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Abstract. I will define the distance partition of a finite graph and show how

this partition being equitable follows from and/or implies properties of the

graph. In the process I will connect this partition to a number of fundamental
ideas in graph theory and confirm an elementary identity of strongly regular

graphs.
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1. Introduction

Partitions of the vertices of graphs are a fundamental concept in graph the-
ory, forming the basis for such fundamental graph properties as chromatic number.
This paper will focus on one partition in particular: the distance-partition. The
basic form of the distance-partition assigns a starting vertex to the zeroth cell, then
groups the other vertices into cells according to their distance from the starting ver-
tex. We introduce a generalized distance-partition in which vertices are partitioned
by their distance from an initial set of vertices, rather than a single vertex.

Throughout this paper, graphs are nonempty, finite, simple, and undirected.
Nearly all of the graphs we consider will be connected as well–this ensures that the
distance-partition is well-defined and meaningful.

In order to determine graph properties from these distance-partitions, it is helpful
to consider equitable partitions, a special class of partitions satisfying the following
property: given two cells Ci and Cj of the partition, there is a constant bi,j such
that a vertex vi ∈ Ci has exactly bi,j neighbors in Cj , regardless of the choice of vi.
Equitable partitions are related to many basic properties of graphs. For example,
that the trivial partition (that is, the partition that puts every vertex in a single
cell) is equitable only if the graph is regular. Equitable partitions have a number of
applications in graph theory. Partitioning the vertices of a graph into their orbits
under a group of automorphisms is always an equitable partition, and this fact has
been exploited in the development of practical graph isomorphism algorithms ([4]).
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2 ALEXANDER STAPLES-MOORE

In this paper we will derive properties of graphs that follow from the distance-
partition being equitable, and discuss graph properties that imply that the distance-
partition is equitable. In doing so, we connect the distance-partition to the well-
known properties of strong regularity, distance-regularity, and diameter.

We end by introducing the notion of distance-equitable induced subgraphs: the
set of induced subgraphs H of a graph G such that, for any S ⊆ V (G) that in-
duces H, the generalized distance partition beginning at S is equitable. K1 being
a distance-equitable induced subgraph is equivalent to the (usual) distance parti-
tion being equitable at any vertex, which is in turn equivalent to the graph being
distance-regular. In the final section, we will show that K2 being distance-equitable
implies diameter 2, and that K1, K2, and K2 being distance-equitable induced im-
plies that every odd cycle induces a complete graph. Much of this paper has been
informed by the classic texts of Biggs [1] and Godsil & Royle [3]. However, we
believe that the generalized distance partition, the notion of distance-equitable in-
duced subgraph, and the corresponding results are original.

The paper is organized as follows. In Section 2 we define the distance partition
of a graph and discuss its basic properties. Section 3 will describe how the prop-
erty of strong regularity relates to the distance partition.In Section 4 we discuss a
generalized distance partition and the consequences of certain conditions. Finally,
in Section 5 we mention some questions we have not had time to attempt.

2. Equitable Partitions and the Distance Partition

In this section, we give the definitions of equitable partition, the distance par-
tition, and distance-regularity, culminating with a proof that a graph is distance-
regular if any only if every distance partition is equitable.

Definition 2.1. A partition π = {C0, C1, . . . , Cm−1} of the n vertices of a graph G
is equitable if for every pair of (not necessarily distinct) indices i, j ∈ {0, 1, . . . ,m−1}
there is a nonnegative integer bi,j such that each vertex v in Ci has exactly bi,j
neighbors in Cj , regardless of the choice of v. The partition matrix is Bπ = (bi,j).

Note that the partition matrix Bπ is well-defined if and only if the partition π
is equitable.

Definition 2.2. Let G be a nonempty finite connected graph, and v a vertex of
G. The distance partition πd(v) of G relative to v consists of the cells:

• C0 = {v}
• Cj = {u ∈ G|d(u, v) = j} for each j = 1, 2, 3, . . .

