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Abstract. Following the lectures [3][4] by J. Peter May in the 2008 Univer-
sity of Chicago Summer Math REU, I intend to go through the meat of the

argument for the (surprising!) fact that a space with 2n+2 points is weakly ho-

motopy equivalent to Sn. I will assume knowledge of basic point-set topology
and a basic understanding of homotopy equivalence and homotopy groups.
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1. Sufficient to Consider T0-spaces.

We begin with any arbitrary finite1 set X. In order to make X interesting to
topologists, we ought to make X a (topological) space by putting a topology on it.
After choosing a topology, it will be convenient to take a minimal basis for the
topology. We do this as follows:

Following the notation used by May in [3], we consider an element x ∈ X and
consider all open subsets V ⊆ X such that x ∈ V . Define Ux to be the intersection
of all such subsets. In other words:

(1.1) Ux =
⋂
V 3x

V.

Then the basis B = {Ux|x ∈ X} is our canonical minimal basis. The fact that this
is a basis is easy to see, and the minimality of such a basis follows almost entirely
from how we have defined it: if C were another minimal basis for X, then by the
definition of Ux we must have that B is finer than C. The minimality of C then
implies that B = C, so B is in fact minimal.

Now that we have a basis, we note that there are only a few things that can
happen given points x, y ∈ X: either Ux ⊆ Uy, Uy ⊆ Ux, or Ux ∩ Uy = ∅. We

1For this paper, all spaces will be considered finite unless otherwise stated.
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can almost define a partial ordering on X based on the order of inclusions of the
minimal basis elements, but one problem comes up. Consider the three point space
which has the following basis elements:

•a •b •c

In this particular basis, we find that it is difficult to tell the difference between
the point a and the point b. Since the reader no doubt knows the separation axioms
inside-and-out, the reader will not be surprised to find out that this space is not
T0

2. In other words, there is no open set V such that either: (a ∈ V and b /∈ V ) or
(b ∈ V and a /∈ V ).

So what’s the problem? Recall the definition of a partial ordering.

Definition 1.2. A partial ordering is an ordering ≤ such that the following hold:
(1) x ≤ x.
(2) x ≤ y and y ≤ z implies x ≤ z.
(3) x ≤ y and y ≤ x implies x = y.

In order to have a partial ordering, we need, in particular, the symmetric condi-
tion (3). If we try to form a partial ordering on our space by letting x ≤ y whenever
Ux ⊆ Uy, we fail miserably when we try to apply this partial ordering to our space
above for exactly the reason that Ua = Ub, but a 6= b.

At this point, the clever reader will point out that in our above space the points
a and b are “essentially the same” as far as the open sets are concerned. This gut
feeling can be made formal by the following (not so obvious!) theorem:

Theorem 1.3. Every finite space X is homotopy equivalent to a T0-space, XT0 .

Before diving head-first into the proof, it might be best to briefly describe ex-
actly what we mean by “homotopically equivalent to”. For a fuller treatment of
homotopies and related topics see [1], [2], or the latter half of [5].

Definition 1.4. For X,Y topological spaces and two continuous maps f : X → Y
and g : X → Y , a homotopy from f to g is defined to be a continuous function
h : X × [0, 1] → Y such that for all x ∈ X we have that h(x, 0) = f(x) and
h(x, 1) = g(x). Essentially, a homotopy is a continuous deformation from one map
to another.

Definition 1.5. For X,Y topological spaces, if we have continuous maps f : X →
Y and g : Y → X such that f ◦ g is homotopic to the identity on Y (denoted IdY )
and g ◦ f is homotopic to the identity on X (denoted IdX), then we say that X
and Y are homotopically equivalent and write X ' Y .

2For more information on the separation axioms, see [5].
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With definitions out of the way, we should begin building up some of the ma-
chinery we will be using to prove Theorem 1.3. To begin with, we want to be able
to make points which are “essentially the same” into “exactly the same”. To make
this notion precise, we define the equivalence relation ∼ by setting x ∼ y if and
only if Ux = Uy. We check to see if this is an equivalence class.

Proposition 1.6. ∼ is an equivalence relation.

