BRAUER ALGEBRAS AND THE BRAUER GROUP

NOAH SCHWEBER

ABSTRACT. An algebra is a vector space V over a field k together with a k-
bilinear product of vectors under which V' is a ring. A certain class of algebras,
called Brauer algebras - algebras which split over a finite Galois extension -
appear in many subfields of abstract algebra, including K-theory and class
field theory. Beginning with a definition of the the tensor product, we define
and study Brauer algebras, and in particular their connections with Galois
cohomology and algebraic geometry. Key results include the fact that Brauer
algebras are precisely the finite dimensional central simple algebras; that the
Brauer algebras under the right equivalence relation form an abelian group;
that this group can be identified with a first (and second) cohomology set; and
that to every Brauer algebra corresponds a smooth projective variety.
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1. INTRODUCTION

We assume knowledge of the basic concepts of abstract algebra - group, ring,
ideal, field, vector space, algebra, etc. - pausing only to remind the reader that
an algebra is a vector space which is also a ring and to mention that our rings
will be possibly non-commutative rings with 1. Also, we never consider fields of
characteristic 2, although an analog of all of what we present here holds in such
fields, and we reiterate this where important.

We begin with a crash course in the tensor product. Here we define the tensor
product of two algebras over a fixed field:

Definition 1.1. Let k£ be a field, and A and B be k-algebras. Then the ten-
sor product of A and B, denoted A ®; B, is the k-algebra generated by k-linear
combinations of elements of the form a ® b, a € A, b € B, together with the re-
lation A(a ® b) = (Aa) ® b = a ® (A\b), with addition induced by the equalities
(a®b)+ (d®b) =(a+d)®band (a®b)+ (a®c) = a® (b+ ¢), and multiplication
induced by the equality (a®b)(d®c) = ad®be, for all a,d € A, b,c € B, and X € k.
These identities extend in the obvious way to all elements of the tensor product.
1
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Lemma 1.2. Let M;(k) be the k-algebra of i-by-i matrices with entries from k.
Then My, (k) @k My (k) = Mym (k) for all m,n > 0.

Proof: Note that M;(k) = Endy (k). Now given two elements ¢ € M,,(k) and
¥ € M, (k), note that the pair (¢,1) induces an element of End,(k™ ®; k™): in
particular, (¢,) induces the map m : > a ® 8 +— > éd(a) ® ¥(B). This map is
an endomorphism of k™ ®;, k™ as a k-vector space. But k™ ®; k™ = k™", as is
trivially checked, and the endomorphism algebra of k™™ is just M,,,(k). So we
now have an map h : M, (k) ®x My (k) — Mp,(k), and we must show that h is
an isomorphism. But h is clearly injective as defined, and is therefore surjective by
dimension reasons. [J

A much more revealing use of the tensor product is the following:

Construction 1.3. Let A be a k-algebra, let K be a field extension of k, and
consider A ®; K. On the one hand, this is a k-algebra, with multiplication, etc.
defined according to Proposition 1.2. However, in a natural sense, A ®; K is also a
K-algebra, where scalar multiplication is defined as (> a; ® b;) = > (a; ® (xb;)),
where z,b; € K and a; € A. This construction gives us a natural way to turn k-
algebras into K-algebras, for any field extension K|k, which will be used frequently
in this paper. This process is called extending by scalars.

Example 1.4. Let A be a k-algebra which has dimension n as a vector space, and
let K|k be a field extension. Then A ®; K has dimension n as a K-vector space.

Example 1.5. Let n > 0, K|k a field extension. Then M, (k) @, K = M,(K) as
K-algebras.

Proofs: Exercise. For Example 1.4, a basis {a;} of A over k gives us a basis
{a; ® 1} of A®y K over K.

In this paper, we will study algebras which are “nearly isomorphic” to matrix
algebras. To make this more precise, consider the following:

Construction 1.6. Let k be a field of characteristic # 2, k™ its group of units, and
a,b € k*. Then we define the generalized quaternion algebra (a,b);, as the unique
4-dimensional k-algebra with basis {1,4, j,ij} as a vector space and multiplication
defined by the relations it = a, jj = b, ij = —ji.

Example 1.7. : If we let k = R and set a = b =1, then (1,1)g = M5(R), via the
isomorphism which sends

(o N, oy (o 1), (0o 1
o 1 )>* VLo -1 )7 1 0 )Y -1 0 )

If on the other hand we let £ = R and set a = b = —1, we get Hamilton’s original
quaternions, H. H is a division algebra, but not commutative, as is easily checked.
Moreover, it is clear that (a,b)r = (b, a)x for any a,b € k*.



BRAUER ALGEBRAS AND THE BRAUER GROUP 3

Fact 1.8. The algebra H is not isomorphic to a matriz algebra.

There are many ways to prove this, the simplest being to note that H is four-
dimensional as a vector space and a division algebra, whereas any matrix algebra
of dimension > 1 is not a division algebra. [J

However, consider the algebra A = H®g C, which is an algebra over the complex
numbers via Construction 4. It is easily checked that A is isomorphic to the matrix
algebra M, (C) via the isomorphism which sends

1 0 . 0 V-1 . 0 -1 .. V=1 0
1®1H(o 1)”®1H(\m 0 )’7®1*’<1 0 )”3®1H< 0 7\&)‘

Note that for obvious reasons we should not use i for «/—1. This strange result
holds, in fact, for all generalized quaternion algebras:

Proposition 1.9. If k is a field of characteristic not 2, then either (a,b) = My (k)
or (a,b)r ®r k(v/a) = M (k(/a)).

