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Abstract. The stable roommates problem as originally posed by Gale and
Shapley [1] in 1962 involves a single set of even cardinality 2n, each member
of which ranks every other member in order of preference. A stable matching
is then a partition of this single set into n pairs such that no two unmatched
members both prefer each other to their partners under the matching. How-
ever, a simple counterexample quickly proves that a stable matching need not
exist in the stable roommates problem. In 1984, Irving published an algorithm
that determines in polynomial time if a stable matching is possible on a given
set, and if so, finds such a matching. However, others have made efforts to
redefine the concept of a “stable matching,” or even reframe the problem alto-
gether to give it new real-world significance. The present paper describes both
Irving’s algorithm, and look at other reappraisals of this problem.
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1. Background

In their 1962 paper “College Admissions and the Stability of Marriage,” David
Gale and Lloyd Shapley propose the stable marriage problem [1]. The problem
concerns n men and n women, each of whom is to marry one partner. Each man
and woman ranks each woman and man, respectively, from 1 to n in order of
preference. A matching is defined as a set of n disjoint pairs containing one woman
and one man each. For convenience sake, we’ll refer to the woman’s partner in the
matching as her “husband” and the man’s partner in the matching his “wife.” A
matching is stable when no woman x prefers a man y to her husband in the present
matching where y also prefers x to his present wife. In the paper, Gale and Shapley
furnished an algorithm that always provides a stable matching in polynomial time.

In the same paper, Gale and Shapley propose the related stable problem (hence-
forth, simply referred to as the “roommates problem”). This problem concerns 2n
participants who each rank the other 2n − 1 members in order of preference. A
matching in this context is just a set of n disjoint pairs of participants. The two
participants in a pair will henceforth be referred to as “partners” in the matching.
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In this problem, a matching is stable when no participants x and y exist who prefer
each other to their present partners. However:

Proposition 1.1. There need not exist a stable matching in the roommates prob-
lem.

This is demonstrated with an illustrative counterexample.

Proof. Imagine there are four participants, α, β, γ, and δ, where the preference
lists are given as:

α :β, γ, δ

β :γ, α, δ

γ :α, β, δ

δ :(Unimportant)

Then whoever is paired in a room with δ prefers someone in the other room who
also prefers them. Therefore, a stable matching cannot always be constructed in
the problem. �

Since there need not exist a stable matching in the roommates problem, there
cannot be an algorithm that always constructs a stable matching. This fact has
led to variety of reappraisals of this problem. This paper looks at a variety of
approaches to the problem, including:

(1) Irving’s algorithm, which determines in polynomial time if a stable match-
ing is possible on a given set of participants, and if so, finds such a matching,

(2) Morrill’s approach, which works by redefining the concept of a stable match-
ing, and

2. Irving’s Method Pt. I

Irving’s algorithm breaks down into two distinct phases. The first phase con-
sisting of a sequence of “proposals” not unlike the algorithms employed in stable
marriage problems [2].

Algorithm 2.1 (Phase 1). (1) If x receives a proposal from y, then:
(a) x rejects it at once if x already holds a better proposal;
(b) x holds it for consideration otherwise, simultaneously rejecting any

poorer proposal x currently hold.
(2) An individual x proposes to the others in the order in which they appear in

x’s preference list, stopping when a promise of consideration is received; any
subsequent rejection causes x to continue immediately with the sequence
of proposals.

When this first phase terminates, there are two possibilities:

(1) every person holds a proposal
(2) one person is rejected by everyone

Lemma 2.2. If y rejects x in the proposal sequence described above, then x and y
cannot be partners in a stable matching.
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Proof. Suppose that of all the rejections involving two participants who are partners
in a stable matching, the rejection of x by y is chronologically first. Denote M a
stable matching in which x and y are partners. For y to have rejected x, y must
have already held or later received a better proposal, denoted by z. But if y prefers
z to x, then z must prefer his own partner in M , denoted by w, to y. Therefore, z
must have been rejected by w before z proposed to y. But this rejection must have
come before y rejected x, which is a contradiction since the rejection of x by y is
assumed to be the first. �

