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Abstract. This paper gives an elementary introduction to the development

of the stochastic integral. I aim to provide some of the foundations for some-

one who wants to begin the study of stochastic calculus, which is of great
importance in the theory of options pricing.

1. Introduction

Stochastic calculus is now one of the central tools in modern Mathematical Fi-
nance. Its beginnings can be traced back to L. Bachelier’s 1990 dissertation Thorie
de la spculation in which he modeled stock prices with Brownian motion. Nearly
one hundred years later Robert Miller and Myron Scholes won the Nobel Prize
using stochastic calculus and arbitrage pricing to derive the famed Black-Scholes
equation. In this paper I will provide a hopefully gentle introduction to stochastic
calculus via the development of the stochastic integral.

I have found that in the literature there is a great divide between those introduc-
tory texts which are only accessible to PhD’s on the one hand, and those which lack
rigor altogether and are directed towards traders. Armed with some basic analysis
and probability this presentation should be accessible at the undergraduate level.

2. Preliminaries

Definition 2.1. A Brownian motion on [0, 1] is a stochastic process
{Bt : 0 ≤ t ≤ 1} on some probability space (Ω,F , P ) adapted to {Ft} with the
following properties:

(i) B0 = 0
(ii) The random variable Bt −Bs is independent of Fs for any s ≤ t.

(iii) For any 0 ≤ s ≤ t ≤ 1 Bt − Bs is normally distributed with mean 0 and
variance t− s.

(iv) With probability 1 Bt(ω) is a continuous function of t.

A filtration {Ft}t≥0 is a family of sub-sigma algebras of some sigma-algebra F
with the property that if s < t then Fs ⊂ Ft. Saying a process {Xt : 0 ≤ t <∞}
is adapted to {Ft}t≥0 means that for any t Xt is Ft measurable.

Definition 2.2. The process {Xt : 0 ≤ t < ∞} adapted to the filtration {Ft}t≥0

is a martingale if the following conditions hold:

(i) E[|Xt|] <∞ for all 0 ≤ t <∞
(ii) E[Xt|Fs] = Xs for all 0 ≤ s ≤ t <∞
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Remark 2.3. An equivalent assertion to Property (iii) is that for any
0 ≤ t1 ≤ · · · ≤ tn ≤ 1 the random variables

Bt1 , Bt2 −Bt1 , . . . , Btn −Btn−1

are independent.

Proposition 2.4. A Brownian motion {Bt} is a martingale with respect to its
filtration

Proof. Let 0 ≤ s ≤ t ≤ 1. We can decompose the conditional expectation into

E[Bt|Fs] = E[Bt −Bs|Fs] + E[Bs|Fs].

By Property (ii) of Brownian motion Bt −Bs is independent of Fs so
E[Bt − Bs|Fs] = E[Bt − Bs] = 0. Also, Bs is Fs measurable so E[Bs|Fs] = Bs.
Combining these results we have E[Bt|Fs] = Bs.

�

Later on we will need to use the following result which we will prove in Propo-
sition 2.5:

lim
‖P‖→0

n∑
i=1

(Bti −Bti−1)2 = T

where P = {t0, . . . , tn} is any partition of [0,T] and the convergence is in L2(Ω).
This limit is called the quadratic variation of the Brownian motion and is one
measure of its volatility. Most functions we see in ordinary calculus have zero
quadratic variation, and in fact it is not hard to see that any function with a
continuous derivative has zero quadratic variation.

Proposition 2.5. The quadratic variation of Bt over [0, T ] is T.