Proof: First, note that for all a,b,u € k, (a,b)r = (ua,b); via the obvious
isomorphism. Suppose that either a or b is a square in k. WLOG, assume a = 2
for some x € k. Then by the above observation, (a,b); = (1,b);. In this event, the
following homomorphism m : (a,b)r (= (1,b)r) — Ma(k), defined by

iy o, (o N (o 6. (o
o 1 )*~ Vo -1 )7 1 0 )Y -1 0 )

is an isomorphism.

If, on the other hand, neither a nor b is a square in k, consider the homomorphism
from (a,b)r Q@ k(v/a) to Ms(k(y/a)) generated by its values on the standard basis
elements:

1 0 . 0 va . 0 b .. Va 0
1®1»—>(0 1),1@1»—»(\/6 0 ),j®1>—>(1 0),2y®1>—>( 0 bﬁ)'

Since neither a nor b are squares in k, the image of the standard basis elements
of (a,b)r ®k k(v/a) is a linearly independent set with four elements. Thus, by
dimension, the homomorphism thus induced is an isomorphism.

Thus, no matter what quaternion algebra we are given, either it is already iso-
morphic to a matrix algebra, or it becomes isomorphic to a matrix algebra via
a very simple extension of scalars. In particular, the case of Hamilton’s original
quaternions reduces to the fact that R(y/—1) 2 C. O

We can make this phenomenon more precise through the language of Galois
theory. Recall that, if K|k is a field extension, K|k is said to be algebraic if every
element of K is a zero of some non-zero polynomial with coefficients in k. Thus,
for instance, C|R is algebraic, but R|Q is not, since e.g. = is transcendental. An
algebraic extension is said to be Galois if the field fixed by all automorphisms of K
which fix k is precisely k. This condition, though it may seem trivial, does not hold
of all algebraic extensions; for example, consider Q(+/2), which is an algebraic field
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extension of Q, but is not Galois, since the only possible automorphic image of /2
is /2. However, the extension C|R is Galois, since the only elements of C fixed by
both the identity automorphism and by conjugation are the real numbers. Given
a Galois extension K|k, we can define the Galois group G(K|k) as the group of all
automorphisms of K which fix k pointwise (that is, G(K|k) = {0 € Aut(K) : V) €
k,o(A) = A}. K|k is said to be a finite Galois extension if K is finite dimensional
as a k-vector space; this is equivalent to saying that the group G(K]|k) is of finite
order, and in fact the order of G(K|k) will be precisely the dimension of K as a
k-vector space. Note that this equivalence need not hold if K|k is not Galois. This
gives us the language necessary for the following definition:

Definition 1.10. Let k be a field, A, B k-algebras. Then A is a twisted form of
B if there is some finite Galois extension K|k such that A ®; K and B ®; K are
isomorphic as K-algebras. We denote this relation by A = B. If e.g. B = M, (k),
we say that K is a splitting field for A, and that A splits over K. If A is isomorphic
to M, (k) as a k-algebra, then we say that A is split, or that k itself is a splitting
field for A.

Example 1.11. We showed that the generalized quaternion algebra (1, 1)g is split,
while Hamilton’s original quaternions are not split but are a twisted form of the
matrix algebra Ms(R) and split over C, since Ma(R) ®@g C = M5 (C). Also, any two
isomorphic algebras are clearly twisted forms of each other. From the concept of
twistedness, we automatically get an equivalence relation, with k-algebras A and B
being equivalent if and only if they are twisted forms of each other. This equivalence
class is one of the fundamental concepts of this paper.

We now define the subject of this paper:

Definition 1.12. An algebra A over a field k is said to be Brauer if and only if A
is a twisted form of M, (k) for some n. Alternatively, by Example 1.5, A is Brauer
if and only if A ®y K = M, (K) for some finite Galois extension K |k.

Lemma 1.13. A Brauer k-algebra A is finite dimensional.

Proof: By “finite dimensional,” we mean finite dimensional as a k-vector space;
another term used in the literature for this is “finite degree.” Suppose A is Brauer.
Then for some finite Galois extension K|k and some n > 0, A ®, K = M, (K). By
Example 1.4, the dimension of A as a k-vector space is the same as the dimension
of A®p K as a K-vector space, which in turn is the same as the dimension of
M, (K) since the two algebras are isomorphic, which is just n2. Thus, A is finite
dimensional. In fact, we have also proven that the dimension of any Brauer algebra
is a perfect square, which is why Hamilton needed i, j and k to build a useful
number system. [

There are three main ways to study Brauer algebras. The first is to derive an
alternative definition of Brauer algebras in elementary terms - that is, without the
use of tensor product, Galois extension, etc. - and then prove things about Brauer
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algebras using that definition. The second is to use exploit a connection between
Brauer algebras and group cohomology in order to use theorems about the one to
prove theorems about the other, and vice versa. The third is to bring in some
algebraic geometry. In this paper, we introduce all three methods, and as best as
possible describe their uses and some of their basic results.

The reader should note that there are facets of the study of Brauer algebras the
mere description of which is far beyond the scope of this paper to handle seriously.
For example, two of the main applications of Brauer algebras are to K-theory and
class field theory. However, these build on the three main approaches mentioned
above, so by restricting our attention to these more basic directions, we can still
develop a feel for the subject while not unduly sacrificing rigor or comprehension.

2. PROPERTIES OF CENTRAL SIMPLE ALGEBRAS

In this section we derive an alternate definition of Brauer algebras which uses
only terms and ideas of a first course in modern algebra. We use this definition
to prove facts about Brauer algebras which would be much more difficult to prove
with Definition 1.12 alone.

Definition 2.1. Let A be a k-algebra. Then A is simple if A has no nontrivial
proper two-sided ideals.