Corollary 2.3. If, at any stage of the proposal process, x proposes to y, then in a
stable matching:

(1) x cannot have a better partner than y
(2) y cannot have a worse partner than x

Proof. If x has proposed to y, x has been rejected by everyone higher on their
preference list than y, and so by Lemma 2.2 may not have a better partner than y,
proving (1). If y and z are partners in a stable matching, and y prefers x to z, then
since x prefers y to x’s own partner, stability is violated. So (2) is demonstrated
by contradiction. �

An obvious consequence of Lemma 2.2 is that if the first phase of the algorithm
terminates with one person x having been rejected by everyone else, then no stable
matching exists, as x could have no possible partner.

Corollary 2.4. If every person holds a proposal, then we reduce their preference
lists as follows: If the first phase of the algorithm terminates with every person
holding a proposal, then the preference list of possible partners for y, who holds a
proposal from x, can be “reduced” by deleting from it

(1) all those to whom y prefers x;
(2) all those who hold a proposal from a person whom they prefer to y. In the

resulting lists:
(3) y is first on x’s list and x is last on y’s
(4) in general, b appears on a’s list iff a appears on b’s.

Proof. (1) and (2) follow from Corollary 2.3. (3) follows from (1) and (2), and (4)
is self-evident. �

Lemma 2.5. If in the reduced preference lists, every list contains one person, then
the lists specify a stable matching.

Proof. This is a consequence of Corollary 2.4 part (4). Suppose x prefers y to the
sole participant on x’s list. Then x was rejected by y, meaning y had obtained a
better proposal. The final proposal held by y is from the remaining participant on
y’s reduced preference list, meaning y prefers this participant to x. Therefore, the
matching specified by the reduced preference lists is never unstable. �

3. Irving’s Method Pt. II

In not every case where a stable matching exists are the reduced preferences
listed created by the first phase sufficient to denote a matching. We must further
reduce the preference lists, making use of an iterative process that will result in
either one person running out of people to propose to (in which case no stable
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matching exists), or every preference list shrinking to a single person, in which case
they specify a stable matching.

A set of preference list is said to be completely reduced if:
(1) they have been subjected to phase 1 reduction as described in Corollary

2.4,
(2) they have been subjected to zero or more phase 2 reductions, as described

below.
The idea behind the reductions that characterize the second phase of Irving’s

algorithm is to recognize a cycle a1, . . . , ar of distinct participants such where:
(1) for i = 1, . . . , r−1, the second participant in ai’s current reduced preference

list is the first participant in ai+1’s; henceforth denoted by bi+1.
(2) the second participant in ar’s current reduced list is the first in a1’s; hence-

forth denoted by b1.
We define a1, . . . , ar an all-or-nothing cycle relative to the current reduced lists.
To find an all-or-nothing cycle, let p1 be an arbitrary participant whose current
reduced list contains more than one participant. Generate the sequences by taking
qi = second person in pi’s list, and pi+1 = last person in qi’s list. We then let
ai = ps+i+1(i = 1, 2, . . . ), where ps is the first element in the p sequence that is
repeated, and define p1, p2, . . . , ps−1 as the cycle’s “tail.”

Algorithm 3.1 (Phase 2). The second phase reduction involves a set of reduced
lists and a particular all-or-nothing cycle. This phase involves forcing each b1 to
reject the proposal held from a1, forcing each a1 to propose to bi+1, the second
person in the reduced list. As a result, all successors of a1 in bi+1’s reduced lists
can be deleted (as in Corollary 2.4, and bi+1 can be eliminated from their lists. If
ai achieves no better partner than bi+1, then for stability’s sake, bi+1 can do no
worse than ai. It follows that parts (3) and (4) of Corollary 2.4 apply also to these
further reduced lists.

The significance of a completely reduced set of preference lists is that if the orig-
inal problem instance allows for a stable matching, then there is a stable matching
in which every participant is partnered by someone on their reduced list. We say
that such a matching is contained in the reduced lists.

Lemma 3.2. Let a1, . . . , ar be an all-or-nothing cycle, and denote b1 the the first
person in a1’s reduced list. Then:

(1) in a stable matching contained in these reduced lists, either ai and bi are
partners for all values of i or for no value of i,

(2) if there is such a stable matching in which ai and bi are partners, then there
is another in which they are not.