Proof. Consider a partition P = {t0, . . . , tn}. To simplify notation define a new
variable Xi = Bti − Bti−1 . Recall that by Property (ii) of Brownian motion Xi =
Bti
− Bti−1 follows a normal distribution with mean 0 and variance (ti − ti−1), so

that E[X2
i ] = (ti − ti−1). Therefore,

E[
n∑

i=1

X2
i ] =

n∑
i=1

E[X2
i ] =

n∑
i=1

(ti − ti−1) = T.(2.6)

With a little work one can show that E[X4
i ] = 2(ti − ti−1)2, which in turn implies

that V ar[X2
i ] = E[(X2

i )2]− (E[X2
i ])2 = (ti − ti−1)2. Now, using the independence

of the Xi,

E[(
n∑

i=1

X2
i − T )2] = V ar[

n∑
i=1

X2
i ] =

n∑
i=1

V ar[X2
i ] =

n∑
i=1

(ti − ti−1)2

≤ T‖P‖(2.7)

If we choose partitions such that ‖P‖ → 0 then E[(
∑n

i=1X
2
i − T )2] converges to

0. �
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3. Stochastic Integral for Simple Functions

3.1. Motivation. Imagine we model the price of an asset as a Brownian motion
with value Bt at time t 1. Suppose we are allowed to trade our asset only at the
following times: 0 = t0 < t1 < · · · < tn = 1. At time tk we can choose to hold Xk

shares of our asset, and we must hold these shares up until the next time period
tk+1. Note that in making the decision to hold Xk shares we are only allowed to use
information up to that time - we cannot predict future price movements. The change
in the value of our portfolio between time tk−1 and time tk is Xk−1(Btk

− Btk−1),
which is simply the change in price multiplied by the number of shares we owned.
For instance, if at the beginning of the period we are holding 5 shares for $5 a piece
but by the end of the period the shares are worth $7 a piece, over that interval we
have made $10. It is clear then that the change in our wealth over the time period
[0, 1] is given by:

n∑
i=1

Xi−1(Bti −Bti−1)

It is our ultimate goal to consider this quantity as we allow for trading in con-
tinuous time, i.e. we can buy or sell an asset at any t ∈ [0, 1].

3.2. The Integral.

Definition 3.1. A simple process f(t, ω) is a stochastic process of the form
f(t, ω) =

∑n
i=1 ξi−1(ω)1[ti−1,ti)(t) where 0 = t0 < t1 < · · · < tn = 1 is a partition

of [0,1] and ξi−1(ω) is a Fti−1 measurable random variable. 2

Intuitively, a simple process can be thought of as a step function on [0,1] with
each step taking on a random value. A simple process is analogous to the trading
situation above where we chose certain amounts of stocks to hold over a time
interval, where one’s decision was based solely on past knowledge.

Notation 3.2. On the partition 0 = t0 < t1 < · · · < tn = 1 let S(t0, . . . , tn)
denote the class of simple stochastic processes adapted to {Ft} with the additional
requirement that if f(t, ω) ∈ S(t0, . . . , tn) then ‖f‖2[0,1]×Ω < ∞. 3 Finally, we let
S = ∪S(t0, . . . , tn), the union taken over all partitions of [0,1].

Definition 3.3. The stochastic integral for f(t, ω) ∈ S, more specifically f(t, ω) ∈
S(t0, . . . , tn) , from 0 to T is

∫ T

0
fdB =

∑k−1
i=1 ξi−1(Bti −Bti−1) + ξk(BT −Btk

) for
T ∈ [tk, tk+1]. We also use the notation

∫ T

0
fdB = I(T, ω, f).

From the definition it is not hard to see that I : S → L2(Ω) is linear, i.e.
I(t, ω, af + bg) = aI(t, ω, f) + bI(t, ω, g) for a, b ∈ R. The following proposition is
of crucial importance to the extension of the integral to a wider class of functions.

Proposition 3.4. For f(t, ω) ∈ S we have ‖I(t, ω, f)‖2Ω = ‖f‖2[0,t]×Ω. In other
words, I : S → L2(Ω) is an isometric mapping.