Definition 2.2. Let A be a k-algebra. Then a copy of k lives inside A in a canonical
way: the set k4 = {A1: XA € k}, where 1 is the multiplicative identity of A, is a
subalgebra of A isomorphic to k. Moreover, every element of k4 commutes with
every element of A: for all a € A, (A1)a = A(1la) = A(al) = a(A\1). However, it is
possible that k4 contains all of the elements of A which always commute, in which
case A is in some sense as non-commutative as possible. In such a case, we say that
A is central; more precisely, a k-algebra A is central if and only if the center of A,
defined to be the set Z(A) ={z € A:Vy € A, zy = yx}, is exactly ka.

Definition 2.3. A k-algebra A is central simple if and only if it is both central
and simple.

Example 2.4. A basic result of the study of matrices is that any matrix algebra
with entries in a division algebra is central simple. In addition, the generalized
quaternion algebras discussed in the introduction can be shown to be central simple
without too much difficulty. However, the R-algebra of ordered pairs of real numbers
with multiplication being given by (a, b)(c, d) = (ac, bd) is neither central nor simple.

A somewhat more useful result is that if A and B are central simple k-algebras,
then A ®; B is also a central simple k-algebra. To show this, note that the center
of A ®; B is the set of elements of the form > z; ® y;, where z; € Z(A4) and
y; € Z(B). So Z(A®B) = Z(A)® Z(B). But Z(A) 2 Z(B) 2 k,s0 Z(A®y B) =
Z(A)®r Z(B) 2 k@i k =k, so A®y, B is central. We leave to the reader the task
of showing that A ®j B is a simple k-algebra if A and B are both simple. [J
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Theorem 2.5. (Wedderburn) Let A be a finite dimensional simple k-algebra.
Then there is some finite-dimensional (as a k-vector space) division algebra D D k
and some n > 0 such that A = M, (D), and D, n are unique.

Proof: The idea of the proof is as follows: Since A is finite dimensional, a
descending sequence of left ideals terminates. Letting L be a minimal left ideal of
L, we can show that D = Enda(L) is a division ring, and that A & Endp(L),
where EndxY is the ring of endomorphisms of ¥ as an X-module. We then derive
the natural isomorphism Endp(L) & M, (D). This shows the existence of such n
and D. For uniqueness, we first show that any two simple left ideals of M, (D),
for any n > 0 and division ring D, are isomorphic. This tells us that, if D and
D’ are division algebras and m,n > 0 such that A = M, (D) = M,,(D’), then
our minimal left ideal L satisfies D™ = L = D™ since for any ring R and any
i > 0 M;(R) has a simple left ideal isomorphic to R. But then we have that
D = Enda(D™) = Enda(L) & Enda(D'™) = D', so D = D'. From here, we
have that m = n, by dimension. This completes the uniqueness statement. For a
complete proof of Wedderburn’s Theorem, see e.g. [2] or [3]. O

Theorem 2.6. Let A be a finite-dimensional k-algebra. Then A is central simple
if and only if there exists some finite (but not necessarily Galois) extension K|k
such that for some n >0, A®; K = M,(K).

To prove this, we make use of the following lemma:

Lemma 2.7. Let A be a finite dimensional k-algebra, and Kk a finite (but not
necessarily Galois) field extension. Then A is central simple if and only if A Q) K
is a central simple K -algebra.

Proof: One direction is easy: if A is not simple, then letting I be a nontrivial
two-sided ideal of A, we have that I ®; K must be a nontrivial two-sided ideal of
A ®y, K for dimension reasons. Moreover, if x is an element of Z(A) not contained
in k4, then z®1 is an element of Z(A ®; K) not contained in K g, x. Thus, if A
is mot central simple, neither is A ®; K for any finite extension K.

The other direction is trickier: suppose A is central simple. By Wedderburn’s
theorem, we need only consider the case when A is a division algebra (exercise).
We will show that in this case, A ®; K is both central and simple as a K-algebra.

Central: Let {wy,ws, ..., w,} be a basis for K as a k-vector space. Note that we
can do this since K|k is finite dimensional by assumption. Then looking at A ®; K
as a A-module, we have that 1®wq, 1Qws, . . . , 1w, form an A-basis for A®, K
since A is a division algebra. Note that Kag,x = {>. 1y @i(1@w;) : a; € ka}. Let
v € Z(A®, K). Write z = Y | a;(1®w;). Since z is in Z(A®y K), we have that
for every d € A, dx = xd - remember, we are looking at A ®; K as a A-module,
so it makes since to multiply = and d. But this means that >, do;(1 ® w;) =
> @;d(1 ® w;), which by the linear independence of the 1 ® w;, implies that
a;d = day; for all i. But this holds for all d € Al So «; € Z(A) for every 4, which
means since A is central that a; € k4. But this implies that ¢ € Kag,x. So
A ®; K is central.

Simple: Let J be a nonzero ideal in A ®; K. We will show J = A ®; K.
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WLOG, let J be a principal ideal generated by «v. Then we can extend {a} to a A-
basis of A®y K by adjoining some of the 1Qw;. WLOG, {«, 1Qws, 1Quws, ..., 1w, }
is a basis for A ®; K as an A-module. Then we may write

n
l@w = (ij(l Qw;j)) + ka,
j=2
where k € A. Since J is a two-sided ideal, we must have d~'yd € J for every d € A
(why?), so there exists some 3 € A such that d~'yd = By. From this it follows, by
left-multiplying by d~! and right-multiplying by d and moving things around, that
10w — (3 ayd)(1 @ wy) = (B @ w) - (8 ay(1 @ wy)).
Jj=2 j=2

From this, because the 1 ® w,, are linearly independent, we can conclude that
B =1and d'a;d = «a; for all j. This last equality holds for all d, so we have that
aj € Z(A). But this implies, since A is central, that o; € k !, so we can move the
o; through the tensor signs and derive that y is of the form 1 ® z for some z € K.
But from this, because K is a field, we easily have that J = A ®; K. So we are
done. [J

