
UNDERSTANDING IRREDUCIBLE REPRESENTATIONS

ALEX ROSENFELD

Abstract. This paper acts as an introduction to representation theory. In
addition to defining representations of Lie algebras and of finite groups, this pa-
per will go through two standard examples, the Lie algebra sl2C and the finite
group Sn, to illustrate techniques for their construction and use. In addition,
those examples will develop some important theory behind representations of
Lie algebras and finite groups.

Contents

1. Introduction 1
2. The Irreducible Representations of sl2C 2
3. The Irreducible Representations of Sn 5
4. Characters of Representations of Finite Groups 8
References 9

1. Introduction

Groups are structures that are defined by very simple rules, but are varied in
description and activity. On the other hand, vector spaces are very easily described
in very plain terms. Thus, to get more information about groups, or other myste-
rious structures like Lie algebras, we consider them as vector spaces. We do this
with something called a “representation”. Representations take the operation of
a group or Lie algebra or other complicated structure into an action on a vector
space.

To get a good grasp of how these representations work, this paper will examine
the Lie algebra sl2C and the finite group Sn. sl2C is a Lie algebra whose repre-
sentations are very easy to describe. Even more than this, the development of the
representations of sl2C will act as an entryway into understanding the representa-
tions of many other Lie algebras, such as slnC and glnC.

Sn does not generalize as well as sl2C. The techniques used to discover the
irreducible representations of Sn are very specific to Sn. However, what is lost
in generalizability is gained in understandability as many questions about Sn can
be answered relatively simply. For example, each irreducible representation corre-
sponds with a conjugacy class of Sn. This correspondence allows a very easy con-
struction of the irreducible representations from the well known conjugacy classes.

Even though it is hard to describe the irreducible representations of a finite group
in general, breaking down a representation into those representations is a breeze
with characters. Characters are very simple, very powerful tools that in some sense
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“encode” a representation as something similar to a characteristic function. This
code uniquely identifies a representation and can be used to decompose a represen-
tation as a direct sum of irreducible representations. Note that these techniques
work for every finite group and so will be used to decompose Sn.

Although representation theory is ubiquitous in mathematics, we are especially
interested in the field because it is being used in complexity theory for an attempt
to prove P != NP . However, that topic is outside the scope of this paper and so
will not be discussed.

2. The Irreducible Representations of sl2C

The following are some basic definitions needed for describing the representations
of Lie algebras.

Definition 2.1. A Lie algebra is a vector space g equipped with a bilinear, skew-
symmetric map [, ] : g×g → g, called the Lie bracket, satisfying the Jacobi identity:
[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for all x, y, and z in g.

Example 2.2. If V is a vector space, then the endomorphisms of V , labeled gl(V ),
forms a Lie algebra with bracket [x, y] := x ◦ y − y ◦ x for all x and y in g.

Definition 2.3. For Lie algebras g and h a homomorphism from g to h is a linear
map ρ : g → h where ρ([x, y]) = [ρ(x), ρ(y)].

Definition 2.4. A representation of a Lie algebra g on a finite-dimensional complex
vector space V is a homomorphism ρ : g → gl(V ).

Given a representation ρ, we can define an action of g on V by X(v) = ρ(X)(v)

Definition 2.5. A representation is irreducible if there is no proper, nontrivial
subspace of V that is invariant under g.

A very important starting point in the description of representations of Lie alge-
bras is sl2C. The description of the representations on many different Lie algebras
is analogous to the process used below, especially sln(C) and gln(C).

Definition 2.6. sl2C is the Lie algebra {A ∈ M2(C)|tr(A) = 0} with bracket
[X, Y ] = XY − Y X.

A useful basis of sl2C as a vector space is given by

H =
(

1 0
0 −1

)
, F =

(
0 1
0 0

)
, and B =

(
0 0
1 0

)
.

It is clear that these form a basis of sl2C. By simple computation, we have [H,F ] =
2F , [H,B] = −2B, and [F,B] = H.

So far we have defined representations and sl2C. Now, we need to show such
representations exist for sl2C.
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Example 2.7. Let n ∈ N. Let Wn be an n-dimensional complex vector space. We
define a representation φ : sl2C → gl(Wn) by

φ(H) =





n− 1
n− 3

n− 5
. . .