Proof. It should be clear that x ∼ x and x ∼ y implies y ∼ x. Lastly, if x ∼ y and
y ∼ z, then Ux = Uy and Uy = Uz, which implies that Ux = Uz and so x ∼ z. �

Our equivalence relation ∼ allows us to precisely define the notion of “being
essentially the same points” that we described above. We now build a new T0-
space XT0 from our old not-necessarily-T0-space X.

Definition 1.7. The Kolmogorov Quotient is defined to be X/(∼), where ∼ is the
topological indistinguishibility equivalence relation described above. X/(∼) inherits
the quotient topology3 — that is, a set (of equivalence classes) is open in X/(∼) if
and only if the union of the elements in the equivalence classes is open in X.

In other words, given a set of mutually indistinguishable points (like the points
a and b in our picture above) we send all of them to one element of X/(∼), namely
the element [x0], where x0 happens to be a representative of one of the mutually
indistinguishable points. Note that if for some x there does not exist a y such that
Uy = Ux but y 6= x, then x is sent to the equivalence class [x] which contains only
the element x.

Example 1.8. As an example, let’s compute the Kolmogorov Quotient for our
non-T0-space above. For sake of notating, let’s call that space A. Since a ∼ b, we
have that [a] = {a, b} in the Kolmogorov Quotient AT0 . Since c is a distinguishable
point in the sense that it has an open set which, for each other point considered,
does not contain that other point, we have that the equivalence class [c] = {c}. Our
new space is

•[a] •[c]

which is the same as the two point set with the discrete topology.

With these tools, we are finally able to prove Theorem 1.3.

Proof. (for Theorem 1.3)
Given an arbitrary finite space X, form its Kolmogorov Quotient XT0 . We

will show that X ' XT0 . In order to do this, we must construct two functions,
f : X → XT0 and g : XT0 → X such that g ◦ f ' IdX and f ◦ g ' IdXT0

. Let’s
try to define f and g in the most naive way possible and hope that it works. Let

3For more information on the quotient topology, see [5].
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f(x) = [x] for all x ∈ X. Let g([x0]) = x0, where x0 is a set chosen representative
of each equivalence class.

It is clear that (f ◦ g) ' IdXT0
. Now let’s see if g ◦ f ' IdX . Given some x ∈ X,

f(x) = [x], and then g([x]) = x0 where x0 is a representative of the group [x]. Now
we define a homotopy to show that (g ◦ f) ' IdX :

(1.9) h(x, t) =
{
x0 = (g ◦ f)(x) if t < 1
x = IdX(x) if t = 1

}
.

First, let’s show that h : X × I → X is continuous. Take V open in X. Since
X is a finite space, V is also a finite space, so we have that V = {y1, y2, . . . , ym}.
We claim that yj ∈ V if and only if Uyj is in V . It is clear that if Uyj ⊆ V , then
yj ∈ V . Conversely, if yj ∈ V , then we have that V contains a neighborhood of
yj , but since Uyj

is contained in every neighborhood containing yj , we have that
Uyj
⊆ V . As V is the union of the minimal open sets Ux and if x ∈ [x0], we have

that (g ◦ f)(x) = x0, so it suffices to prove that h−1(V ) is open for V = Ux0 .
Suppose that h(x, t) ∈ Ux0 . If t = 1, then h(x, 1) = x, so x ∈ Ux0 ; if t < 1, then

h(x, t) = (g ◦ f)(x) = x0 ∈ Ux0 . It is clear that (g ◦ f)(y) ∈ Ux0 if only if x ∈ Ux0 ,
and so h−1(Ux0) = Ux0 × [0, 1], which is open. Hence, h is continuous. Therefore,
X is homotopy equivalent to XT0 . �

To sum up what we’ve done so far, the process should go something like this:
Given an arbitrary set X we first form the Kolmorogov Quotient XT0 , and then let
the ordering be [x] ≤ [y] if and only if U[x] ⊆ U[y]. The reader can check that this
ordering is, in fact, a partial ordering.

As a final note, since every space X is homotopy equivalent to a T0-space, we
will henceforth assume that all spaces are T0. Accordingly, we shall no longer need
to use Kolmogorov Quotients or equivalence classes.

2. Sufficient to Consider Minimal T0-Spaces.

Say we’re given a finite T0-space X. We hinted at before (but never explicitly
said) that a minimal basis for the topology on X also induces a partial ordering on
X. But we also have that a partial order on a set X induces a topology for which
the minimal basis satisfies x ≤ y if and only if Ux ⊆ Uy. Since we only care about
spaces up to homotopy, we might as well toss out any and all points which don’t
affect the homotopy properties of the space.

