THE LAW OF LARGE NUMBERS

JEREMY SCHWARTZ

ABSTRACT. This paper presents an introduction to probability theory lead-
ing up to a proof of the weak law of large numbers. Probability spaces and
random variables are covered fairly rigorously. Properties of the expectation
operator are proved for the case of discrete random variables, and convergence
of random variables and characteristic functions are presented for the purpose
of proving the weak law of large numbers. The strong law of large numbers is
also presented without proof.
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1. PROBABILITY SPACES

Probability is fundamentally concerned with experiments or games which have
non-deterministic outcomes. All the possible outcomes can be described as a set:

Definition 1. A sample space is the set Q of all possible outcomes. Individual
outcomes are typically denoted by w

Example 1. If we rolled a standard siz sided die, one way to represent the possible
outcomes is the set containing the numbers 1 through 6. In this case, the sample
space would be:

(1.1) Q=1{1,2,3,4,5,6}

We are frequently concerned with more than just the elementary outcomes of an
experiment though. Staying with this example, we might be interested in whether
the die shows an odd number, a number greater than four, etc. This gives rise to
the following definition

Definition 2. An event is a subset A C Q) which can be assigned a probability.
The set of all events is denoted by F

For fairly complicated reasons, not all subsets of the sample space are necessarily
events. However, we can use our intuition to determine some properties of F
1
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(1) If A is an event, then the non-occurence of A is an event
ie. Ae F= A :=0Q/AcF
(2) If A and B are events, then (A and B) is an event and (A or B) is an event
iee. ABeF=ANBeFand AUBeF
(3) There is a sure event (the event that any w occurs) and an impossible event
(the event that no w occurs)
ie. Q,0eF
Any collection F of subsets which satisfies these conditions is called an algebra.
The following example will demonstrate that a good theory of probability ought to
include a slightly stronger condition for a collection of events.

Example 2. You are offered a game where you and an opponent flip a coin until
it comes up heads. You win if the first heads appears on an even toss. The sample
space here is Q = {w1,ws,ws, ...} where w; is the outcome that the first i-1 tosses
are tails and the ith toss is heads. In this case, the event that you win is defined
as A = {wa,ws,ws,...}. This is an infinite countable union of outcomes, and to
discuss its probability, we need it to be an element of F.

An algebra which is closed under countable unions is called a o-algebra

Definition 3. A collection F of subsets of Q2 is a o-algebra if it satisfies:
(1) berF
(2) Ac F=A°eF

(3) Ay, Ay, e F=JAieF
i=1

Remark 1. A o-algebra is closed under countable intersections, i.e.

o0
Ay, Ay, ... € F= ﬂ A, €F
=1

Proof. This is just an extension of De Morgan’s law, which states for A, B C Q)
(AN B)¢ = A°U B¢
O

It is easy to check that a o-algebra satisfies the conditions of an algebra, and
therefore contains our intuitive requirements for the set of events. Finally, we need
some way to actually assign probabilities to events. This is accomplished by a
probability measure:

Definition 4. A probability measure P is a function P : F — [0,1] satisfying
(1) P() =0, P(2) =1
(2) if A1, Ag,... is a collection of disjoint members of F, in that for all i #
J,AiNA; =0, then
(oo} (oo}
(1.2) P((J A) =) P(4)
i=1 i=1
The triple (2, F,P) is called a probability space.
Sometimes, the occurence of one event causes another event to be more or less
likely. For instance, if it rains in my neighborhood, there is a greater chance of a
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bus being late. Results will often only hold for events which do not influence each
other, prompting the following definition

Definition 5. Fvents A and B are called independent if
(1.3) P(AN B) =P(A)P(B)
More generally, a family {A; :i € I} of events is called independent if
P(() 45) = ][ (49
icJ icJ
for all finite subsets J of I

Example 3. We roll a siz-sided die again, each face appearing with probability 1/6.
The event A that the die shows an odd value is not independent from the event B
that it shows a 5 because