−n + 5
−n + 3

−n + 1





,

φ(F ) =





0 1
0 1

0 1
. . . . . .

0 1
0 1

0





, and φ(B) =





0
1 0

1 0
. . . . . .

1 0
1 0

1 0





.

It is easily checked that φ(H)φ(F )−φ(F )φ(H) = 2φ(F ), φ(H)φ(B)−φ(B)φ(H) =
−2φ(B), and φ(F )φ(B) − φ(B)φ(F ) = φ(H) showing that φ is a representation.
Also, note that, by our construction, there exists a representation for every dimen-
sion.

And it turns out that Wn is the “canonical” representation of sl2C as follows
from the following theorem.

Theorem 2.8. Every n-dimensional irreducible representation of sl2C is isomor-
phic to Wn.

Proof. Let ρ be an irreducible representation of sl2C on a finite-dimensional com-
plex vector space V . Since C is an algebraically closed field, ρ(H) ∈ gl(V ) has
n eigenvalues (counting multiplicities). Let α ∈ C be such an eigenvalue with
eigenvector v, i.e., H(v) = α · v.

The bracket relations between H, B, and F determine how B and F act on v.
For example, H(F (v)) = [H,F ](v) + F (H(v)) = 2F (v) + F (αv) = (α + 2)F (v).
Similarly, H(B(v)) = (α− 2)B(v).

Let Vα = {w ∈ gl(V ) : H(w) = α · w} be the eigenspace of α. The above facts
can be restated as: ρ(F ) maps Vα into Vα+2, ρ(B) maps Vα into Vα−2, and, clearly,
ρ(H) maps Vα into Vα

Let z be an eigenvalue of ρ(H) such that z + 2 is not an eigenvalue of ρ(H)
(such a z must exist since V is finite dimensional) and let v be a corresponding
eigenvector. Thus, F (v) ∈ Vz+2 = (0) and so F (v) = 0.

Let W = Span{v, B(v), B2(v), . . . }.

Lemma 2.9. W = V .

Proof of lemma. Since ρ is irreducible by assumption, it suffices to show that W
is invariant under the action of sl2C. Since sl2C is generated by H, F , and B, it
suffces to show that W is invariant under the action of these three elements.

To show that W is invariant under H, consider Bm(v). By induction, H(Bm(v)) =
(z − 2m)Bm(v) which is clearly in W .
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To show that W is invariant under F , recall that F (v) = 0. Thus, F (v) is
contained in W . For m > 0, F (Bm(v)) = [F,B](Bm−1(v) + B(F (Bm−1(v))).
Thus, by induction, F (Bm(v)) = m(z −m + 1)Bm−1(v), which is in W .

Finally, it is clear from the definition of W that it is invariant under B.
Thus, we have proved that W = V , which concludes the proof of the lemma.

!

Let n = min{m : Bm(v) = 0}. We know F (Bn(v)) = F (0) = 0 and, by a simple
induction argument, F (Bn(v)) = n(z−n+1)Bn−1(v). Thus, n(z−n+1)Bn−1(v) =
0. Since n > 0 and Bn−1(v) != 0, z = n− 1. Thus, z, our chosen eigenvalue, is an
integer.

Since Bm(v) = 0 for all m ≥ n, W = Span({v, B(v), ..., Bn−1(v)}). Since
H(Bm(v)) = (z− 2m)Bm(v), each of the vectors Bm(v) is in a different eigenspace
of ρ(H) and thus they are linearly independent. Therefore, {v, B(v), ..., Bn−1(v)}
is a basis for V . In particular, n is the dimension of V . Thus, V = V−z ⊕ V−z+2 ⊕
...⊕ Vz−2 ⊕ Vz. Since z = n− 1, we have V = V−n+1 ⊕ V−n+3 ⊕ ...⊕ Vn−3 ⊕ Vn−1,
which is clearly isomorphic to the representation Wn. !