1Strictly speaking a Brownian motion is not an appropriate model for an asset price such as a

stock which takes only non-negative values. Generally one considers a geometric Brownian motion
- however our example does provide the necessary motivation for better developed models

2From now on we will suppress the ω argument in ξi−1(ω).
3We take ‖f‖2

[0,1]×Ω
=

∫ 1

0
E[f2(t, ω)]dt, where E[f(t, ω)] is the expectation.
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Proof. In order to make life easier, but with no loss of generality, we take t = tk
so that t coincides with some partition point. Define Xi = Bti − Bti−1 . Now
I2(t, ω, f) =

∑k
i=1 ξ

2
i−1X

2
i +

∑
i6=j ξi−1ξj−1XiXj . One can argue that from the

integrability condition on f(t, ω) and the Cauchy-Schwartz inequality the expec-
tations of both these sums exist. To that end we consider E[ξi−1ξj−1XiXj ] for
i < j. Since for i < j ξi−1ξj−1Xi is Fj−1 measurable, E[ξi−1ξj−1XiXj ] =
E[E[ξi−1ξj−1XiXj |Fj−1] = E[ξi−1ξj−1XiE[Xj |Fj−1]] . But because by Property
(iii) of Brownian motion, Xj is independent of Fj−1, so E[Xj |Fj−1] = E[Xj ] = 0
and E[ξi−1ξj−1XiXj ] = 0. Thus we have:

(3.5) E[
∑
i 6=j

ξi−1ξj−1XiXj ] = 0

Furthermore, E[ξ2
i−1X

2
i ] = E[ξ2

i−1]E[X2
i ] = E[ξ2

i−1](ti − ti−1) and

(3.6)
k∑

i=1

E[ξ2
i−1X

2
i ] =

k∑
i=1

E[ξ2
i−1](ti − ti−1) = ‖f‖2[0,t]×Ω

so that combining 3.5 and 3.6 ‖I(t, ω, f)‖2Ω ≡ E[I2(t, ω, f)] =
∑k

i=1E[ξ2
i−1X

2
i ] =

‖f‖2[0,t]×Ω �

Proposition 3.7. If f(t, ω) ∈ S, then I(t, ω, f) is a martingale with respect to the
{Ft} filtration.

Proof. Since f(t, ω) ∈ S there is a partition 0 = t0 < t1 < · · · < tn = 1 such
that f(t, ω) =

∑n
i=1 ξi−1(ω)1[ti−1,ti)(t). Take 0 ≤ s ≤ t ≤ 1. Either s and t are

in the same partition interval, or they are in different intervals - we consider the
more difficult case when they are in different intervals. Assume tk ≤ s ≤ tk+1 and
tl ≤ t ≤ tl+1 with k < l. Simply by the linearity of conditional expectation

E[I(t, ω, f)|Fs] = E[
k∑

i=1

ξi−1(Bti
−Bti−1)|Fs] + E[ξk(Btk+1 −Btk

)|Fs]

+E[
l∑

i=k+2

ξi−1(Bti
−Bti−1)|Fs] + E[ξl(Bt −Btl

)|Fs].(3.8)

Consider the second term on the RHS of (3.8):

E[ξk(Btk+1 −Btk
)|Fs] = E[ξkBtk+1 |Fs]− E[ξkBtk

|Fs]

= ξkE[Btk+1 |Fs]− ξkE[Btk
|Fs]

= ξk(Bts −Btk
)(3.9)

The last step follows from the martingale property of Brownian motion. Now we
look at the fourth term on the RHS of (3.8), keeping in mind the Tower Property
of conditional expectation:
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E[ξl(Bt −Btl
)|Fs] = E[E[ξl(Bt −Btl

)|Fl]|Fs]

= E[ξlE[(Bt −Btl
)]|Fs]

= 0(3.10)

By similar types of arguments we can show

E[
k∑

i=1

ξi−1(Bti −Bti−1)|Fs] =
k∑

i=1

ξi−1(Bti −Bti−1)(3.11)

E[
l∑

i=k+2

ξi−1(Bti
−Bti−1)|Fs] = 0(3.12)

Together (3.9)-(3.12) imply E[I(t, ω, f)|Fs] = I(s, ω, f). �

Example 3.13. A step function (in the usual sense from analysis) is a special
type of simple stochastic process - we can think of the steps as ”random” but
taking certain constant values with probability one. For instance, let f(t) =∑n

i=1 ξi−11[ti−1,ti)(t) where in this case each ξi−1 can be thought of as a true con-
stant. By definition

∫ 1

0
fdB =

∑n
i=1 ξi−1(Bti

− Bti−1), which is a linear combi-
nations of independent normal random variables. Since a linear combination of
independent normal random variables is again a normally distributed random vari-
able, it remains to compute the mean and variance to completely characterize the
distribution of I(1, ω, f).

