest that

∑
i∈ω |Bi| <

∑
i∈ω |Ai|.

But
∑

i∈ω |Bi| = 1 + 1 + . . . ω times and
∑

i∈ω |Ai| = 2 + 2 + . . . ω times; that is,
|Bi| = ω, |Ai| = 2 ∗ ω = ω, so |Bi| = |Ai|.

Thus we cannot, in general, make the claim that if ∀i ∈ I, |Bi| < |Ai|,
∑

i∈I |Bi| <∑
i∈I |Ai|

Claim 4.33. Gyula Konig. For two families of sets Ai and Bi, i ∈ I well-ordered,
|Bi| < |Ai|,∀i =⇒

∑
i∈I |Bi| <

∏
i∈I |Ai|.

Proof. We use transfinite induction. Let

K = {n ∈ I| if i ≤ n,
n∑
i∈I

|Bi| <
n∏
i∈I

|Ai| when |Bi| < |Ai|,∀i} (32)

K ⊆ I, so let j ∈ I be such that ∀i < j, i ∈ K. Then we have
∑

i<j |Bi| <
∏

i<j |Ai|.∑
i<j |Bi| = | ti<j Bi|, so let B1 = ti<jBi. Similarly,

∏
i<j |Ai| = |A1×A2×· · ·×Ai× . . . | =

|
∏

i<j Ai|, so let A1 =
∏

i<j Ai. By hypothesis, |B1| < |A1|. We let B2 = Bj, and A2 = Aj.
Again by hypothesis, |B2| < |A2|. Thus, by the induction hypothesis, |B1|+ |B2| < |A1||A2|.
But

|B1|+ |B2| < |A1||A2|
=⇒ |B1 t B2| < |A1 ×A2|

=⇒ |
j⊔
i∈I

Bi| < |
j∏
i∈I

Ai|

=⇒
j∑
i∈I

|Bi| <
j∏
i∈I

|Ai|

=⇒ j ∈ K

But then ∀i < j, i ∈ K =⇒ j ∈ K, so by the principle of transfinite induction, K = I.

Theorem 4.34. If a is an infinite cardinal, a ∗ a = a. If at least one of a, b is infinite,
a ∗ b = max{a, b}.
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Proof. If a is a cardinal, then a = |A| for some set A. a ∗ a = |A| ∗ |A| = |A× A|. Thus we
need to show that for |A| infinite, |A× A| = |A|. A is well-orderable by Theorem 3.11, and
we can say |A| = ℵα for some ordinal α. To use induction, we assume that, for all infinite
β < α, ℵβ ∗ ℵβ = ℵβ.

If A is well-ordered, we can induce a well-ordering on A× A:
For a, b, c, d ∈ A, (a, b) < (c, d) if

1. max(a, b) < max(c, d)

2. max(a, b) = max(c, d) and a < c

3. max(a, b) = max(c, d) and a = c and b < d

This is clearly a well-ordering, since it relies only on the comparison of elements of A.
For (a, b) ∈ A× A, let ε = max(a, b) + 1. Then |ε| < ℵα, and so we can say |ε| = ℵβ for

some β < α. Consider the initial segment s((a, b)):

s((a, b)) = {(c, d) ∈ A× A : (c, d) < (a, b)} (33)

s((a, b)) ≤ |ε| ∗ |ε| = ℵβ ∗ ℵβ = ℵβ (34)

by the induction hypothesis.
By Theorem 4.7, |A × A| ∼ γ, where γ is an ordinal. Thus we have an isomorphism

φ : A×A→ γ. It is clear that ℵα ≤ γ (we can inject A into A×A by simply mapping a to
(a, a)), so we want to show that ℵα ≥ γ.

Assume ℵα < γ. Then ∃(a, b) ∈ A × A such that φ(a, b) = ℵα. But since φ is an
isomorphism, s(φ(a, b)) = s((a, b)) and so |s(φ(a, b))| = |s((a, b))| = ℵα contradicts Equation
34 above. Hence ℵα ≥ γ, and since ℵα ≤ γ, we have ℵα = γ, and |A×A| = |A|. Thus, for a
an infinite ordinal, a ∗ a = a.

The second part of the theorem follows.

4.3 Cofinality

Definition 4.35. Let B be a subset of an ordered set A. A is cofinal with B if ∀a ∈ A,∃b ∈ B
such that b ≥ a.

Proposition 4.36. Every ordered set A is cofinal with a well-ordered subset.