That is to say, each cell consists of vertices that are a fixed distance from v0.

Note that the number m of nonempty cells is bounded above by 1 + diam(G),
which is finite for any finite connected graph.

At this point, it is natural to ask when πd(v) is equitable. We will see in Theorem
2.5 that πd(v) being equitable for every v ∈ V (G) is equivalent to the well-studied
property of distance-regularity (For an in-depth look at distance-regular graphs,
see e.g. the work of Brouwer, et al. [2].)

Definition 2.3. A graph G is distance-regular if, for any pair of vertices v and u
with d(v, u) = i,

(1) there is a number pi such that there are pi neighbors of u that are of distance
i− 1 from v
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(2) there is a number qi such that there are qi neighbors of u of distance i+ 1
from v,

where pi and qi depend only on i (and not on v nor u.)

The following lemma will be useful at several points in the remainder of this
paper.

Lemma 2.4. Let G be a graph, v0 a vertex of G. If πd(v0) = {C0, C1, . . . } and
|i − j| > 1 then no vertex in Ci is adjacent to any vertex in Cj. In particular, if
πd(v0) is equitable and Bπ = (bi,j) is the associated partition matrix, then bi,j = 0
whenever |i− j| > 1.

Proof. Suppose for the purposes of contradiction that, for some pair of indices i, j
with |j − i| > 1, there exist a vertex vi ∈ Ci that is adjacent to some vertex
vj ∈ Cj . We may assume without loss of generality that j > i. By definition of Ci,
d(v0, vi) = i. Let P be a path of length i between v0 and vi, and let P ′ = (P, vj).
P ′ is a path of length i + 1 from v0 to vj , so j = d(v0, vj) ≤ i + 1. On the other
hand, |j − i| > 1 and so j > i+ 1. This is a contradiction, proving the claim. �

Note that, by taking i = 0 in the definition of distance-regular, G is regular of
degree q0. This fact in addition to the preceding lemma will help us in the following
proof.

Theorem 2.5. The distance partition πd(v) of a graph G is equitable for every
v ∈ V (G) if and only if G is distance-regular.

Proof. (⇒) Suppose πd(v) is equitable for any vertex v of a graph G. Let v, u be
a pair of vertices of distance i apart. Consider πd(v) with cells C0, . . . , Cm as in
Definition 2.2. Clearly u ∈ Ci. Note that any neighbors of u that are of distance
i− 1 from v are in Ci−1. The number of neighbors of u that are in Ci−1 is given by
the entry bi,i−1 of the partition matrix of πd(v). Furthermore, as this same value
holds for any vertex of Ci and therefore any vertex of distance i from v, it follows
that bi,i−1 satisfies the properties of pi in the definition of distance-regular.

Similarly, bi,i+1 satisfies the properties of qi. Since both pi and qi are determined
by values of the partition matrix, it follows that any graph where πd is equitable
for every vertex must be distance-regular.

(⇐) Conversely, suppose G is distance-regular with pi, qi as in Definition 2.3. Let
v0 ∈ V (G), and consider πd(v0). We want to show that this partition is equitable,
or equivalently that the values of the partition matrix Bπ are well-defined. We will
show that

bi,j =


qi If i = j − 1
q0 − pi − qi If i = j

pi If i = j + 1
0 otherwise

Consider the ith row of the partition matrix. Let vi ∈ Ci, which is to say that
d(vi, v0) = i. By definition of the distance-regular parameters, vi has pi neighbors
that are of distance i − 1 from v0, independent of the choice of vi ∈ Ci. Because
these neighbors must by definition be in Ci−1, bi,i−1 is well-defined and equal to
pi for all i. Similarly, vi has qi neighbors of distance i + 1 from v0 regardless the
choice of vi ∈ Ci, so bi,i+1 is well defined and equal to qi for all i.
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Next, note that the sum of any row of the partition matrix must add up to q0.
This property follows from G being q0-regular, as remarked above. By Lemma 2.4,
all entries on the ith row of Bπ other than bi,i−1, bi,i, and bi,i+1 are well-defined
and equal to zero. Thus bi,i = q0 − pi − qi is well-defined, so πd(v) is equitable for
every v ∈ G. �

3. Strongly Regular Graphs

Definition 3.1. A graph G is strongly regular with parameters (n, k, a, c) if it is
not Kn nor Kn and:

(1) G has n vertices,
(2) G is k-regular,
(3) any pair of adjacent vertices has exactly a common neighbors,
(4) any pair of non-adjacent vertices has exactly c common neighbors.

Lemma 3.2. Let G be a strongly regular graph. Then diam(G) = 2.

Proof. Let G be a strongly regular graph with parameters (n, k, a, c), and suppose
there are two vertices u, x of G that are distance 3 apart. Let (u, v, w, x) be a path
of length 3. The pair of vertices u and x are non-adjacent, therefore they must have
exactly c neighbors in common. It is clear in this case that c must equal zero: if u
and x shared some neighbor y, then (u, y, x) would be a path of length 2 from u to
x, a contradiction.

The pair of vertices u and w must also be non-adjacent, or else (u,w, x) would
be a path of length 2 from u to x. As u and w are non-adjacent, they have c = 0
common neighbors. But, v is a common neighbor of u and w, a contradiction. Thus
G must have a diameter of at most 2.

Suppose diam(G) = 1. Then there is a path of length 1 from any vertex v to
any other vertex u, which is to say that there is an edge between them. Thus, G
is complete, and is therefore excluded from being strongly regular by definition.
Likewise, if diam(G) = 0, it is clear that G consists only of a single point and is
therefore K1.

�

Strongly regular graphs are distance-regular (as we shall see in the next result),
so it follows from Theorem 2.5 that πd of a strongly regular graph relative to any
vertex v is equitable. In order to understand how πd partitions a strongly regular
graph, we will examine the properties of the corresponding cells. We will first find
the partition matrix Bπ, with bi,j in terms of the parameters of any strongly regular
graph.

Theorem 3.3. The distance-partition πd(v0) of a strongly regular graph G with
parameters (n, k, a, c) is equitable with partition matrix

Bπ =

 0 k 0
1 a k − 1− a
0 c k − c


In particular, every strongly regular graph is distance regular.

Proof. We proceed term by term, indexing rows and columns starting at zero.
b0,0 is the number of neighbors of v0 within C0. As C0 consists only of v0 and

G has no loops, b0,0 = 0.
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b0,1 is the number of neighbors of v0 within C1. As G is k-regular, v0 has
k neighbors, and the neighbors comprise C1 as they are all the points of
distance 1 from v0. Therefore, it follows that b0,1 = k.

b0,2 is zero by Lemma 2.4.
b1,0 is 1, as each member of C1 has precisely one neighbor in C0 – namely, v0.
b1,1 can be computed as follows: Let w ∈ C1. Then v0 and w are adjacent, so

by the definition of strongly regular v0 and w have a common neighbors.
As all of these a neighbors are neighbors of v0, they are in C1. Moreover,
any neighbor of w in C1 is necessarily a neighbor of v0. Thus, any vertex
in C1 has a neighbors in C1, and so b1,1 = a.

b1,2 is k − 1− a since each row must sum to k.
b2,0 is zero by Lemma 2.4.
b2,1 is c. Let w ∈ C2; then v0 and w are non-adjacent, and so by the definition of

strongly regular they must have c common neighbors. These c neighbors are
neighbors of v0, so they must be in C1. Conversely, any common neighbor
of v0 and w is, in particular, adjacent to v0 and thus in C1, so this set
contains all the neighbors of w in C1. Therefore any w ∈ C2 has exactly c
neighbors in C1.

b2,2 may be computed in a similar manner to b1,2: the rows must add up to k,
so b2,2 = k minus the sum of the other elements of the row: k − c.