Note that Wn = V−n+1 ⊕ V−n+3 ⊕ ... ⊕ Vn−3 ⊕ Vn−1. Sometimes it is more
convenient to refer to an irreducible representation by its largest eigenvalue rather
than its dimension, so we define V (α) by V (α) := Wα+1 = V−α ⊕ V−α+2 ⊕ ... ⊕
Vα−2 ⊕ Vα.

As mentioned earlier, irreducible representations are the building blocks of repre-
sentations. The nice thing about sl2C is that it is easy to determine the irreducible
subrepresentations of any representation.

Let ρ be any representation. Find the eigenvalues of ρ(H) and their multiplicities.
We take the largest eigenvalue, say n, and note that V (n) is a part of our vector
space. We then remove 1 from the multiplicities of each eigenvalue of V (n) and
repeat the process until all the multiplicities are 0. Those V (n) are the irreducible
representations of ρ.

For example, let the following diagram be the eigenvalues and multiplicities of
ρ(H).

multiplicities 1 0 3 1 3 0 1
eigenvalues −3 −2 −1 0 1 2 3

The largest eigenvalue is 3, so we know that V (3) is part of our representation,
so remove the eigenvalues of V (3), −3, −1, 1, and 3, and get:

multiplicities 0 0 2 1 2 0 0
eigenvalues −3 −2 −1 0 1 2 3

The next highest is 1, so we know V (1) is a part of our representation. We remove
the eigenvalues of V (1) to get:

multiplicities 0 0 1 1 1 0 0
eigenvalues −3 −2 −1 0 1 2 3

We repeat the process to find that again V (1) is a part of our representation and
are left with:
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multiplicities 0 0 0 1 0 0 0
eigenvalues −3 −2 −1 0 1 2 3

All that’s left to remove is the one where the eigenvalue is 0, so V (0) is also part
of our representation.

Thus, V (3), V (1), V (1), and V (0) are the irreducible representations in ρ.
It won’t be proven in this paper, but, in general, a representation is equal to

the direct sum of its irreducible representations. Thus, the space associated to ρ is
V (3) ⊕ V (1) ⊕ V (1) ⊕ V (0).

3. The Irreducible Representations of Sn

In addition to Lie algebras, representations are often used to characterize finite
groups. Like Lie algebras, finite groups also have irreducible representations and,
as in the case of sl2C, each finite-dimensional representation can be split as a direct
sum of a finite number of irreducible representations.

Definition 3.1. A representation of a finite group G on a finite-dimensional vector
space V is a homomorphism from G to GL(V ) = {A ∈ Mn(C) : det(A) != 0}.

Definition 3.2. A representation is irreducible if there is no proper, nontrivial
subspace of V that is invariant under the action of G.

Both definitions are very similar to those used for Lie algebras. The idea is
the same: a representation is still an action on a vector space and the irreducible
representations form the building blocks of arbitrary representations.

Proposition 3.3. The number of irreducible representations for a finite group is
equal to the number of conjugacy classes.

Example 3.4. Since Sn has at least three conjugacy classes, it has at least three
irreducible representations:

One is called the trivial representation which is on C and acts by σ(v) = v for
σ ∈ Sn and v ∈ C.

Another one is called the alternating representation which is also on C, but acts
by σ(v) = sign(σ)v for σ ∈ Sn and v ∈ C.

A third irreducible representation of Sn is called the standard representation
and it is on V = {(z1, z2, z3) ∈ C3 : z1 + z2 + z3 = 0} acting by σ((z1, z2, z3)) =
(zσ(1), zσ(2), zσ(3)) for σ ∈ Sn and (z1, z2, z3) ∈ C3.

Note that for n > 3 there are more irreducible representations than just these
three.

We will focus on Sn, the symmetric group on n elements, and its irreducible
representations.

So, the question becomes: how many conjugacy classes of Sn are there? It turns
out that the number of conjugacy classes of Sn is the number of ways of writing n
as a sum of a sequence of n descending, nonnegative numbers, which is elaborated
in the following proposition.

Definition 3.5. A partition of n ∈ N is an n-tuple (λ1, λ2, ...,λn−1, λn) ∈ Z such
that n = λ1 + λ2 + ... + λn−1 + λn and λ1 ≥ λ2 ≥ ... ≥ λn−1 ≥ λn ≥ 0.