Proof. Let the cardinality of A be ℵα, and let B be a well-ordered set such that |B| > ℵα.
We can regard B as an ordinal. Define a function as follows:

f : B → A∪{∞}. Let f be monotone increasing except on “∞”. We regard∞ as greater
than all elements of A. If β is a limit ordinal in B such that ∃a ∈ A with the property that
∀γ < β, a > f(γ), then let f(β) = a. If there does not exist such an a, then let f(β) =∞.

A is cofinal with f(B)∩A by construction, and since f(B) is the image of a well-ordered
set under an order-preserving map, f(B) is well-ordered. Hence A is cofinal with a well-
ordered subset.
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Proposition 4.37. ω is cofinal with every countable limit ordinal.

Proof. Let α be a countable ordinal. Then there is a bijection f : ω → α. We want to
construct A ⊆ ω such that f |A is monotone increasing and f(A) is cofinal in α. We can
construct a set Ak as follows:

Let 0 ∈ Ak. Then, for each β ∈ α, β ∈ Ak if f(β) > f(γ) for all γ ∈ Ak with γ < β.
Clearly, f |Ak

is monotone.
Suppose Ak = {a1 < a2, . . . , ak}. If f(Ak) is cofinal in α, then let A = Ak and we are

done. If not, then choose ak+1 ∈ ω such that f(ak+1) > f(ak) and f(ak+1) > f(k). Adjoin
ak+1 to Ak and call the new set Ak+1. If f(Ak+1) is cofinal then Ak+1 = A. If not, then
choose ak+2 in a similar fashion. The limit of this process yields a cofinal set A.

Definition 4.38. The cofinality of a set A (written cf(A)) is the smallest ordinal with which
A is cofinal.

Proposition 4.39. The cofinality of any successor ordinal is 1.

Proof. Let α be a successor ordinal. Then α = β + 1 for some ordinal β, and the largest
element in α is β. Consider the {β} ⊂ α. For all γ ∈ α, β ≥ γ, and hence α is cofinal with
{γ}. But {γ} ∼ 1, so cf(α) = 1.

Proposition 4.40. For any set A, cf(A) is a cardinal.

Proof. cf(A) is an ordinal, by definition. If cf(A) is finite, then it is of course a cardinal.
Hence we are only concerned with sets A such that cf(A) is transfinite. Let cf(A) = α where
α is transfinite. If α is not a cardinal, it has the same cardinality as β for some ordinal
β. By a construction similar to the one in Proposition 4.37, α and β are cofinal, and since
cofinality is transitive, β is cofinal to A. Then α ≤ β by definition of cofinality, and hence
α ≤ γ if γ has the same cardinality as α, and hence α is a cardinal.

5 The Axiom of Choice, Zorn’s Lemma, and the Well-

Ordering Theorem

Axiom 5.1. Axiom of Choice. For every set A, there exists a choice function f : (P(A)−
{∅} → A such that ∀B ⊂ A, f(B) ∈ A.

In several of these proofs, we have used Theorem 3.11, namely, that every set can be
well-ordered. As mentioned earlier, we need the axiom of choice to prove this, but it may be
noticed that, while we have used the other axioms set out in Section 2.1, we have not used
the Axiom of Choice in order to prove anything else. As it turns out, there are two models
of set theory which use the axioms stated: one includes the axiom of choice, and the other
does not. The Axiom of Choice is commonly accepted; indeed, any results which have used
the Well-Ordering Theorem cannot be shown without it.

We first state a well-known lemma which is equivalent to the Axiom of Choice and which
we will use to prove the Well-Ordering Theorem.
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Theorem 5.2. Zorn’s Lemma If A is a partially ordered set such that every totally ordered
subset has an upper bound, then A contains a maximal element.

Proof. In this proof, we will refer to a totally ordered subset of a set A as a chain in A.
For each element in A consider the weak initial segment s(a) consisting of a as well as

its predecessors. We can regard s as a function from A to P(A). Let S be the image of s. s
is clearly injective; moreover, s(a) ⊆ s(b) ⇐⇒ a ≤ b. Thus we have translated the partial
order on A into the subset relation, and our problem is now one of maximal sets rather than
maximal elements.

Let B be the collection of all subsets A of A such that A ⊆ s(a) for some a ∈ A. ∅ ∈ B,
so B is clearly nonempty, and is partially ordered by inclusion.

If C is a chain in B, then
⋃
C =

⋃
C∈C C ⊆ B. It is clear that, ∀A ∈ B,S ≥ A. Moreover,⋃

C is an upper bound for C.
We now generalize the problem: Let B be a collection of subsets of A with the properties

above: namely, that if X ∈ B, then every subset of X is in B, and the union of any chain of
sets in B is also in B. Clearly, ∅ ∈ B. We have thus reduced the problem to this: we need
to show that B has a maximal element.