Definition 2.1. We say that a point x ∈ X is upbeat if there exists a point y ∈ X
such that x < y and y ≤ z for all z ∈ X satisfying x < z. A point which is downbeat
is similarly defined by replacing each ≥ with a ≤.

Perhaps it is not immediately clear exactly what an upbeat or downbeat point
is, or even why we should care about such a point. An illuminating picture can be
drawn to illustrate what an upbeat or downbeat point is:
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z1

  @@@@@@@@ z2

~~~~~~~~~~

y

��
x

Here we have that the arrows mean “is greater than or equal to”, with x, y, z1
and z2 satisfying the criteria above. In this picture, x is an upbeat point. Notice
that for all of the points greater than it (namely y, z1 and z2) we have that y is less
than or equal to each of these. Hence, x is an upbeat point by our definition. A
simple inversion of the diagram

x

y

OO

z1

>>~~~~~~~~
z2

``@@@@@@@@

gives us an example of when x is a downbeat point. The argument for this is similar.
Why should we care about this? Intuitively, if we are just looking at spaces

which are homotopically equivalent to X, we “don’t need” an upbeat or downbeat
point because we have another point that acts very similar to it. Think of our first
drawing where x was an upbeat point: we don’t “need” x, since y has nearly the
same properties as x, except for the fact that y > x! The homotopic properties
of the space should be unchanged if we were to, say, yank x out of the space all
together, since, with x gone, y can basically “take x’s place”. Let’s stop beating
around the bush and make this notion precise.

Proposition 2.2. If X is a finite T0-space and x0 is an upbeat or downbeat point,
then the inclusion i : X − {x} ↪→ X is a homotopy equivalence.

Proof. Clearly it suffices to prove this when x0 is an upbeat point, since the proof
is nearly identical for the case when x0 is a downbeat point. We need to find a map
g : X → X −{x0} such that (i ◦ g) and (g ◦ i) are homotopic to the identity. Define

(2.3) g(x) =
{
x if x 6= x0

y if x = x0

}
.

where y is the same y which “take’s x’s place” as in the paragraph above (that is,
it is the y ∈ X such that x0 < y such that if we have z ∈ X such that x0 < z
then y ≤ z. We notice that (g ◦ i)(x) = x for all x ∈ X − {x0}, so this is clearly
homotopic to the identity. We have that for all x 6= x0, that (f ◦ g)(x) = x, and
(f ◦ g)(x0) = y. Since this is not exactly the identity, let’s spell out the homotopy:
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(2.4) h(x, t) =


x t < 1 and x 6= x0

x t = 1 and x 6= x0

y t < 1 and x = x0

x0 t = 1 and x = x0

 .

Which is continuous, and proves that i ◦ g is homotopic to the identity, which
implies that i : X − {x} ↪→ X is a homotopy equivalence. �

Definition 2.5. We call a finite T0-space X minimal if it contains no upbeat or
downbeat points.

Corollary 2.6. Given a finite T0-space, X, there exists Xmin ' X such that Xmin

is minimal.

Proof. We simply repeat the process in Proposition 2.2 a finite number of times.
It is clear that after this process is completed, we obtain a minimal space which is
homotopically equivalent to X. �

As a philosophical corollary to all of this hard work we note that it suffices to
consider an even smaller class of finite spaces if we only care about properties up to
homotopy: if we are given a space X, we can take its Kolmogorov Quotient to obtain
XT0 , a T0-space which is homotopically equivalent to X, and then remove upbeat
and downbeat points to obtain XT0,min which is also homotopically equivalent to
X. We write this down as a theorem just to record our achievements.

Theorem 2.7. Given a finite space, X, there exists a finite minimal T0-space,
XT0,min, which is homotopically equivalent to X.

In fact, this minimal space is unique up to homeomorphism as shown by [3] but
we won’t need such a strong result.

3. Weak Homotopy Equivalence

At this point, the reader who has not taken an Algebraic Topology class or who
has not seen homotopy groups may become quickly lost in the forest of jargon-filled
mathematics that’s quickly approaching. Fear not, reader! Though I will not go
into homotopy groups (it would take far too much space and would be bothersome
for those readers who are already familiar with the topic), there are many good
books which go over the subject in great depth4. I highly encourage the curious