Proposition 3.6. The conjugacy classes of Sn correspond to partitions of n.
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Proof. The conjugacy classes of Sn are uniquely determined by the cycle type of
their elements, and each class contains only one cycle type. Thus, the conjugacy
classes correspond to a partition of n into the cycle type of the class. !

In fact, for Sn the irreducible representations are naturally in bijective corre-
spondence with the conjugacy classes; we will demonstrate this correspondence in
the remainder of this section. Young diagrams are a fundamental tool for keep-
ing track of combinatorial data related to partitions, and are especially relevant
to the representation theory of the symmetric groups. The Young diagram corre-
sponding to the partition (λ1, . . . ,λn) of n is an arrangement of boxes—typically
aligned to the top and to the left—with the λ1 boxes in the first row, λ2 boxes
in the second row, and so on. For example, the Young diagram for a partition
µ = (3, 3, 2, 1, 0, 0, 0, 0, 0) is the following:

1 2 3
4 5 6
7 8
9
Note: Parts of size 0 are not displayed in a Young diagram. In order to reference

certain boxes, the Young diagram has its boxes labeled with numbers 1 through n
in reading order.

Example 3.7. For S3, 1 2 3 is the Young diagram of the partition (3, 0, 0),
1
2
3 is

the Young diagram of the partition (1, 1, 1), and
1 2
3 is the Young diagram of the

partition (2, 1, 0).

Numbering the boxes allows us to define an action of Sn. Let Rλ = {g ∈ Sn : g
preserves each row} and let Cλ = {g ∈ Sn : g preserves each column}. For example,
if µ = (3, 3, 2, 1, 0, 0, 0, 0, 0), (13) ∈ Rµ because 1 and 3 are both in the first row
but (13) /∈ Cµ because 1 is in the first column and 3 is in the third column, thereby
switching the columns of those two numbers.

Example 3.8. For the Young diagram 1 2 3 , every permutation preserves the rows.
Thus, R(3,0,0) = Sn = {1, (12), (13), (23), (123), (321)}. However, only the identity
preserves the columns, so C(3,0,0) = {1}.

For the Young diagram
1
2
3 , only the identity preserves the rows, so R(1,1,1) = {1}.

On the other hand, every permutation preserves the column, so C(1,1,1) = Sn =
{1, (12), (13), (23), (123), (321)}.

For the Young diagram
1 2
3 , only the identity and (12) preserve the rows, so

R(2,1,0) = {1, (12)}. The identity and (13) preserve the column, so C(2,1,0) =
{1, (13)}.

In order to use Rλ and Cλ to determine the irreducible representations of Sn,
it’s important to know the space of those representations. To that end, let CSn

be the group algebra of Sn, i.e., the vector space with basis {eg : g ∈ Sn} with
multiplication given by eg · eh = egh. CSn is part of the vector space used in the
construction of the irreducible representations from Rλ and Cλ.

Given a partition λ, we define aλ, bλ ∈ CSn by aλ =
∑

g∈Rλ
eg and bλ =∑

g∈Cλ
sign(g)eg.
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Example 3.9. The Rλ and Cλ for the Young diagrams of S3 are:
R(3,0,0) = {1, (12), (13), (23), (123), (321)}, so a(3,0,0) = e1 +e(12) +e(13) +e(32) +

e(321) + e(123). C(3,0,0) = {1}, so b(3,0,0) = e1.
R(1,1,1) = {1}, so a(1,1,1) = e1. C(1,1,1) = {1, (12), (13), (23), (123), (321)}, so

b(1,1,1) = e1 − e(12) − e(13) − e(23) + e(321) + e(123).
R(2,1,0) = {1, (12)}, so a(2,1,0) = e1 + e(12). C(2,1,0) = {1, (13)}, so b(2,1,0) =

e1 − e(13).

Definition 3.10. The “Young symmetrizer” cλ for a partition λ is defined to be
cλ = aλ · bλ.

