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Abstract. This paper provides some background for and proves the Funda-

mental Theorem of Markov Chains. It provides some basic definitions and

notation for recursion, periodicity, and stationary distributions.
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1. Definitions and Background

So what is a Markov Chain, let’s define it.

Definition 1.1. Let {X0, X1, . . .} be a sequence of random variables and Z =
0,±1,±2, . . . be the union of the sets of their realizations.Then {X0, X1, . . .} is
called a discrete-time Markov Chain with state space Z if:

P (Xn+1 = in+1|Xn = in, . . . , X1 = i1) = P (Xn+1 = in+1|Xn = in)

Now lets set up some notation for the one-step transition probabilities of the
Markov Chain Let:

pij(n) = P (Xn+1 = j|Xn = i); n = 0, 1, . . .

We will limit ourselves to homogeneous Markov Chains. Or Markov Chains that
do not evolve in time.

Definition 1.2. We say that a Markov Chain is homogeneous if its one-step tran-
sition probabilities do not depend on n ie.

∀n,m ∈ N and i, j ∈ Z pij(n) = pij(m)

We then define the n-step transition probabilities of a homogeneous Markov
Chain by

p
(m)
ij = P (Xn+m = j|Xn = i)

Where by convention we define

p
(0)
ij =

{
1 if i = j

0 if i 6= j
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With these definitions we are now ready for a quick theorem: the Chapman-
Kolmogorov equation. This serves to relate the transition probabilities of a Markov
Chain.

Theorem 1.3.
p
(m)
ij =

∑
k∈Z

p
(r)
ik p

(m−r)
kj ; ∀ r ∈ N ∪ {0}

Proof. Making use of the total probability rule as well as the Markovian property
in this proof yields:
By total probability rule:

p
(m)
ij = P (Xm = j|X0 = i) =

∑
k∈Z

P (Xm = j,Xr = k|X0 = i)

=
∑
k∈Z

P (Xm = j|Xr = k,X0 = i)P (Xr = k|X0 = i)

and now by the Markovian property:

=
∑
k∈Z

P (Xm = j|Xr = k)P (Xr = k|X0 = i) =
∑
k∈Z

p
(r)
ik p

(m−r)
kj

�

The Chapaman-Kolmogrov equation allows us to associate our n-step transition
probabilities to a matrix of n-step transistion probabilities. Lets define the matrix:

P (m) = ((p(m)
ij ))

Corollary 1.4. Observe now that:

P (m) = Pm

Where Pm here denotes the typical matrix multiplication.

Proof. We can rewrite the Chapaman-Kolmogrov equation in matrix form as:

P (m) = P (r)P (m−r); ∀ r ∈ N ∪ {0}
Now we can induct on m. It’s apparent that

P (1) = P

Giving us:

P (m+1) = P (r)P (m+1−r)

�

A Markov Chain’s transition probabilities along with an initial distribution com-
pletely determine the chain.

Definition 1.5. An initial distribution is a probability distribution {πi = P (X0 =
i)|i ∈ Z}

∑
i∈Z

πi = 1

Such a distribution is said to be stationary if it satisfies

πj =
∑
i∈Z

πipij
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Definition 1.6. We say that a subset space state C ⊂ Z is closed if∑
j∈C

pij = 1 ∀ i ∈ C

If Z itself has no proper closed subsets then the Markov Chain is said to be
irreducible.

Definition 1.7. We define the period of a state i by

di = gcd(m ∈ Z|p(m)
ii > 0)

State i is aperiodic if di = 1

Definition 1.8. A state i is said to be accessible from from a state j if there is an
m ≥ 1 s.t

p
(m)
ij > 0

If i is accessible from j and j is accessible from i then i and j are said to commu-
nicate.

Definition 1.9. We define the first-passage time probabilities by

f
(m)
ij = P (Xm = j; Xk 6= j, 0 < k < m− 1|X0 = i) ; i, j ∈ Z

And we will denote the expected value, the expected return time, of this distri-
bution by

µij =
∞∑

m=1

mf
(m)
ij

Definition 1.10. We say that a state i is recurrent if
∞∑

m=1

f
(m)
ij = 1

and transient if
∞∑

m=1

f
(m
ij < 1

A recurrent state i is positive-recurrent if µii <∞ and null-recurrent if µii =∞

2. Fundamental Theorem of Markov Chains

Theorem 2.1. For any irreducible, aperiodic, positive-recurrent Markov Chain
there exist a unique stationary distribution {πj , j ∈ Z} s.t ∀i ∈ Z

Proof. Because our chain is irreducible, aperiodic, and positive-recurrent we know
that for all i ∈ Z πj = lim

n→∞
p
(n)
ij > 0. Likewise as πj is a probability distribution∑

j∈Z
πj . We know that for any m

m∑
i=0

p
(m)
ij ≤

∞∑
i=0

p
(m)
ij ≤ 1
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taking the limit

lim
m→∞

m∑
i=0

p
(m)
ij =

∞∑
i=0

πj ≤ 1

which implies that for any M
M∑
i=0

πj ≤ 1

Now we can use the Chapman-Kolmogorov equation analogously

p
(m+1)
ij =

∞∑
i=0

p
(m)
ik pkj ≥

M∑
i=0

p
(m)
ik pkj

as before we take the limit as m,M →∞ yielding

πj ≥
∞∑

i=0

πkpkj

Now we search for contradiction and assume strict inequality holds for at least one
state j. Summing over these inequalities yields

∞∑
j=0

πj >

∞∑
j=0

∞∑
k=0

πkpkj =
∞∑

k=0

πk

∞∑
j=0

pkj =
∞∑

k=0

πk

But this is a contradiction, hence equality must hold

πj =
∞∑

k=0

πkpkj

Thus a unique stationary distribution exists. �

Futher it can be shown that this unique distribution is related to the expected
return value of the Markov chain by

πj =
1
µjj

References

[1] F. E. Beichelt. L. P. Fatti. Stochastic Processes And Their Applications. Taylor and Francis.

2002.