reader who knows nothing of homotopy groups to go forth and study them until
they seem like old friends to you.

Now, reader, I will assume you know all there is to know about the basics of
homotopy groups. In fact, we will not need much: we will only be using the
notion of a weak homotopy equivalence. In general, as the name suggests, a weak
homotopy equivalence is weaker than a homotopy equivalence; this suggests that we
could find even “nicer” spaces which are weak homotopy equivalent to our original,
nasty, not-necessarily-even-T0-space X. So, without further ado:

4[1],[2], and the latter half of [5] are just a few of the many books which cover homotopy groups.
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Definition 3.1. A weak homotopy equivalence between two topological spaces5 is
a continuous map f : X → Y which induces an isomorphism

f∗ : πn(X)→ πn(Y )

for all n ≥ 1.

It is difficult to understand the idea of a weak homotopy conceptually at first,
but from a formal viewpoint it should be clear how to prove two spaces are weakly
homotopy equivalent. Note that weak homotopy is much stronger than all of the
homotopy groups of two spaces being isomorphic — weak homotopy implies that
there is a continuous map which induces all of these isomorphisms.

4. Cones and Suspensions.

We’re close to proving our main result, but before we do, we need to define a
particular construction.

Definition 4.1. The cone on X is the quotient space defined by CX := (X ×
I)/(X × {0}) with the quotient topology.

It’s much more instructive to just see what the cone on X is if, say, X looks like
the circle:

�������������������������

/////////////////////////

X

•(X×0)/(∼)

so the cone on X is literally a cone when X looks like a circle. It is difficult to
think of a cone when X is more complicated, but there are, fortunately, other
methods of calculation which can give us information about CX without having
to try to visualize CX itself — we will not go into these methods, but any of the
algebraic topology books that have been referred to should contain information for
the curious reader.

Now, a related construction is the suspension on X.

Definition 4.2. The suspension on X is the quotient space defined as SX :=
(X × I)/(∼) where (x, 0) ∼ (y, 0) and (x, 1) ∼ (y, 1) for all x, y ∈ X.

5For simplicity, in this paper we assume that all of our spaces are path-connected and based.
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It may be difficult for the reader who has never seen the definition of SX before
to imagine what it could possibly look like. The suspension of the circle S1, denoted
SS1 confusingly enough, is simply a circle with two cones — one going “up” and
one going “down”. So for spaces which look like S1, the suspension looks like:

�������������������������

/////////////////////////

000000000000000000000000

������������������������

X

•(X×0)/(∼)

•(X×1)/(∼)

The last two constructions are much easier to define now that we have these
basic constructions out of the way.

Definition 4.3. The non-Hausdorff cone on X is defined to be CX := X q {+}
where {+} is just a point we introduce which is disjoint from X. We let all of the
proper open sets of CX be just the open subsets of X along with the set X ∪ {+}.

and similarly

Definition 4.4. The non-Hausdorff suspension on X is defined to be SX ≡ X q
{+}q {−} where {+} and {−} are points we introduce which are disjoint from X.
We let all of the proper open sets of SX be just the open subsets of X along with
the sets X ∪ {+} and X ∪ {−}.

For clarity’s sake, the non-Hausdorff suspension of our space X looks like this:
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X

•{+}

•{−}

The non-Hausdorff cone is exactly the same, without the point {−} at the bot-
tom. We won’t discuss the cone or the non-Hausdorff cone, but we will talk more
about the properties of the suspension and the non-Hausdorff suspension. It turns
out that this seemingly silly notion of “adding two points” is what gives us the
“2n + 2” part of our weak homotopy between Sn (the n-sphere, which we will
formally define a bit later) and the space with 2n+ 2 points.

5. Properties of the Suspension and the Non-Hausdorff Suspension.

Let’s once again state the definition of the non-Hausdorff suspension.

Definition 5.1. The non-Hausdorff suspension on X is defined to be SX := X q