Let f be a choice function (see Axiom 5.1 above) for A. For each D ∈ B, let D̂ =
{a ∈ A : D ∪ {a} ∈ B}. We define a function g : B → B as follows: if D̂ − D 6= ∅, then
g(D) = D ∪ {f(D̂ − D} and if D̂ − D = ∅, g(D) = D. Two things are clear: g(D) − D is
at most a singleton, and D̂ −D = ∅ ⇐⇒ D is maximal. Thus we need to show that there
exists a D ∈ B sucht that g(D) = D.

We must introduce one more definition here before continuing:

Definition 5.3. T ∈ B is a tower if

1. ∅ ∈ T

2. g(D) ∈ T for all D ∈ T

3. if F is a chain in T , then
⋃
F∈F F ∈ T .

We note that B itself is a tower.
Now let T0 be the intersection of all towers in B and hence the smallest. We want to

show that T0 is a chain.
Call X ∈ T0 comparable if we can compare it with every set in T0 by the subset ordering.

Then T0 is a chain if and only if every X ∈ T0 is comparable.
We let X be comparable. Suppose D ∈ T0 such that D ⊆ X. Since X is comparable,

either g(D) ⊆ X or X ⊆ g(D). The latter requires that D be a proper subset of a proper
subset of g(D), but since g(D)−D is at most a singleton, this cannot hold. Hence g(D) ⊆ X.

Now consider U = {X ∈ T0 : D ⊂ X or g(X) ⊂ D}. If D ∈ U then either D ⊂
X or g(X) ⊂ D.
U is a tower:

1. It is clear that ∅ ⊂ X.
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2. If D ⊆ X, then g(D) ⊆ X, so g(D) ∈ U . If D = X, then g(D) = g(X), so g(X) ⊆
g(D), and g(D) ∈ U If g(X) ⊆ D, then g(X) ⊆ g(D) and g(D) ∈ U .

3. That the union of a chain in U is in U follows from construction of U .

Thus U ⊆ T0 is a tower and since T0 is the smallest tower in B, U = T0.
For each comparable X, g(X) is also comparable. Given X, we form U as above, and

since U = T0, we have that for each D ∈ T0 either D ⊆ X (so D ⊆ g(X)) or g(X) ⊆ D.
From this, we have that ∅ is comparable, and that g sends comparable sets to comparable

sets. The union of a chain of comparable sets is comparable, so the comparable sets in T0
form a tower, and hence T0 is comparable.
T0 is a chain, so the union U of everything in T0 is also in T0. Thus g(U) ⊆ U , and since

U ⊆ g(U) for all U , U = g(U) and we are done.

We will use this to prove the well-ordering theorem.

Definition 5.4. Let A,B be well-ordered. A is a continuation of B if

1. B ⊆ A

2. B is a prefix of A.

3. B ∩ A ⊆ B is ordered identically to B ∩ A ⊆ A.

It is clear that if we take a set C of initial segments of a set A, then C is a chain under
continuation.

Lemma 5.5. If C is a collection of initial segments of a well-ordered set X then the union
U of C is well-ordered.

Proof. Let a, b ∈ U . Then ∃A,B ∈ C with a ∈ A, b ∈ B. By definition of C, either A = B
or one is a prefix of the other. Then there is a set in C which contains both a and b, and
we order these two elements the way they are ordered in any set in C which contains both.
This is unambiguous since C is a chain under continuation.

This gives an order: consider a nonempty subset S of U . It has nonempty intersection
with some C ∈ C, hence there is a smallest element in S ∩ C. Since C is a continuation
chain, this smallest element is the smallest element in S. Thus every subset has a smallest
element, and U is well-ordered.

Theorem 5.6. Every set can be well-ordered.

Proof. Given a set A, consider the set W consisting of all well-ordered subsets of A. ∅ can
be regarded as well-ordered, so ∅ ∈ W so W is nonempty, and can be partially ordered by
continuation.

Let C be a chain in W . U =
⋃
C has a unique well-ordering that makes U ≥ C for all

C ∈ C. Then U is an upper bound for C, so by Zorn’s Lemma, ∃M ∈ W so that M is
maximal.

If M = A, we are done, since M is well-ordered. Assume M 6= A. Then, since M ⊆
A, ∃a ∈ A so that a /∈M . But then U can be enlarged by placing a after all the elements of
M , and we can reconstruct M to contain a.
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