Proof. Considering subscripts (modulo r), suppose that for a fixed i, ai and bi are
partners in a stable matching contained in the reduced lists. Since bi is second
on ai−1’s it follows that ai−1 is at least present on bi’s reduced list. Additionally,
since ai is last on bi’s reduced list, it follows that bi prefers ai−1 to ai. Then for
stability, ai−1 must be partnered by someone he prefers to bi, and the only qualifying
participant in ai−1’s list is bi−1. Repeating this argument shows that ai and bi must
be partners for all values of i. We define A = {a1, . . . , ar}, B = {b1, . . . , br}. If
A union B is non-empty, say aj = bk, then it is impossible for all ai to have their
first remaining preference, since bk has has last preference when ak has first. So,
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the fact that A union B is non-empty implies that no ai and bi can be partners, so
we may as well assume A union B is non-empty. Suppose M is a stable matching
in the completely reduced lists, in which ai and bi are partners for all i. Denote
M ′ the matching in which each ai is partnered by bi+1, and any person not in A
intersect B has the same partner as in M . We claim M ′ is stable. Each participant
of B finds a better partner in M ′ from their point of view than the one in M . The
only individuals who do worse are the members of A, so any instability in M ′ must
involve some ai. If ai prefers a participant y over bi+1, then there are three cases:

(1) ai and y were partners in M , in which case, y prefers the new partner, ai−1

to ai.
(2) ai prefers y to bi, in which case y is not in ais reduced list.
(3) ai prefers bi to y, in which case y lies between bi and bi+1 in ai’s original

preference list, but is not in the reduced list. This means y must have
obtained a proposal from someone better than ai, so x must prefer the
partner in M ′ to ai.

�

Corollary 3.3. If the original problem instance allows for a stable matching, then
there is a stable matching contained in a completely reduced set of preference lists.

Corollary 3.4. If one or more among a reduced set of preference lists is empty,
then the original problem instance admits no stable matching.

The last lemma delineates the circumstances under which a stable matching can
be created following Irving’s method.

Lemma 3.5. If in a completely reduced set of preference lists, every list contains
just one person, then the lists specify a stable matching.

Proof. This is as a consequence of Corollary 2.4 (4). Suppose that y prefers x to
the participant left on y’s list. Then, like in the case (2) in the second part of
Lemma 3.2, we demonstrate that x must prefer the participant remaining on x’s
list. Therefore, no instability is admitted. �

4. One Economist’s Idea

The paper “The Roommates Problem Revisited,” authored by economist Morrill
in 2007 provides a new look at the roommates problem. In the paper he quickly
acknowledges the real-life problem posed by the fact that a stable matching need not
always exist in the roommates problem. Morrill addresses some practical concerns
overlooked by the original definition of stability, stating: “the traditional notion of
stability ignores the key physical constraint that roommates require a room, and
it is therefore too restrictive,” [3]. According to Morrill, the best way to approach
this problem on a practical level employs the concept of Pareto efficiency.

Definition 4.1. In the context of the roommates problem, a Pareto improvement
on a matching is a re-pairing of the inhabitants of two or more rooms that doesn’t
come at the expense of any participants involved. A matching is said to be Pareto
efficient if no further Pareto improvements can be made.

Proposition 4.2. For any set of participants there exists a Pareto efficient match-
ing.
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Proof. Assign each participant a priority. Then, in order of priority, ask each
participant who they would like to be paired with. Then pair those participants.
Continue down the prioritized list until every participant is paired. It then is easy
to show that this matching is Pareto efficient. �

The author then describes an algorithm whereby successive changes can be ap-
plied to any status quo matching to result in a Pareto efficient matching in O(n3)
time [3]. Though Proof 4 gives an easy method for obtaining a Pareto efficient
matching, Morrill’s method has its advantages. From a practical perspective, we
notice differences in the proved method of re-matching everyone using a prioritized
list versus the incremental changes of Morrill’s algorithm. Morrill’s approach upsets
a given status quo less than the total re-matching of the method proven above.
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