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Abstract. Game theory is a very important branch of applied mathemat-

ics with many uses in the social sciences, biological sciences, and philosophy.

Game theory attempts to mathematically explain behavior in situations in
which an individual’s outcome depends on the actions of others. Arguably

the most important result in game theory, the Minimax Theorem was stated

in 1928 by mathematician John von Neumann in his paper Zur Theorie Der
Gesellschaftsspiele, and forms the basis for all subsequent findings in the sub-

ject. This paper will provide a brief introduction to zero-sum games and the

notion of equilibrium, as well as an elementary proof of the theorem.
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1. Introduction to Games

The notion of a game in this context is similar to certain familiar games like
chess or bridge. Starting from a beginning point, each player performs a sequence
of moves, often involving choices at each step. Each outcome, or terminal point,
at the end of the game is alloted a particular payoff, usually in the form of money,
given to each of its players.

Definition 1.1. An n-person game is one in which there are n players, and a payoff
function, which assigns an n-vector to each terminal vertex of the game, indicating
each player’s earnings.

Definition 1.2. A strategy refers to a player’s plan specifying which choices it will
make in every possible situation, leading to an eventual outcome. Let Σi denote
the set of all strategies for player i. In order to decide which strategy is best,
player i will have to choose the strategy which maximizes its payoff (i.e., the i -th
component of the payoff function).
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Letting π denote the probability of a certain combination of strategies occuring,
we can derive a mathematical expression for the payoff function, given player i uses
strategy σi ε Σi:
π (σ1, σ2, ..., σn) = (π1(σ1...σn), π2(σ1...σn), ..., πn(σ1...σn))
where σ1 represents player 1 ’s strategy, σ2 represents player 2 ’s strategy, and

so on, while π1 represents the probability of player 1 choosing strategy σ1, π2

represents the probability of player 2 choosing strategy σ2, and so on.
It is possible to express this function through an n-dimensional array of n-vectors,

called the normal form of the game.

Definition 1.3. A strategy n-tuple (σ1, σ2, ..., σn) is said to be in equilibrium if
and only if no player has any reason to change its strategy, assuming the other
players do not change theirs. For example, if the strategy n-tuple (σ1, σ2, ..., σn) is
in equilibrium, for any i = 1,...n, and any σ̂i ε Σi,
πi (σ1, ..., σi−1, σ̂i, σi+1, ..., σn) ≤ πi (σ1, σ2, ..., σn)

2. Zero-Sum Games

Definition 2.1. A zero sum game is one in which, at each terminal vertex, the
payoff function’s components add up to zero. In other words, every amount that
one player wins must be lost by another player.

The normal form of a two-person zero-sum game is just a matrix with each
row representing one of player 1’s strategies, and each column representing one of
player 2’s strategies. The expected payoff (for player 1), if player 1 chooses its i -th
strategy and player 2 chooses its j -th strategy, will be element aij of the matrix.
Since this matrix represents the different payoffs for player 1, it makes sense that
player 1 will try to maximize the element aij which is chosen, while player 2 will
try to minimize it, since that value is equivalent to player 2’s loss. For the rest of
this paper, we will be dealing with two-person zero-sum games.

Definition 2.2. A saddle point is an element in the game matrix that is both the
largest in its column and the smallest in its row. Not all game matrices have saddle
points, but if they do, they will clearly be the equilibrium strategies, since they
both maximize player 1’s payoff, and minimize player 2’s loss.

Definition 2.3. A gain-floor is the minimum payoff player 1 will receive given
player 2’s attempt to minimize their payoff. Mathematically, the gain-floor can be
represented as such: υ′1=maxi{minj aij} Conversely, the loss-ceiling is the max-
imimum loss player 2 can experience given player 1’s attempt to maximize their
payoff. Mathematically, the loss-ceiling can be represented as such: υ′2=minj{maxi
aij}