(1.5) P(ANB)=P(5)=1/6
while
(1.6) P(A)P(B) = (1/2)(1/6) = 1/12

Example 4. If we choose a card from a standard deck at random (each card hav-
ing probability 1/52 of being chosen), then the event that the card is a spade is
independent of the event that the card is an ace because
13
P(spade) = P(20 UM U .. Uaced) = Y (1/52) =1/4
1

and
4

P(ace) = P(aced U acedo U ace U aceQ) = 2(1/52) =1/13
1
so if A={the event that a card is a spade} and B={the event that a card is an ace},
the event ANB={the event that a card is the ace of spades} and

(1.9) P(ANB)=1/52 =P(A)P(B)
2. RANDOM VARIABLES

It is often the case that outcomes of a probabilistic experiment correspond to
real number values. For instance, a gambler gains or loses some amount of money
as a result of a game. This value can be of greater interest than the outcome itself.

Definition 6. A random wvariable X is a function X : Q — R with the property
that {w € Q: X(w) <z} € F for allz €R

Most people would be hard-pressed to find a function X : 2 — R which didn’t
satisfy the second part of this definition. Basically, it requires that the pre-image of
[—00, ] be an event in F. Since events occur with different probabilities, a random
variable is more or less likely to take certain values in R. We describe this with a
distribution function.

Definition 7. The distribution function F of a random variable X is the function
F:R —[0,1] given by F(z) =P(X < z)

Random variables can either take values in a countable or uncountable subset of
R, prompting the following distinction
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Definition 8. (1) A random variable X is called discrete if it only takes val-
ues in a countable subset of R. In this case, there is a corresponding prob-
ability mass function defined by f(x) = P(X = z)
(2) A random variable X is called continuous if its distribution function F can
be expressed as F'(x) = f; f(u)du for some integrable function f: R — RT
in which case f is called the probability density function

Remark 2. A random variable can be neither continuous nor discrete

Proof. Consider a random variable which takes the value 0 with probability 1/2
and a value in the interval [%, 1] with probability density 1. a

From here on out, definitions will be given for both discrete and continuous
random variables, but for the sake of space, results will only be demonstrated for
discrete variables. In the previous section, we wanted to know if two events were
independent. This generalizes to two random variables.

Definition 9. (1) Discrete random variables X and Y are independent if the
events {X =z} and {Y =y} are independent for all z,y € R
(2) Continuous random variables X and Y are independent if the events {X <
x} and {Y <y} are independent for all x,y € R

Since the pre-image of any real number value is an event, this definition is es-
sentially just requiring that the events X ~(x) and Y ~!(y) be independent for all
x and y. We will frequently make use of one special type of random variable.

Definition 10. An indicator variable for some event A is the function

(2.1) Ia(w) = {é Zj; ; j

It is clear from definitions that for a random variable X and a real, measurable
function g : R — R, g(X) is also a random variable. One thing that we would like
to show is that for independent random variables X and Y, and real, measurable
functions g,h : R = R, g(X) and h(Y") are independent.

Theorem 1. If random variables X and Y are independent, and g,h : R — R are
measurable functions, g(X) and h(Y') are independent.

Proof. Let A, = g~ '(x) and B, = h™'(y) be events. Now g(X(w1)) = x when
wi € Ay and h(Y(w2)) = y when wy € B,. It follows from the remark after
definition 9 that X and Y are independent for the events A, and B,. It follows
that g(X) and h(Y) are independent for all z,y € R. O

We will end this section with a proposition which will be useful later.

Proposition 1. Any discrete random variable can be written as a linear combina-
tion of indicator variables.

Proof. Suppose X is a discrete random variable. This means that X takes values
in the set {z1,x2,...}. Consider the event A, = {X = x;}. Let I4, be the indicator
function of A;. It is clear that
X = Z zil 4,
i
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3. EXPECTATION

Most of us know that we should expect to lose money playing the lottery. Even
though it is possible to win large amounts of money it is much more likely that
we would lose a small amount of money. This idea, of weighting possible outcomes
by the probability that they occur, allows us to determine the expectation for a
random variable with an underlying probability space.