By Proposition 3.7 I(1, ω, f) is a martingale, and consequently for any
s, t ∈ [0, 1], E[I(s, ω, f)] = E[I(t, ω, f)]. When s = 0, E[I(0, ω, f)] = 0, so clearly
E[I(t, ω, f)] = 0 for arbitrary t. The formula for variance simplifies since the mean
is zero:

V ar[I(t, ω, f)] = E[I2(t, ω, f)] =
∫ 1

0

E[f2(t, ω)]dt =
k∑

i=1

E[ξ2
i−1](ti − ti−1) =

k∑
i=1

ξ2
i−1(ti − ti−1)

by the fact that ξi−1 is non-random. In summary, the distribution of
∫ 1

0
fdB is

N(0,
∑k

i=1 ξ
2
i−1(ti − ti−1)).

4. An extension of the Stochastic Integral

In this section we construct the extension of the stochastic integral from the class
S of simple adapted stochastic processes to the closure of S, S̄, where the closure is
with respect to the usual norm of L2([0, 1] × Ω). It can be shown that S̄ contains
the class of square integrable adapted functions, which is of particular interest [2].

To begin, we note that any function f(t, ω) ∈ S̄ can be approximated by a
sequence of functions {fn(t, ω)} ∈ S, i.e. limn→∞ ‖f(t, ω) − fn(t, ω)‖[0,1]×Ω = 0.
Note that this convergence tells us that fn(t, ω) is a Cauchy sequence, but then
{I(t, ω, fn)} must also be a Cauchy sequence since by Proposition 3.4

‖I(t, ω, fm)− I(t, ω, fn)‖Ω = ‖fm − fn‖[0,1]×Ω.

By the completeness of L2(Ω) the following definition makes sense:
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Definition 4.1. I(t, ω, f) = limn→∞ I(t, ω, fn) is the stochastic integral of
f(t, ω) ∈ S̄, where {fn(t, ω)} is the sequence in S mentioned in the prior discu-
sison.

Proposition 4.2. (Ito Isometry) The mapping I : S̄ → L2(Ω) is an isometry.

Proof. From triangle inequality and Proposition 3.4, we have

‖‖I(t, ω, f)‖Ω − ‖fn(t, ω)‖[0,1]×Ω‖ ≤ ‖I(t, ω, f)− I(t, ω, fn)‖ → 0

so that ‖I(t, ω, f)‖Ω = lim ‖fn(t, ω)‖[0,t]×Ω = ‖f(t, ω)‖[0,t]×Ω �

A similar type of argument I(t, ω, f) is linear in both f(t, ω) and t. We state as
a fact that I(t, ω, f) is continuous in t and adapted to {Ft}.

Remark 4.3. Recall that any isometric mapping A : X → Y between two real
normed inner product spaces preserves inner products: for any x, z ∈ X, 〈Ax,Ay〉 =
〈x, y〉. Therefore E[I(t, ω, f)I(t, ω, g)] =

∫ t

0
E[fg]dt

Proposition 4.4. I(t, ω, f) is a martingale in the t argument.

Proof. We follow the proof of this found in [2]. Let f ∈ S̄, 0 ≤ s ≤ t ≤ 1, and
define Xt =

∫ t

0
fdB. By the linearity of

∫ t

0
fdB and conditional expectation we can

write

E[Xt|Fs] = E[Xs|Fs] + E[Xt −Xs|Fs](4.5)

Since Xs is Fs measurable, E[Xs|Fs] = Xs so from (4.5) it suffices to show that
E[Xt−Xs|Fs] = 0 . Now pick a sequence of fn ∈ S that converge in L2([0, 1]×Ω)
to f ∈ S̄ and call X(n)

t =
∫ t

0
fndB. Now

Xt −Xs = (Xt −X(n)
t ) + (X(n)

t −X(n)
s ) + (X(n)

s −Xs)(4.6)

From the previous section we know X
(n)
t is a martingale, E[X(n)

t −X(n)
s |Fs] = 0.