{+}q {−} where {+} and {−} are points we introduce which are disjoint from X.
We let all of the proper open sets of SX be just the open subsets of X along with
the sets X ∪ {+} and X ∪ {−}.

Notice the last part of the definition: the only open set which contains the points
{+} and {−} is the entire space SX. This observation opens a few doors for us;
for example, given a map f : X → Y , it’s easy to construct a map Sf : SX → SY
by defining

(5.2) Sf(x) =

 f(x) if x ∈ X
+ if x = +
− if x = −

 .

The reader can check that this will be a continuous mapping if f is continuous.
We also note, at this point, that if X is a minimal T0-space, then SX is also minimal
and T0. This should be clear, since we are only adding one point which has the
whole space as its only open set.

Now we have a notion of suspension on a space and a notion of non-Hausdorff
suspension on a space, but how are these two notions similar? Let’s define a map
to allow us to translate back and forth between our regular suspension and our
non-Hausdorff suspension.

Definition 5.3. Define γ : SX → SX by
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(5.4) γ(x, t) =

 x if 0 < t < 1
+ if t = 1
− if t = 0

 .

Similarly, we can take our spaces X and Y to be SX and SX, respectively, to
obtain γ2 : SSX → SSY . Inductively, we can define γn : SnX → SnY in the same
way.

Now comes the big theorem of the paper. After this theorem, the rest of the
paper will be devoted to explaining the specific case where X = S1. Since it’s often
easier to try to knock down a building brick by brick instead of all at once, we split
this theorem into four parts: three lemmas and then the theorem itself. The first
lemma we will not prove, but rather cite from [4] (where it is Theorem 1.6).

Lemma 5.5. If p : E → B is a continuous map, and B has an open cover O such
that

(1) If x is in the intersection of sets U and V in O, then there is some W ∈ O
with x ∈W ⊆ U ∩ V .

(2) For each U ∈ O the restriction p : p−1(U) → U is a weak homotopy
equivalence.

then we have that p is a weak homotopy equivalence.

In this lemma, (1) is saying that O is a basis for a potentially smaller topology
than B is given, and (2) is allowing for a “local” view of weak homotopy equivalence,
rather than the more “global” idea of homotopy groups being isomorphic. Since
we are dealing with relatively simple objects (the non-Hausdorff suspension’s extra
points are only contained in one open set — namely, the whole space), this is an
extremely useful lemma to use. In fact, we will put it to use now in the following
two lemmas.

Lemma 5.6. Given a space X, the map γ : SX → SX is a weak homotopy
equivalence.

Proof. For this and the next lemma, we closely follow the proof given in [4]6. Take
three subspaces X, X ∪ {+}, and X ∪ {−} as our open cover of SX. The open
cover, then, consists of the space X, the space X and the added top point, +, and
then the space X and the added bottom point, −. Notice that this open cover
satisfies (i) in Lemma 5.5, since the pairwise intersection of these open sets is either
itself (if we intersect the open set with itself) or X, which is included in the cover.
If we consider the inverse images (under γ) of these open subsets in SX, we find
that they are X × (0, 1), X × [0, 1), and X × (0, 1].

We claim that if we restrict γ to each of these subspaces, γ becomes a homotopy
equivalence and, therefore, a weak homotopy equivalence7. The proof of this claim
is clear: γ(X × (0, 1)) = X, and it is trivial that X is homotopy equivalent to

6In [4], this lemma and the following two lemmas are condensed into a single theorem, labeled
Theorem 3.4.

7The fact that a homotopy equivalence implies a weak homotopy equivalence is proven in [1]

and [2]. Conversely, if X is a CW complex, we have that a weak homotopy equivalence is (!) a
homotopy equivalence, but we will not need such a strong statement.
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itself. The other two cases are similar. Since the two conditions in Lemma 5.5 are
satisfied, we have that γ is a weak homotopy equivalence.

�

Lemma 5.7. If f : X → Y is a weak homotopy equivalence, then the map Sf :
SX → SY and the map Sf : SX → SY are also weak homotopy equivalences.

Proof. The proof of this is analogous to the proof of the preceding lemma and is
left to the reader as an exercise.

�

Theorem 5.8. For a space X, the map γn : SnX → SnX is a weak homotopy
equivalence.