Definition 11. (1) The expectation E of a discrete random variable X is de-
fined
E(X)= Y af(x)
x:f(x)>0
where f(x) is the probability mass function.
(2) The expectation of a continuous random variable X is defined by

where f(x) is the probability density function

This is also sometimes referred to as the mean value or expected value of a
random variable. For the sake of convenience, we will often write E(X) := > zf(z)
for a discrete random variable. This appears to be an uncountable sum, but all but
countably many of the entries are 0.

One of the fundamental properties of expectation is that it is linear i.e. for
random variables X,Y and scalars a,b, E(aX + bY) = aE(X) + bE(Y). To show
this, we will first prove a very useful lemma

Lemma 1. If g : R — R is a real valued function and X is a discrete random
variable with mass function f, then E(g(X)) = >, (g9(z)f(x))

Proof. Define the event A, := {X = z} so that f(z) = P(A,). We want to find
the probability mass function for g(X)

fx)=Pg(X)=2)=P( |J (L))= > PA)= Y f(a)

z:g(x)=2 z:g(z)=2 z:g(x)=2
Now we can plug this into the definition of expectation to get
(3-4) Zg (2)fo(= Zg Y@= >

z:g(x)=2 z xig(z)=2
which is the same as ) g(z)f(x) O
Theorem 2. For random variables X,Y and a,b € R, E(aX +b0Y) = aE(X) +
E(Y).
Proof. Let Ay, = {X = z},B, = {Y = y}. As in proposition 1, we can write the
random variable aX + bY as a linear combination of indicator variables.
(3.5) aX +bY = Z(ax +by)la,nB,
T,y

Furthermore, Lemma 1 shows that

E(aX+bY) =Y (az-+by)P(A,NB,) ZaxZIP’A N B,) +ZbyZIP’A N B,)

z,y
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However,

(3.6) > P(A, N By) =P(A, N (| By)) = P(A. N Q) = P(4,)

and likewise ) P(A, N By) = P(B,), which gives

(3.7) E(aX +bY) =a) aP(A,)+b> yP(B,) = aE(X) + E(Y)

O

And now we can finally make it clear why we’ve cared so much about indepen-
dence

Theorem 3. If X and Y are independent, then E(XY) = E(X)E(Y).

Proof. Let A, and B, be as in the proof of Theorem 2. We have

(3.8) XY =) ayla,np,

z,y

And so, by independence,
E(XY) =Y ayP(A:NB,) = Y ayP(A,)P(B,) =Y aP(A;) Y yP(B,) = E(X)E(Y)

z,y

O

4. CONVERGENCE OF RANDOM VARIABLES

Let’s return to the lottery example from the beginning of the previous section.
Even though somebody wins the lottery every week, we reassure ourselves that we’re
making the right decision not to play by claiming that we’d surely lose money if we
played enough. To study what happens in the long run for a repeated experiment,
we consider infinite sequences of random variables. In particular, we are interested
in when sequences of random variables converge. Random variables are functions
from the sample space to the real numbers, so the most obvious definition is to say
a sequence of random variables converges if it converges for all w € . It turns out
that, since this definition has nothing to do with probability, this isn’t very useful.
Instead, we have four different types of convergence.

Definition 12. Let X, Xo, X3, ... be random variables on some probability space
(Q,F,P). There are four ways of interpreting X,, — X as n — oo
(1) X, — X almost surely, written X,, > X, if {w € Q: X, (w) — X(w) as
n — oo} is an event whose probability is 1.
(2) X,, — X in rth mean, where v > 1, written X,, — X if E|X"| < oo for
all n and
E(X,—X|")—0
as n — oo
(3) X,, — X in probability, written X, 2 x if for all e > 0

P(|X, - X|>¢) —0

asn— oo



THE LAW OF LARGE NUMBERS 7

(4) X, — X in distribution, written X, = X if
P(X, <z)—P(X <z

as n — oo for all points x at which the distribution function Fx(x) =
P(X < z) is continuous.

That’s a lot to handle, and we will only be working with parts (1) and (4) of
this definition. These types of convergence are closely related, and the following
implications hold in general:

Proposition 2.
X, X=X, 2x=x,2%x
X, Lx=>Xx,5x=x,82Xx
In general, the reverse implications do not hold.