Now consider conditional expectation of the first term in (4.6):

E[Xt −X(n)
t |Fs] = E[

∫ t

0

(f − fn)dB|Fs].

Also,

E[(E[
∫ t

0

(f − fn)dB|Fs])2] ≤E[E[(
∫ t

0

(f − fn)dB)2|Fs]] = E[(
∫ t

0

(f − fn)dB)2]

=‖fn − f‖2[0,t]×Ω ≤ ‖fn − f‖2[0,1]×Ω → 0

where the first inequality follows from Jensen’s inequality, the first equality is a
result of the law of iterated expectation, and the second equality follows from the
Ito isometry. From this we can conclude E[

∫ t

0
(f − fn)dB|Fs] = E[X(n)

t −Xt|Fs]
converges to zero with probability one, and the same reasoning applies to
E[X(n)

s −Xs|Fs]. Combining these results we see E[Xt−Xs|Fs] = 0 as desired. �
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Example 4.7. We assumed at the beginning the Bt was adapted to {Ft} and
by a straightforward computation ‖Bt‖2[0,1]×Ω =

∫ 1

0
E[B2

t ]dt =
∫ 1

0
tdt < ∞ so that

we can write
∫ T

0
Bt dB for 0 ≤ T ≤ 1. We will explicitly calculate this stochastic

integral from the definition.

To start off with, we will find an approximating sequence of functions Bn
t ∈ S

of Bt on [0, T ]. Pulling a rabbit out of a hat, we find one such convenient sequence
of functions is

n∑
i=1

B (i−1)T
n

1[ (i − 1)T

n
,

iT

n
)

In words, take a partition of [0, 1] with points 0 < T
n < 2T

n < · · · < 1 and on each
interval [ (i−1)T

n , iT
n ) let B(n)

t take the value that Bt takes at the first time in that
interval. One can verify that B(n)

t ∈ S for every n, and moreover
‖B(n)

t −Bt‖[0,1]×Ω → 0. By definition of the stochastic integral∫ T

0

BtdB = lim
n→∞

∫ T

0

B
(n)
t dB = lim

n→∞

n∑
i=1

B (i−1)T
n

(B iT
n
−B (i−1)T

n

).(4.8)

We focus on this last sum. By expanding the sum and rearranging we can show
n∑

i=1

B (i−1)T
n

(B iT
n
−B (i−1)T

n

) =
1
2
B2

T −
1
2

n∑
i=1

(B iT
n
−B (i−1)T

n

)(4.9)

But from a previous result we know that limn→∞
∑n

i=1(B (iT )
n

− B (i−1)T
n

)2 = T .
Thus, combining (4.8) and (4.9)∫ T

0

BtdB =
1
2
B2

T −
1
2
T.

Note the extra 1
2T term which differs from the usual Reimann-Steiltjes integral:∫

gdg = 1
2g

2. As an exercise confirm that 1
2B

2
T − 1

2T is a martingale as we would
expect.

Appendix A. Conditional Expectation

Definition A.1. For an integrable random variable X on (Ω,F , P ) and we define
the conditional expectation of X with respect to G ⊂ F to be the random
variable E[X|G ] with the following properties:

(i) E[X|G ] is G measurable
(ii) For any A ∈ G

∫
A
XdP =

∫
A
E[X|G ]dP

The existence of such a random variable can be shown using the Radon-Nikodym
theorem. Intuitively, the conditional expectation represents our best guess about
the expectation of random variable given some information. The following is a list
of facts about conditional expectation that we will use numerous times.

Properties of Conditional Expectation
(1) Law of Iterated Expectation : E[E[X|G ]] = E[X]
(2) If E|XY | <∞ and X is G measurable, then E[XY |G ] = XE[Y |G ]
(3) If X is independent of G , then E[X|G ] = E[X]
(4) Tower Property: If G2 ⊂ G1 ⊂ F , then E[E[X|G1]|G2]] = E[X|G2]
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(5) Conditional Jensen Inequality: If φ(x) : R→ R is convex and
E[φ(X)] <∞, then φ(E[X|G ]) ≤ E[φ(X)|G ]
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