Example 3.11. The Young symmetrizers of the Young diagrams of S3 are:
c(3,0,0) = a(3,0,0)b(3,0,0) = (e1 + e(12) + e(13) + e(32) + e(321) + e(123))e1 = e1 +

e(12) + e(13) + e(32) + e(321) + e(123).
Similarly, c(1,1,1) = a(1,1,1)b(1,1,1) = e1(e1−e(12)−e(13)−e(23) +e(321) +e(123)) =

e1 − e(12) − e(13) − e(23) + e(321) + e(123).
For (2, 1, 0), c(2,1,0) = a(2,1,0)b(2,1,0) = (e1 +e(12))(e1−e(13)) = e1 +e(12)−e(13)−

e(123).

As the following theorem states (proof omitted), these Young symmetrizers de-
termine the irreducible representations of Sn.

Theorem 3.12. Let CSn · cλ = {z · cλ : z ∈ CSn}. The representation ρ of Sn on
CSn · cλ defined by ρ(σ)(z) := eσ · z for σ ∈ Sn and z ∈ CSn · cλ is irreducible.

In addition, every irreducible representation of Sn is of this form for some par-
tition λ.

Example 3.13. Let σ be in S3.
For the partition (3, 0, 0), c(3,0,0) = e1 + e(12) + e(13) + e(32) + e(321) + e(123) =

a(3,0,0). Since a(3,0,0) is the same if you rearrange the terms, CSn ·c(3,0,0) = Cc(3,0,0).
Thus, for α ∈ C, σ(αc(3,0,0)) = α(eσ·1+eσ·(12)+eσ·(13)+eσ·(32)+eσ·(321)+eσ·(123)) =
α(e1+e(12)+e(13)+e(32)+e(321)+e(123)) = αc(3,0,0). In other words, for v ∈ CSn ·cλ,
σ(v) = v. Thus, this is the trivial representation.

By similar computation, CSn · c(1,1,1) = Cc(1,1,1). Thus, for v ∈ CSn · cλ,
σ(v) = sign(σ)v making this the alternating representation.

The partition (2,1,0) is not as simple to analyze as the other representations, so
a different approach is useful. Consider the vectors v1 = e1 + e(12) − e(13) − e(132),
v2 = e23 + e(132) − e(123) − e(12), and v3 = e13 + e(123) − e(1) − e(23). It is easily
verified that v1 = (13)c(2,1,0), v2 = (23)c(2,1,0), v3 = c(2,1,0), and that these three
vectors span CSn · c(2,1,0). Through simple computation, it is easy to see that
σ(v1) = vσ(1), σ(v2) = vσ(2), and σ(v3) = vσ(3). Since v1 + v2 + v3 = 0, it follows
that this representation is isomorphic to the standard representation.

More than the above, we also can find a nice formula for the dimension of an
irreducible representation. To each box in the Young diagram of λ, we can associate
a number called the “hook length”. The hook length for a box is calculated by
taking the number of boxes below that box plus the number of boxes right of the
box plus 1. The stars in the following figure give an example of a hook:

o ∗ ∗
o ∗ o
o ∗
o
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For example, if µ = (3, 3, 2, 1, 0, 0, 0, 0, 0) and if we label each box with the hook
length, we have the following figure:

6 4 2
5 3 1
3 1
1

Proposition 3.14. Let h be the product of all hook lengths in the Young diagram.
The dimension of Vλ is d!

h .

Thus, the dimension of an irreducible representation of Sn can be easily deter-
mined from the corresponding Young diagram.

4. Characters of Representations of Finite Groups

It was noted in the previous section that there are the same number of irreducible
representations as conjugacy classes. Characters are functions, which are constant
on conjugacy classes, that correspond to a representation. These functions are
analogous to the process used for Lie algebras since representations of finite groups
are decomposed by characters as representations of Lie algebras are decomposed
by eigenvalue.

Definition 4.1. Let ρ be a representation of a finite group G on a finite-dimensional
complex vector space V . The character of V , χV , is defined to be χV (g) = tr(ρ(g))
for g ∈ G.

Remark 4.2. Since trace is constant under conjugation, χV (hgh−1) = χV (g). That
is, characters are class functions.

The interesting thing about characters is that they allow an easy formula to de-
scribe how many of an irreducible representation are in an arbitrary representation.
The following statements will establish a formula.