The following example shows that convergence in distribution is the weakest type
of convergence.

Example 5. A fair coin shows heads or tails with probability 1/2 for each. Let
X = I, the indicator function for heads andY = I; the indicator function for tails.

Now define a sequence X, = X for all n. X, 4 x clearly, but X, Ly also, since
X and Y have the same distribution function. However, | X, — Y| =1 for all n so
X, cannot converge to Y in any other type of convergence.

We will be especially interested in one particular type of sequence of random
variables.

Definition 13. A sequence of random variables X,, is independent and identically-
distributed if the X, ’s share a common distribution function and they are inde-
pendent

5. CHARACTERISTIC FUNCTIONS

A very useful class of functions for studying sequences of random variables are
characteristic functions

Definition 14. The characteristic function ¢ of a random variable X is the
function ¢ : R — C defined by

(5.1) o(t) = E(c"™)

We will often write ¢x to specify the characteristic function of X. There are
several results which provide ways to manipulate characteristic functions.

Theorem 4. If X and Y are independent then ¢xv (t) = ¢ox (t)dy (¢)
Proof. Plugging into the definition gives
ox+y(t) = E(e”(XJFY)) _ E(eitXeitY)

Now we can apply Euler’s formula: ¢®® = cos(z) +isin(x), as well as theorem’s 1-3
and independence to yield the result. ([

Lemma 2. Ifa,b€R and Y = aX +b then ¢y (t) = e x(at)
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Proof.

(5.2) by (t) = E(eaXHD)) = F(eitbeilat) X)
by theorem 2

(5.3) Py (t) = PR (DY) = "¢y (at)

We will now present several important results without proof

Lemma 3. IfE|X*| < co then
k

(54) o) = 3 20 iy 4 o(t¥)

e

Taylor’s theorem for a complex variable is the key ingredient in this proof (ex-
plaining some of the aesthetic similarities). The next two results show the close
relationship between characteristic functions and distribution functions. These re-
sults will form the foundation for our proof of the law of large numbers.

Proposition 3. Random variables X and Y have the same characteristic function
if and only if they have the same distribution function.

Theorem 5. Suppose that Iy, Fs, ... is a sequence of distribution functions with
corresponding characteristic functions ¢1, ¢a, ...
(1) If F,, — F for some distribution function F with characteristic function ¢,
then ¢, (t) — ¢(t) for all t
(2) Conversely, if ¢(t) = lim,,—, o0 dn(t) exists and is continuous att = 0, then ¢
is the characteristic function of some distribution function F, and F,, — F

6. LAWS OF LARGE NUMBERS
We are now ready to prove the weak law of large numbers

Theorem 6. (Weak law of large numbers) Let X1, Xs, ... be a sequence of inde-
pendent identically distributed random wvariables with finite expectations p. The
sequence of partial sums defined by S, := Y| X; satisfies

Su 2

(6.1) %

asn— oo

Proof. By theorem 5, it will suffice to show that the characteristic functions of
n~1S, converge to the characteristic function of the constant random variable pu.
Since the X; are identically distributed, by proposition 4, we know they have the
same characteristic function which we will denote ¢x. Let ¢, be the characteristic
function of n=1S,. By theorems 4 and lemma 2, we have

(6.2) Pn(t) = (¢x(t/n))"

We can also use lemma 3 to show that ¢x(t) = 1 + ity + o(t). Combining these
two equations, we obtain

(63) on(t) = (1+ B4 oLy
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Using the fact that lim,, (1 + %)™ = e* and waving our hands a bit we obtain

On (t) — e

as n — oco. However, e = E(e®") = ¢,(t), the characteristic function of the
constant random variable p [

There is a much stronger version of the law of large numbers called (unsurpris-
ingly), the strong law of large numbers. It is presented here without proof

Theorem 7. (Strong law of large numbers) Let X1, X, ... be a sequence of inde-
pendent identically distributed random variables. Then

]- a.s.
4 — X
(6.4) - Z “$

as n — oo for some constant w, if and only if E|X;| < co. In this case p = E(X;)
In particular, by Proposition 2, it is clear that the strong law implies the weak
law.
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