Since these values are well-defined, πd(v0) is equitable. Since the values are in-
dependent of the choice of v0, πd(v0 is equitable for any v0 ∈ V (G). Thus, by
Theorem 2.5, G is distance-regular. �

In the next result, we calculate the sizes of the cells of the distance partition of
a strongly regular graph explicitly, and in doing so re-derive a well-known formula
relating the parameters of a strongly regular graph.

Theorem 3.4. Let G be a strongly regular graph with parameters (n, k, a, c) and
let πd(v0) = {C0, C1, C2} be its distance partition. Then |C0| = 1, |C1| = k,
|C2| = n− k − 1 = (k−1−a)(k)

c . In particular,

c(n− k − 1) = k(k − 1− a)

Proof. The first part follows trivially from the definition of C0. The second part
follows from G being k-regular: v0 has k neighbors, and these neighbors comprise
C1.

As G is strongly regular and therefore must have diameter of at most 2, there
are no points of distance 3 or greater from v0, and so C3 and all higher cells are
empty. As all the vertices must be covered by C0, C1, and C2, their sizes must add
up to the total number of vertices n, which is to say |C2| = n−k−1. Furthermore,
this result shows that C2 is empty ⇐⇒ k = n− 1, i. e., G = Kn.

The following combinatorial argument shows that |C2| = (k−1−a)(k)
c . Consider

the number of edges going from C1 to C2. There are k vertices in C1 and we see
from entry b1,2 of Bπ above that each vertex in C1 has (k− 1− a) neighbors in C2.
Thus the number of edges (u, v) with u ∈ C1 and v ∈ C2 is (k − 1 − a)(k). From
entry b2,1 we see that every vertex in C2 has c neighbors in C1, so the size of C2

is the number of edges from C1 to C2 divided by c. Thus, the actual number of
vertices in C2 is (k−1−a)(k)

c . As |C2| = (k−1−a)(k)
c = n−k−1 from the result above,

it follows that c(n− k − 1) = k(k − 1− a). �
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So far, we have shown that a strongly regular graph is distance-regular of diam-
eter 2. We now prove the converse of this result, which will be useful in Section
4.

Theorem 3.5. Let G be a nonempty finite connected graph with n vertices. Suppose
G is distance-regular and diam(G) = 2. Then G is strongly regular with parameters
(n, q0, q0− q1, p2), where pi, qi are the distance-regular parameters, as in Definition
2.3.

Proof. G is q0-regular, so q0 fulfills the criteria for the parameter k of a strongly
regular graph.

Let u and v be adjacent vertices of G. G is distance regular, so there are q1
neighbors of u that are of distance 2 from v. In particular, there are q1 neighbors
of u that are not neighbors of v (including v itself). As G is q0-regular, u has
q0 neighbors in total. By subtraction, the number of neighbors of u that are also
neighbors of v is given by q0 − q1, regardless of the choice of u and v among the
adjacent vertices of G. Consequently, q0 − q1 fulfills the criteria for the parameter
a of a strongly regular graph.

As diam(G) = 2, there are vertices u,w such that d(u,w) = 2, i. e., u and w
are non-adjacent. As G is distance-regular, there are p2 neighbors of u that are of
distance 1 from w, regardless of the choice of u and w. This is precisely to say that
there are exactly p2 common neighbors of any two non-adjacent points u and w in
G, and so p2 fulfills the criteria for the parameter c of a strongly regular graph. �

Corollary 3.6. A graph G is strongly regular if and only if it is distance-regular
of diameter 2.

Proof. This simply combines the results of Theorems 3.3 and 3.5. �

4. A Generalized Distance Partition

Previous sections discussed the distance-partition relative to a single vertex. To
further explore the properties of the distance-partition, we introduce the distance-
partition relative to any subset S of V (G). In essence, the vertices of G are sorted
into cells according to their distance from (the closest vertex of) S.