Proof of Theorem 2.6: Sufficiency follows from the lemma and the fact that
for any division ring D, M, (D) is central simple. For necessity, let k be a fixed
algebraic closure of k; since algebraic closures are isomorphic, there is no ambiguity
here. Note that A®yk = M,, (k) for some n, since every central simple algebra over
an algebraically closed field is isomorphic to a matrix algebra; see Theorem 2.12.
Now we can write A ®y k as the union, over all finite field extensions K|k such that
K C k, of A®;, K. But this, together with the fact that A is finite-dimensional,
implies that there is some finite extension K|k contained in k such that each of the
standard basis elements of A ®y, k - that is, the pre-images of the standard basis
elements e, ..., e,2 of M, (k) - are contained in A ®; K, and in addition all the
pre-images of the elements a;; € M, (E) occurring in the relations e;e; = Zaijel.
This implies that A ® K =2 M, (K), and we are done. O

By a result of Noether and Koethe ([2], 2.2.5), we can let the extension K|k
in Theorem 2.6 be not just finite dimensional, but also Galois. This yields the
following useful characterization of Brauer algebras:

Corollary 2.8. Let A be a k-algebra. Then A is Brauer if and only if A is a
finite-dimensional central simple algebra.

Our next step is to define an equivalence relation on Brauer algebras:

Definition 2.9. Let A, B be Brauer k-algebras - or alternatively, finite-dimensional
central simple k-algebras. Then A and B are Brauer equivalent , and we write
A =g, B, if there exist m,n > 0 such that A ®y M,,(k) = B ®y M,(k). We
denote the set of equivalence classes Br(k). Note for instance that for all m,n > 0,
M (k) =pr My, (k).

Here we adopt a common practice and, in a central algebra, identify the center with the field.
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We could have defined the set Br(k) back in Section 1, in terms of twisted forms.
However, the use of Corollary 2.8 allows us to derive simple algebraic properties of
Br(k) which would be nearly intractable to derive using only twisted forms:

Theorem 2.10. The set Br(k) forms an abelian group under the tensor product.

Proof: Associativity, commutativity, closure, well-definedness, and the existence
of an identity are trivial to check. In particular, note that the identity in the Brauer
group is the equivalence class of Mj(k). All that remains is to prove the existence
of inverses. To do this, I need the following:

Construction 2.11. If R is a ring, we can define the opposite ring of R, written R°,
as the ring with the same elements and addition but with multiplication reversed,
i.e., T*poy = y*p x. Moreover, if R is a k-algebra, then R° is also a k-algebra
in a natural way, and we call R° the opposite algebra of R. For those interested in
category theory, if we think of a ring as a category enriched over Ab (the category
of abelian groups) with a single object, then the opposite ring is just the dual
category. Note that it is trivial to show that if R is a central simple k-algebra, then
R? is also a central simple k-algebra.

Now the theorem can be proven. Let A be a k-algebra which splits over K, and
consider the opposite algebra A°. I claim that A ®; A° is isomorphic to a matrix
algebra. Consider the map m which sends an element > a3 ® as in A ®; A° to
the map f(z) = > ayzas, f: A — A. Clearly, f is an endomorphism of A as a
k-vector space , so I have a map m : AQy A° — Endy(A). I want to show that m is
an isomorphism. Linearity is trivial to check - the difficult step is bijectivity. But
we can use a trick here: since A is central simple, A° is central simple, so A ®; A°
is central simple. But this implies that m has either trivial kernel or kernel all of
A ®j, A°, because the kernel of m is a two-sided ideal of A ®; A°, and A ®; A° is
simple. But m is clearly nonzero (consider m(1)), so we have that Ker(m) = {0},
so m is injective. But then by dimension reasons, m must be surjective. So m is
an isomorphism. So A° really is the inverse of A in the Brauer group, and we are
done. 2 O

Because of this theorem, we call Br(k) the Brauer group of k.
Theorem 2.12. If k is an algebraically closed field, then Br(k) is the trivial group.

Proof: Let D be a finite-dimensional division algebra containing k. Suppose
D # k. Let d € D\k. Then since D is finite dimensional as a k-vector space, the
infinite set {1,d,d?, ...} is linearly dependent, so there must exist some polynomial
f € klx] such that f(d) = 0. Moreover, since D is a division algebra, we can choose
some such f which is irreducible. This means that there is a natural homomorphism
¢ : k[z]/(f) — D such that d € Im(¢); specifically, let ¢ be the map sending k[z]/(f)
to k(d) lying inside D. But since k is algebraically closed, k[x]/(f) = k. Thus d € k,
yielding a contradiction. So there is no finite-dimensional division algebra strictly
containing k. But then let C' be some finite-dimensional central simple k-algebra.
By Wedderburn’s Theorem, there is some division algebra D containing % such that

2Note that by this construction, we ought to have that My, (k)° = M, (k) for all n,k. This is
in fact the case, as is easily checked (the transposition map Tr : A — AT is an isomorphism).
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C = M, (D) for some n > 0. Since C' is finite-dimensional, D must also have finite
dimension. But then D = k, by the result above. So C = M, (k) for some n > 0.
So all finite dimensional central simple algebras over k are split, which together
with Corollary 2.5 implies that Br(k) is the trivial group. O

Theorem 2.13. Br(R) = Z/2Z, and is generated by the equivalence class of
(=1, 1.

In order to prove this theorem, we need the following Lemma:

Lemma 2.14. Let k be a field. Then each Brauer equivalence class contains exactly
one division algebra (up to isomorphism,).

Proof of Lemma: First, we show that for any k-algebra R, RQy M, (k) = M, (R),
which is a generalization of Example 1.5 to a not-as-trivial result. To do this, simply
note that the obvious map m : R ®j M, (k) — M,(R) given by m(>_r, ® A;) =
> r;A; can be verified to be an isomorphism, by looking at what it does to the
basis elements of R ®x M, (k) as an R-module.