Lemma 2.4. Player 1’s gain-floor cannot exceed player 2’s loss-ceiling, i.e. υ′1 ≤ υ′2
Proof. Let υ′1 and υ′2 be defined as gain-floors and loss-ceilings, respectively. Since
υ′1=maxi{minj aij}, υ′1 is less than all other payoffs in column j, while υ′2 is greater
than all other payoffs in row i. Let x be the payoff in row i and column j, i.e., x =
aij . Since υ′1 ≤ x ≤ υ′2, υ′1 ≤ υ′2

�

It is notable that if υ′1 = υ′2, a saddle point exists, but if the inequality is strict,
the game does not have a saddle point.
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Definition 2.5. A mixed strategy is a probability distribution on the set of a
player’s pure strategies. When a player has a finite number of m strategies, its
mixed strategy can be expressed as an m-vector, x = (x1, ..., xm) such that xi ≥ 0
and

∑m
i=1 xi = 1

Suppose players 1 and 2 are playing the matrix game A, where A = (aij) is
an mxn matrix. Let X denote the set of all mixed strategies for player 1, and Y
represent the set of all mixed strategies for player 2. If player 1 chooses mixed
strategy x while player 2 chooses mixed strategy y, then the expected payoff can
be written as A(x, y) =

∑m
i=1

∑n
j=1 xiaijyj .

In matrix notation, this can be expressed as A(x, y) = xAyT

Player 1’s expected gain floor, if using strategy x, can be expressed as
v(x) = miny xAyT , which can be thought of as a weighted average of the expected
payoffs for player 1 using x against player 2’s pure strategies.
Thus the minimum will occur with pure strategy j: v(x) = minxAj where Aj is the
j-th column of the matrix A. Thus player 1 should choose x in order to maximize
v(x), so as to obtain vI = maxx minj xAj . This strategy x is known as player 1’s
maximin strategy.
Conversely, if player 2 chooses strategy y, it will obtain the expected loss-ceiling
v(y) = maxiAiyT where Ai is the i-th row of A, and will choose y in order to obtain
vII = miny maxiAiyT . This strategy y is known as player 2’s minimax strategy.
Values vI and vII are known as the values of the game to player 1 and player 2,
respectively.

3. The Minimax Theorem

Lemma 3.1. Theorem of the Supporting Hyperplane: Let B be a closed convex set
of points in an n-dimensional euclidean space, and let x = (x1, ..., xn) * B. Then
∃ numbers p1, ..., pn, pn+1 such that the following conditions hold:

∑n
i=1 pixi = pn+1 (3.2)

and

∑n
i=1 piyi > pn+1 for all y ε B (3.3)

Proof. Let z be the point in B whose distance to x is a minimum. This point exists
and is unique because B is closed and convex. Let pi = zi − xi for i=1,...,n
pn+1 =

∑n
i=1 xizi -

∑n
i=1 x

2
i

Since
∑n
i=1 pixi =

∑n
i=1(zi − xi)xi =

∑n
i=1 xizi -

∑n
i=1 x

2
i = pn+1, condition (3.2)

holds.
To prove that condition (3.3) holds as well, we will see that∑n
i=1 pizi =

∑n
i=1 z

2
i -

∑n
i=1 zixi, so

∑n
i=1 pizi - pn+1 =

∑n
i=1 z

2
i - 2

∑n
i=1 zixi +∑n

i=1 x
2
i =

∑n
i=1(zi − xi)2 > 0 Thus,

∑n
i=1 pizi > pn+1

Now suppose condition (3.3) does not hold, i.e. ∃ y ε B such that
∑n
i=1 piyi ≤

pn+1.
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Since B is a convex set, the line between y and z must be entirely contained in B,
so ∀ 0 ≤ r ≤ 1, wr = ry + (1− r)z ε B
The square of the distance from x to wr can be written as ρ2(x,wr) =

∑n
i=1(xi −

ryi − (1− r)zi)2, so ∂ρ2

∂r = 2
∑n
i=1(zi − yi)(xi − ryi − (1− r)zi)

= 2
∑n
i=1(zi − xi)yi − 2

∑n
i=1(zi − xi)zi + 2

∑n
i=1 r(zi − yi)2

= 2
∑n
i=1 piyi − 2

∑n
i=1 pizi + 2r

∑n
i=1(zi − yi)2

If this value is evaluated at r = 0, ∂ρ2

∂r = 2
∑n
i=1 piyi − 2

∑n
i=1 pizi

Since the first term on the right side is less than or equal to 2pn+1, and the second
term is greater than 2pn+1, ∂ρ2

∂r < 0.
Thus, for r close enough to zero, ρ(x,wr) < ρ(x, z).
However, this contradicts the assumption that z is the point in B whose distance
to x is a minimum, so it follows that ∀ y ε B, condition (3.3) holds.