Proof. We appeal to the diagram

SnX
Sγn−1

//

γ

��

γn

$$IIIIIIIIIIIIIIIIIIII SSn−1X

γ

��
SSn−1X

Sγn−1
// SnX

for the proof of this theorem. The commutativity of the diagram follows from how
we’ve defined γ. We may assume inductively that γn−1 is a homotopy equivalence.
It follows that Sγn−1 and Sγn−1 are also weak homotopy equivalences by the
preceding lemma. By the commutativity of the diagram, we have that γn is also a
weak homotopy equivalence. �

6. Applications to Familiar Spaces: SnS0 and SnS0.

Now that we understand the connection between the suspension and the non-
Hausdorff suspension of a space, let’s investigate a relatively simple space.

Definition 6.1. The n-sphere Sn := {x ∈ Rn+1| ‖x‖ = 1} is the set of all points
in Rn+1 such that each point is distance exactly 1 from the origin8.

Example 6.2. S1 is the standard unit circle in the Euclidean plane. S2 is the
standard unit sphere in Euclidean 3-space. An easy, but perhaps less intuitively
obvious example is S0 which is just the the points {−1} and {1} on the real line.

Let’s consider S0, which is just two points. Let’s build SS0, which is the sus-
pension on S0. Well, what is this? We cross the two points with the interval, and
then identify the “bottom two points” and the “top two points” but none of the
points in between. The process looks like this:

8Rarely is there ever a topology on the n-sphere which differs from the topology induced by

the one-point compactification of Rn, so for the rest of this paper, we will assume Sn has this
topology.
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•−1 •+1

•(−1,1) •(+1,1)

•(+1,0)•(−1,0)

First we cross the two points with the interval [0, 1], and then we notice that we
just need to identify (+1, 1) ∼ (−1, 1) and (+1, 0) ∼ (−1, 0). Therefore, we obtain
something that looks like:

•(+1,1)∼(−1,1)

•+1

•(+1,0)∼(−1,0)

•−1

But now the observant reader should be awestruck — “But...this is a circle!”
And, indeed, it is a circle. We jot this down: SS0 ∼= S1. The interested reader
should now note that we can do the same thing for the circle, S1. By gluing two
hollow cones onto the circle (one upwards, one downwards) we can imagine “blowing
it up like a balloon” until it becomes a sphere. We jot this down, too: SS1 ∼= S2,
which means that SSS0 = S2S0 ∼= S2. By exploring, you can find that this is true
for all n, and the proof is just looking at what the suspension does to Sn−1. Let’s
record this as a theorem so that we may refer to it later.

Theorem 6.3. SnS0 ∼= Sn.

In other words, the suspension of S0 iterated n times is homeomorphic, and,
therefore, homotopy equivalent, to the the n-sphere, Sn.

Now let’s note that the non-Hausdorff suspension of S0 is sort of funny: it’s
simply 4 points!
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•+

•+1

•−

•−1

and if we iterate this once more, we simply get two more points: {+′} and {−′}.
Similarly, starting with S0 and iterating this process n times, we obtain 2n new
points in addition to the 2 we started with. We write this down as a theorem so
that we can easily refer to it.

Theorem 6.4. SnS0 is a finite minimal space with 2n+ 2 points.

Note that we have made this space minimal by the arguments in the first part
of this paper. It is T0 trivially, since we consider S0 with the standard topology as
a T0 space, and by a previous comment we have that SnS0 will give us a T0 space.

Now, let us sit back and piece some of these theorems together to make a simple,
but satisfying, corollary. With all of the machinery we’ve built up, the proof is
nothing but citing a few theorems at this point. The reader is encouraged to look
back and try to see how each step fits together since this is a really wild idea.

Corollary 6.5. The n-sphere Sn is weak homotopy equivalent to a finite minimal
T0-space with 2n+ 2 points.

Proof. By theorem 5.8, we have that γn : SnS0 → SnS0 is a weak homotopy
equivalence. By Theorem 6.3, we have that the map k : SnS0 ∼= Sn is a weak
homotopy equivalence. By Theorem 6.4, we have that SnS0 is a finite minimal
T0-space with 2n+ 2 points. We now consider the diagram

SnS0
γn

//

k

��

SnS0

Sn

η

<<yyyyyyyyyyyyyyyyyy

and since k and γn are weak homotopy equivalences, their composition η = γn◦k−1

gives a weak homotopy equivalence from Sn to the finite minimal T0-space with
2n+ 2 points. �
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