This lets us prove that each Brauer equivalence class contains at most one di-
vision algebra: suppose D1, Dy are Brauer division algebras which are Brauer
equivalent. Then D; ®j M, (k) & Dy ® M, (k) for some m,n. But this implies
that M,,(D1) = M, (D2). But by Wedderburn’s Theorem, together with the fact
that Dy and Dy (being Brauer) are finite dimensional, implies that m = n and
D; = Ds.

The other part of the lemma is proved similarly. Let A be a Brauer algebra.
Then A = M, (D) for some finite-dimensional division algebra D, by Wedderburn’s
Theorem. But M, (D) = D ®; M, (k), which since M, (D), being isomorphic to A,
is Brauer, implies that D is Brauer, since the Brauer algebras form a group. But
then D and A are Brauer equivalent. So each Brauer equivalence class contains at
least one division algebra. This, together with the previous paragraph, proves the
lemma. [

Proof of Theorem 2.13 : We first recall Frobenius’ Theorem: that if A is a
division algebra over R, then A is isomorphic to either R,C, or H = (-1, —1)g.
This theorem, and its proof, can be found in [4]. Note that C is not central, and
R as an algebra over itself corresponds to the trivial element of Br(R), so the only
Brauer division algebra over R which might correspond to a non-trivial element of
the Brauer group is (—1,—1)g. This, together with Lemma 2.14, quickly proves
the theorem: since (—1, —1)g is a division algebra, it cannot lie in the same Brauer
equivalence class as R, so the equivalence class of (—1, —1)g is non-trivial. And since
R and (—1,—1)g are the only central simple R-division algebras, there are only two
equivalence classes of central simple R-algebras. Thus, Br(R) has precisely two
elements, which means that Br(R) & Z/2Z. And the generator is clearly (the
equivalence class of) (—1,—-1)g. O

Other specific Brauer groups which are known are: Br(F) = {0} for any finite
field F' or algebraic extension thereof, and Br(Q,) = Q/Z for any p (where Q,
denotes the field of p-adic numbers). The first result follows from Wedderburn’s
Theorem, and the second from local class field theory.
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Corollary 2.8 also lets us prove results about individual Brauer algebras:

Theorem 2.15. Any automorphism of a Brauer algebra A is inner, i.e., is of the
form f(z) = ¢ tac for some c € A.

Proof: This follows from the well-known theorem of Noether and Skolem (see [2])
that the automorphisms of a finite-dimensional central simple algebra are inner. [J

We end this section by mentioning one of the more powerful theorems about
Brauer algebras:

Theorem 2.16. (Merkurjev) Let k be a field of characteristic not 2, and let A
be a Brauer division algebra over k such that A Qi A is split (this latter condi-
tion is sometimes abbreviated by saying that A is of period two). Then there exist
positive integers mi,ma,n > 0 and quaternion algebras Q1,Q2, ...,Qy such that

ARk My, (k) 2 Q1 ®; Q2 Q ... Q) Qn, Q) My, (k).

The proof of this theorem is unfortunately beyond the scope of this paper, but
see [2]. Besides being interesting in and of itself, it vindicates the use of generalized
quaternion algebras as representatives and test cases of central simple algebras.
There is a much more powerful version of Merkurjev’s Theorem, dealing with al-
gebras which split over a field extension with a cyclic Galois group, which is called
the Merkurjev-Suslin Theorem, but it is even more beyond the scope of this paper.
Merkurjev’s Theorem, and the Merkurjev-Suslin Theorem, play a major role in the
study of central simple algebras, and so we mention them in passing.

3. GALOIS THEORY AND GROUP COHOMOLOGY

Here we use techniques of Galois theory and group cohomology to study the
relative Brauer group Br(K|k). In particular, we show that this group can be
thought of as a first cohomology set. We begin with a few important concepts. We
begin by restricting the Brauer group to equivalence classes which split over a fixed
field:

Definition 3.1. Br(K]|k), called the Brauer group of k relative to K, is the abelian
group of Brauer equivalence classes of central simple algebras which split over K.
The Brauer group Br(k) is then called the absolute Brauer group.

Checking that Br(K|k) is in fact an abelian group is completely analogous to
the case of Br(k) and is left to the reader.

Definition 3.2. Let G and A be groups. Then a left G-action on A is a map
m: G x A — A satisfying

(1) m(g,m(h,a)) = m(gh,a), and
(i) m(g, ab) = m(g,a)m(g,b)
for all a,b € A and g,h € G. We usually denote m(g,a) by g(a). Given groups

G and A and a left G-action, we say that G acts on A on the left. There is of
course an analogous notion of right action; however, in this paper, we will only
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be concerned with left actions, and by “group action” we shall always mean “left
group action.”

Example 3.3. Classic examples of group actions include S,, acting on R™ by
sending ), aie; to Y . aier(;), where e; are the standard basis vectors; Z
acting on any group G via z(g) = ¢%; and any of the groups GL(n,R), SL(n,R),
O(n,R), or SO(n,R) acting on R™.

Definition 3.4. Let G be a group and A a group on which G acts on the left. A
1-cocycle of G with values in A is a map, denoted a_, from G to A, such that a,, =
ay0(a;) for all 0,7 € G. This equality is called the cocycle relation. We say that two
1-cocycles a_ and b_ are cohomologous if and only if for some ¢ € A, the relation
a, = ¢ 'byc holds for all ¢ € G. It is easily checked that “are cohomologous” is
an equivalence relation. We denote the set of equivalence classes of 1-cocycles by
H'(G, A), and call this the first cohomology set of G with values in A. Note that
H(G, A) is a pointed set, the basepoint being given by (the equivalence class of)
the trivial cocycle triv_ : o — 1.