�

Lemma 3.4. Theorem of The Alternative for Matrices: Let A = (aij) be an mxn
matrix. Then either of the following two conditions must hold:

The point 0 is contained in the convex hull of the m+n points a1 = (a11, ..., am1), a2 =
(a12, ..., am2), ..., an = (a1n, ..., amn) and e1 = (1, 0, ...0), e2 = (0, 1, 0, ...0), ..., em =
(0, 0, ..., 1)(3.5)

∃ x1, ..., xm such that xi > 0,
∑m
i=1 xi = 1, and

∑n
i=1 aijxi > 0 for j = 1, ..., n

(3.6)

Proof. Let A be an m × n matrix, and suppose condition (3.5) holds. Then we are
finished with this circumstance.
Now suppose (3.5) does not hold. According to Lemma (3.1), ∃ numbers p1, ..., pm+1

such that
∑m
j=1 0·pj = pm+1 since 0 is not contained in the convex hull of these

points. Therefore pm+1 = 0, and since
∑m
j=1 pjyj > pm+1,

∑m
j=1 pjyj > 0 ∀ y in

the convex set. More specifically, this statement holds if y is one of the m+n vectors
listed above, since they are included within the larger convex hull.
Therefore

∑
aijpi > 0 ∀ j, so pi > 0 ∀ i.It follows that Σpi > 0.

Let xi = pi�Σpi. Therefore
∑

aijxi > 0, and xi > 0.
By definition,Σxi > 0.
Therefore, condition (3.6) holds if (3.5) does not. �

Theorem 3.7. The Minimax Theorem: maxx minj xAj = miny maxiAiyT , i.e.
vI = vII

Proof. Let A be a matrix game. According to Lemma 3.4, either condition (3.4) or
(3.5) must be true.
Suppose condition (3.4) holds. Thus, 0 is contained in the convex hull of the
m+n points, and is therefore a convex linear combination of the m+n vectors.
Consequently, ∃ s1, ..., sm+n such that

∑n
j=1 sjaij + sn+ i = 0 for i = 1, ...,m,

sj ≥ 0 for j = 1, ...,m+ n, and
∑m+n
j=1 sj = 1

If all the numbers s1, ..., sn were 0, then 0 would be a convex linear combination
of the m unit vectors e1, ..., em, which would be a contradiction since these are
independent vectors. Therefore, at least one of the numbers s1, ..., sn is positive,
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meaning
∑n
j=1 sj > 0.

Let yj = sj�
∑n
j=1 sj . Therefore yj ≥ 0,

∑n
j=1 yj = 1, and∑n

j=1 aijyi = −sn+1�
∑n
j=1 sj ≤ 0 ∀ i.

Thus v(y) ≤ 0 and vII ≤ 0.
Now suppose that condition (3.5) holds instead. Then v(x) > 0, and vI > 0.
Since it is impossible for both conditions not to hold, it is not posible to have a
situation in which vI ≤ 0 < vII .
Now let’s look at a different matrix game B, where B = (bij), and bij = aij + k,
where k is a random variable. ∀ x, y, xByT = xAyT + k.
Therefore, vI(B) = vI(A) + k, and vII(B) = vII(A) + k. Since it is impossible
for vI(B) < 0 < vII(B), we cannot obtain a situation in which vI(A) + k < 0 <
vII(A) + k, where by subtracting k from both sides we get vI(A) < −k < vII(A).
But since k was arbitrary, it is impossible for vI < vII .
Using the same method as lemma 2.4 we see that vI ≤ vII . Therefore vI = vII �
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