Definition 4.3. Let (α,β) be the Hermitian inner product on the vector space of
class functions from G to C defined by (α,β) = 1

|G|
∑

g∈G α(g)β(g).

Theorem 4.4. The characters of irreducible representations of a finite group G
are orthonormal under this inner product.

Although it will not be proven here, any representation of a finite group G can
be written as a direct sum of irreducible representations. Therefore, the following
proposition is a formula for the character of a direct sum in terms of the characters
of its summands.

Proposition 4.5. χV⊕W = χV + χW .

Corollary 4.6. For any representation V and irreducible representation W of a
finite group G, (χV , χW ) is equal to the multiplicity of W in V.

Proof. Proof of Corollary 4.6. Let V1, . . . , Vn be the irreducible representations of
G. Since a representation can be written as a sum of irreducible representations,
V = V ⊕a1

1 ⊕ · · · ⊕ V ⊕an
n where ai is the multiplicity of Vi in V . Thus, χV =

a1χV1 + · · · + anχVn . Therefore, (χV , χW ) = a1(χV1 , χW ) + · · · + an(χVn , χW ).
Since characters of irreducible representations are orthonormal under this product,
(χVi , χW ) = 1 if Vi = W and (χVi , χW ) = 0 otherwise. Thus, (χV , χW ) = ai, which
is the multiplicity of Vi = W in V. !
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Therefore, any representation can be decomposed uniquely, up to isomorphism,
into irreducible representations by studying the characters of the representation.

However, knowing what these specific characters look like still needs to be ad-
dressed. In general, characters for representations of groups are hard to describe.
However, one of the special things about Sn is that the characters follow a specific,
though not necessarily nice formula as shown by the following theorem.

Theorem 4.7. If σ is an element of Sn and λ = (λ1, . . . ,λn) is a partition for
the irreducible representation V , then χV (σ) is the coefficient of xλ1

1 xλ2
2 . . . xλn

n in∏
i<j(xi − xj)

∏n
j=1(x

j
1 + . . . xj

n)ij where ij is the number of j-cycles in σ.

Example 4.8. Using the above formula, it is easy to describe the characters of the
irreducible representations.

Let σ1 be the identity of S3, let σ2 be a representative of the conjugacy class of
elements of S3 that have a 2-cycle, and let σ3 be a representative of the conjugacy
class of elements of S3 that have a 3-cycle.

The characters of the irreducible representations are as follows:
Let T be the trivial representation. From the formula, χT (σ1) = 1, χT (σ2) = 1,

and χT (σ3) = 1. Let A be the alternating representation. From the formula,
χA(σ1) = 1, χA(σ2) = −1, and χA(σ3) = 1. Let S be the standard representation.
From the formula, χS(σ1) = 2, χS(σ2) = 0, and χS(σ3) = −1.

As an example of how to decompose a given representation into irreducible rep-
resentations, let V be a representation with characters χV (σ1) = 5, χV (σ2) = 1,
and χV (σ3) = −1.

The following comes from the use of the corollary above.

(χV , χT ) =
1
3!

(χV (σ1)χT (σ1) + 3(χV (σ2)χT (σ2)) + 2(χV (σ3)χT (σ3))) =

1
6
(5 · 1 + 3 · 1 · 1 + 2 · (−1) · 1) = 1

Therefore, V contains one copy of the trivial representation.

(χV , χA) =
1
3!

(χV (σ1)χA(σ1) + 3(χV (σ2)χA(σ2)) + 2(χV (σ3)χA(σ3))) =

1
6
(5 · 1 + 3 · 1 · (−1) + 2 · (−1) · 1) = 0

Therefore, V does not contain any copies of the alternating representation.

(χV , χS) =
1
3!

(χV (σ1)χS(σ1) + 3(χV (σ2)χS(σ2)) + 2(χV (σ3)χS(σ3))) =

1
6
(5 · 2 + 3 · 1 · 0 + 2 · (−1) · (−1)) = 2

Therefore, V contains two copies of the standard representation.
Therefore, V = T ⊕ S ⊕ S.

This shows how through characters, it is easy to decompose representations into
irreducible representations.
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