Example 3.5. If a_ is a cocycle of G with values in A, then for any b € A, the
map a* : G — A defined by a = b~a,0(b) is a cocycle as well.

Example 3.6. One of the fundamental concepts of Galois theory is the norm map:
given a finite Galois extension K|k and an element « € K, the norm of a , written
Ngi(a), is defined to be HoeG(K‘k)a(a), i.e., the product of the automorphic
images of a. Since K|k is finite, this is always defined. As this example shows,
there is a relationship between the norm of an element and 1-cocycles of the Galois
group.

Let K|k be a finite Galois extension with Galois group G such that G is cyclic
of order n. Let A be the multiplicative group of K, and let o be a generator of
G. Then any 1-cocycle a_ is determined by its value on o, a,. Using the cocycle
relation over and over again, we get a,i = a,0(ay)02(ay)...00 7 (ay) for 1 <i < n.
Setting i = n gives aon = a,0(a,)0?(ay)...c" 1(a,). This latter equals ay, since
o™ =1 for all ¢ € G. But a; = 1, again by the cocycle relation. Recall, however,
that a,0(ay)0?(ay)...0c" (a,) is just the norm of a,, since G is a cyclic group
generated by o. Thus, we have that an element of K has norm 1 if it is in the
image of some cocycle.

Moreover, it is clear that if @ € K has norm 1, then « is in the image of some
cocycle. In particular, consider the cocycle a_ defined by a,: = H1<j<i ol (a). Tt
is trivial to check that this is indeed a cocycle, and clearly o = a,-.

Thus, if K|k is a cyclic Galois extension of degree n, an element of K has norm
1 if and only if it is in the image of some cocycle of G(K|k) with values in K/{0}.
O

There is a subtle connection between cocycles and twisted forms. Let & be a
field, A a central simple k-algebra not isomorphic to a matrix algebra, and K|k
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a finite Galois extension with Galois group G over which A splits. Let n > 0 be
such that A ®, K = M, (K). Let i be an isomorphism which takes A ®; K to
M, (K). T want to associate a cocycle a’ of G with values in Aut(A®y K), where
Auti (A ®y K) is the group of automorphisms of A ®y K as a K-algebra, to i in a
natural way..

Let ¢ € G. Then ¢ : K — K. Tensoring on both sides by A gives a map
oc* : A®r K — A®y K, defined by 03" a; @ A;) = Y (a; @ o(A;)). Similarly,
tensoring by M, (k) gives a map o, : M, (K) — M, (K) via Lemma 1.5. Now any
K-linear map f : A®, K — M,(K) induces a map #,(f) : A®x K — M,(K)
defined by #,(f) = 0«(f(0*~1)). This in turn induces the following map associated
to the isomorphism i, a’ : G — Autx (A @ K), given by a’ = i~1(#,(i)). One
can check that the map a’ satisfies the cocycle relation, and so is a 1-cocycle.

The key here is the following observation: let j be any other isomorphism from
A ®y, K to M, (K). Then the cocycles a’ and a’ are cohomologous (exercise; use
Theorem 2.15), and so lie in the same equivalence class of H'(G, Aut(A)). This
gives us a map O from CSA,(K) (where CSA,(K) is the set of n-dimensional
central simple algebras which split over K) to H'(G, Autx (A®y K)). Our instinct
is to assert that this map is in fact a bijection. In order to do this, we will exhibit a
map Q : HY(G, Aut (A @k K)) — CSA, (K) such that  is the inverse of ©. This
will show that © is indeed a bijection.

The intuitive idea for coming up with €2 is based on the following construction:

Construction 3.7. Let G and A be groups, with a group action of G on A. Also,
suppose X is a set on which G and A act in a compatible way, i.e., o(a(z)) =
o(a)o(x) for all 0 € G, a € A, x € X. Finally, let a_ be a 1-cocycle of G with
values in A. Then we define the twisted action of G on X by a_ to be the map
(0,2) — ay(o(x)). This is, possibly despite appearances, a G-action: by the cocycle
relation, (o7,z) = asr((07)(2)) = aso(a;)((o7)(x)) = ago(a,7(z)) = (0, (7,)).
Note also that if X has some algebraic structure - for instance, if X is an algebra -
and G and A act on X by automorphisms, then the twisted action will also be an
automorphism. We write ,X to denote that X is equipped with the twisted action
given by the cocycle a_, and we will write , X to denote the subset of X fixed by
the twisted G-action.

Now we can define Q: given a cocycle of G with values in A, apply the above
construction with G = G(K|k), A = Autg (AR, K), X = AQ K, and define Q(a_)
to be the k-algebra ,A%. From here, all we must show is that Q(a_) is actually a
twisted form of A, and that if a_ and b_ are cohomologous, then Q(a_) = Q(b_).
The proof of these facts is beyond the scope of this paper (see [2]), but we mention
the key idea:

Definition 3.8. Let K|k be a finite Galois extension, G its group, V a K-vector
space. Then a semi-linear G-action is a left G-action on the group V of vectors
such that, for all A € K, g € G, v € V, g(\) = g(\)g(v), where g()) is the image
of A under the K-automorphism represented by g. We define V¢ = {z € V : (Vg €

G)(g(x) = )}.
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Lemma 3.9. (Speiser) Let K|k be a finite Galois extension with Galois group
G, and let V be a K-vector space given a semi-linear G-action. Then the map
0:VE@, K —V, given by 03 v; @ \;) = > (\ivi), is an isomorphism.

This lemma essentially tells us that if we take a vector space and use Construction
1.3 to extend scalars, we can recover the original vector space from the extended
one, up to twistedness. The result we are trying to prove - that 2 is just the inverse
of ©, and thus that O is a bijection - is just a generalization of this lemma to include
algebras. Speiser’s Lemma is the beginning of an area of algebra known as descent
theory; for a relatively survivable introduction to this field, the reader is referred to
Keith Conrad’s paper [0].

Thus we have the following result:

Theorem 3.10. Let n be a fixzed natural number. Let CSAk(n) denote the set
of central simple algebras which split over K and which, when so split, become
isomorphic to M, (K), let G be the Galois group of K|k, and let A be the group of
automorphisms of M, (K). Then the map © defined above is an isomorphism. >

We can in fact state this theorem in a more concise way via the following lemma:

Lemma 3.11. The automorphism group of the matriz algebra M, (K), Autx (M, (k)),
is the group PGL,(K).

Proof: PGL,(K), the projective general linear group, is the group GL,,(K)/({\l, :

A € K}), where I, is the identity matrix; PG L, (K) can be thought of as GL,,(K)
quotiented in such a way as to ignore multiplication by scalars in K. There is a
natural homomorphism h : GL,(K) — Aut(M,(K)) sending C € GL,(K) to the
automorphism m : M — C~'MC. Since matrix algebras are central simple, we
have that all automorphisms of matrix algebras are inner (see Theorem 2.13), and
thus h is surjective; and the kernel of h is readily seen to be the center of M, (K),
which is just {AI, : A € K}, since M,,(K) is central simple. Thus, the first isomor-
phism theorem yields an isomorphism GL,(K)/Z(M,(K)) = Aut(M,(K)). But
GL,(K)/Z(M,(K)) is just PGL,(K). So we are done. [J

This allows us to restate Theorem 3.10 as “CSA,(K) = HY(G, PGL,(K)),”
since A @y K = M, (K) by assumption.

We now use Theorem 3.10 to give a characterization of the relative Brauer group
Br(K|k) in terms of cohomology sets using one final algebraic construction:

Construction 3.12. (Direct Limits) Let C be a category. Let I be a set partially
ordered by <p, and suppose we are given a collection of objects {X; :i € I} CC
together with morphisms f;; : X; — X such that for all ¢ <p j <p k, fij o fjx =
fik- A€ C and {¢; :i € I} is a set of morphisms with ¢; : X; — A such that for
all i <p j, ¢; o fi; = ¢;, then we say that (A, (¢;)) is a cone. The direct limit of

3The reader should know that there is a much more general form of this theorem, which deals
not just with algebras but with twisted forms of ANY type of k-vector space equipped with extra
structure. This more general version of the theorem is proved in the same way but to describe
formally what it says would take us too far afield. Essentially, it says that the bijection between
twisted forms and cocycles generalizes to almost any context we would want it to.
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{X.} via the f;; is the unique (up to isomorphism) cone (X, (¢;)) (if such a cone
exists) such that for any cone (Y, (¢;)), there is exactly one morphism u : X — Y
such that for all ¢,j € I, with i <p j, the following diagram commutes:

In the case where the maps f;; are injections, the direct limit is intuitively the
infinite union of the X;, where the injections f;; are treated as actual inclusions.
So, for instance, this allows us to take the “union” of the sets {(x1,...,x,) : z; € R}
over all n € N by identifying (z1, ..., z,) with (z1,...,2,,0) for all n; the result is
then isomorphic to the set of sequences of real numbers all but finitely many of
which are zero (exercise; note that this also allows us to construct infinite direct
sums). In the following theorem, we use the direct limit to extend Theorem 3.10
to the whole relative Brauer group Br(K|k); we do not do so rigorously, due to
constraints of space, however, and thus the task of making the arguments complete
is unfortunately left to the reader.

Theorem 3.13. The group Br(K|k) can be realized as a first cohomology set.

Proof: Again, let K|k be a finite Galois extension with group G. For any m,n >
0, consider the natural injective map ¥, 5, : GLy (K) < GLpyn (K) given by send-
ing an m-by-m matrix M to the block matrix given by placing n copies of M along
the diagonal and zeroes everywhere else. Quotienting by scalar multiples of the iden-
tity matrix, we get injections iy, n : PGLy, (K) < PGLy,, (K) for every m,n < 0.
These induce injective maps A, : H (G, PGLy,(K)) — HY(G, PGLyn(K)). We
now take the direct limit of the H (G, PGL;(K)) via the inclusion maps A, ,,. Call
this direct limit H'(G, PGLx(K)). This is not yet a very meaningful name, as we
have no idea what PG L (K) actually is. If, however, we let PGL(K) be the
direct limit of the PGL;(K) via the maps ¢, ,, we then get an actual group. It
can then be proven that the first cohomology set of G with values in PG L (K) is
precisely the direct limit of the H*(G, PGL;(K)), thus justifying our choice of no-
tation. Correspondingly, we can write Br(K|k) as the direct limit of the CSA,,(K)
(why?). Thus, the relative Brauer group can be identified with a first cohomology
set. Moreover, it should be noted that a natural product operation can be placed
on this cohomology set, which turns the identification mentioned above into an
isomorphism of (abelian) groups. O

In a similar vein, we can identify the entire Brauer group Br(k) with a first
cohomology set, but the specifics would take us too far afield.
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In actual applications, we generally find it much more useful to identify the
relative (and absolute) Brauer group with a second cohomology set of G. However,
this result is beyond the scope of this paper to prove or study in detail. For
completeness’ sake, however, we state it.

Definition 3.14. Let G be a group and A a group on which G acts from the left.
Then a 2-cocycle of G with values in A is a map from G x G to A, denoted a_ _,
satisfying

0100y,05 — Qo102,05 T Qoy,0005 — Qoy,00 =0

for all 01,029,035 € G. This equality is called the 2-cocycle relation. As before,
there exists a “nice” equivalence relation on 2-cocycles, and the set of equivalence
classes of 2-cocycles of G with values in A is denoted H?(G, A) and called the second
cohomology set.

Then we have the following result:

Theorem 3.15. Let K|k be a finite Galois extension with Galois group G. Then
Br(K|k) =2 H*(G,K*) and Br(k) = H?(k,k)), where kX is the multiplicative
group of the separable closure of k.

Proof: See [2]. The value of this theorem can actually be immediately seen, by
noting the lack of direct limits or other complicated constructions. [J

4. ALGEBRAIC GEOMETRY AND SEVERI-BRAUER VARIETIES

In the last section of this paper, we use techniques of algebraic geometry to study
Brauer algebras. This requires a significant amount of algebraic geometry, which
we do not have the requisite space to develop in full, so we forego all pretension
of rigor. We refer the reader to [1] for a treatment of algebraic geometry, and to
[2] for a more complete, if more advanced, exposition of the applications to Brauer
algebras.

Definition 4.1. Let K be a field. Then we define n-dimensional K -projective
space KP"as KP" = (K™\{(0,0,...,0)})/ =, where = is the equivalence relation
defined by (1, .., Tnt1) & (Y1, s Ynt1) I (Y1, o0y Ynt1) = (AT1, ...y ATpy1) for some
A € K\{0}. n-dimensional K-projective space can be thought of as the set of
lines through the origin in (n 4 1)-dimensional K-Cartesian space, which yields a
particularly useful geometric intuition.

Construction 4.2. Let k be a field of characteristic # 2, let k be an algebraic
closure of k, and let (a,b); be a generalized quaternion algebra. Then we define
the associated conic of (a,b);, as the set Cx(a,b) = {[(z,y, 2)] € kP" : ax? + by? =
22}, where [ | denotes “the equivalence class of.” Note that this is well-defined: if
az? + by? = 22, then a(A\x)? + b(Ay)? = (A\2)? for any A # 0.
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Definition 4.3. Cj(a,b) has a k-rational point iff (3x,y, z € k)(azx? + by? = 2?).
We then have the following useful result:

Theorem 4.4. The properties of quaternion algebras are captured to a large extent
by their associated conic. Specifically,

(i) Cx(a,b) has a k-rational point iff (a,b)r = Mz (k).

(i) (Witt’s Theorem) (a,b); = (¢,d)y if and only if Ck(a,b) = Ci(c,d), that
is, if and only if there is a bijection m : Ck(a,b) — C(c,d) which is given by some
rational function with coefficients from k.

Proof: To prove (i) one first defines the norm of an element z of a finite field
extension K of k as the product of the automorphic images of x (see Example 3.6),
and then shows (a) that C(a,b) has a rational point if and only if b = Ny, (@)
for some o € k(y/a), and (b) that b = Ny /) () for some o € k(y/a) if and only if
(a,b)r = My (k). This yields the desired result.

Part (i¢) is unfortunately well beyond the scope of this paper. A proof can be
found in [2], but this proof is quite difficult and uses a large amount of algebraic
geometry, more even than is strictly necessary. O

A natural question to ask at this point is whether we can extend a version of this
result to all Brauer algebras. The answer to this question is yes, and the method
of extension is one of the more beautiful concepts in the study of central simple
algebras.

Before we describe the more general version of the associated conic, we must
define one of the main objects of study of algebraic geometry:

Definition 4.5. Let S be a set of homogeneous polynomials (that is, for every
polynomial p € S, the terms of p have the same total degree - so 2 + xy + 2y + 22
is homogeneous, but 2% +x + 1 is not; see [1]) in n variables. An algebraic variety in
kP is then the solution set Z(S) = {(z1,...,m,) € kP" : (Vf € S)(f(21, ..., zn) =
0)}.

Now, in a natural sense, kP" lives inside kP™: identify kP™ with the set of
(equivalence classes of) points in & P" all of whose coordinates lie in k. Furthermore,
in the same way, for any finite Galois extension K|k, or for that matter any field
extension at all contained in k, we have that kP* C KP" C kP". Now given an
algebraic variety V and a finite Galois extension K|k, let Vi be the set of points
in V lying in K P™. We then have the following result:

Theorem 4.6. Let k be a field. Then for any Brauer k-algebra A, there is an
algebraic variety SB(A) of k-projective space - called the Severi-Brauer variety of
A - such that if K|k is a finite Galois extension, then SB(A)kx # 0 if and only if
A®r K = M,(K) where n = dim(A).

The proof of this thorem is far beyond the scope of this paper. However, this is
possibly the most beautiful facet of Brauer algebras, as Severi-Brauer varieties arise
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in algebraic geometry independently of Brauer algebras, and thus yield a serious
application of Brauer algebras to algebraic geometry.

5. ADDENDA

The main source for this paper was the book “Central Simple Algebras and
Galois Cohomology” by Gille and Szamuely. This book contains all of the infor-
mation presented here and much more, but assumes a fairly strong knowledge of
Galois theory and commutative algebra, and a little algebraic geometry. There is
unfortunately no elementary introduction to the subject at this time. However,
there is a paper by Jorg Jahnel (“The Brauer-Severi Variety Associated With A
Central Simple Algebra: A Survey”), which deals with group cohomological and
algebro-geometric techniques in the study of central simple algebras, many parts of
which are readable, and which covers descent in detail. In addition, the paper [5]
contains a description of the basic algebraic properties of central simple algebras,
including a proof of the Noether-Skolem Theorem and a generalization of the sec-
ond half of Example 2.4. A source which the author has not had sufficient time to
examine, but appears at first glance to be both readable and relevant, is the book
“Noncommutative Algebra” by R. Keith Dennis and Benson Farb.

The author would like to thank Keerthi Madapusi, without whom none of this
would have been possible. The author was financially supported by the University
of Chicago VIGRE program.
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