Definition 4.1. Let G be a nonempty finite connected graph, and S a nonempty
subset of V (G). The (generalized) distance partition πd(S) of G consists of the
cells:

• C0 = S
• Cj = {v ∈ G|minu∈S d(v, u) = j} for each j = 1, 2, 3, . . .

(We may abuse notation by writing πd(v0, v1, . . . , vk) instead of πd({v0, v1, . . . , vk}).)

Definition 4.2. Let G be a nonempty finite connected graph. An isomorphism
type H is a distance-equitable induced subgraph of G if G contains an induced
subgraph isomorphic to H, and for every subset S ⊆ V (G) that induces a copy
of H, πd(S) is equitable. The set of distance-equitable induced subgraphs of G is
denoted DE(G).

We can now restate Theorem 2.5 as: K1 ∈ DE(G) if and only if G is distance-
regular. In the remainder of this section, we will discuss the implications of K2 and
K2 being in DE(G).
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Lemma 4.3. Let G be a nonempty finite connected graph. If K2 ∈ DE(G), then
diam(G) = 2.

Proof. As K2 is an induced subgraph of G, it is clear that G is not complete and
thus diam(G) > 1. Suppose for the sake of contradiction that diam(G) ≥ 3. Then
there is a path P = (u, v, w, x) such that u is not adjacent to w and x is not
adjacent to v. Thus, K2 is induced by {u,w}. Consider π = πd(u,w). The cell
C0 consists of vertices u and w. The cell C1 contains vertices v and x. By the
definition of P , v has two neighbors in C0, namely u and w, whereas x has exactly
one neighbor in C0, w. This implies that π is not equitable, a contradiction. Thus,
diam(G) = 2. �

Corollary 4.4. Let G be a nonempty finite connected graph. If {K1,K2} ⊆ DE(G),
then G is strongly regular.

Proof. Suppose {K1,K2} ⊆ DE(G). Then by Theorem 2.5, G is distance-regular,
and by Lemma 4.3, diam(G) = 2. Thus by Theorem 3.5, G is strongly regular. �

The converse of this corollary is false, however: both the five-cycle and the
octahedron graph are strongly regular, yet neither has K2 as a distance-equitable
induced subgraph. Furthermore, the n × n grid graphs (in which two vertices are
connected exactly when they share a row or column) also have this property. It is
interesting to note that all of these graphs are line graphs (the m ×m grid is the
line graph of Km,m).

From the last corollary, K1 and K2 being in DE(G) is already enough to imply
that G is strongly regular. We will now see that K1, K2 and K2 being in DE(G) is
an exceptionally strong restriction on G.

Theorem 4.5. Let G be a nonempty finite connected graph. If {K1,K2,K2} ⊆
DE(G), then every odd cycle of length ` in G induces the complete graph K`.

Proof. Let C = (v0, v1, . . . , v`−1) denote the vertices of a cycle of odd length ` in G.
As G is distance-regular, it is enough to show that v0 is connected to every other
vertex of C, since the same argument may be used for any vertex of the cycle.

We will show by induction that v0 is connected to every vertex of index 2k + 1
(all indices are taken modulo `) for all k, and since C has odd length, this im-
plies v0 is connected to every vertex in the cycle. By our choice of numbering,
v0 is connected to v1. Suppose v0 is connected to a vertex v2k+1. Consider
πd(v0, v2k+2) = {C0, C1, ...}, which is equitable by assumption1. As v2k+1 and
v2k+3 are adjacent to vk+1, both are in C1. v2k+1 is connected to v0 by assump-
tion, and is also connected to v2k+2. It therefore has two neighbors in C0, and since
πd(v0, v2k+2) is equitable, all other members of C1 must also have two neighbors in
C0. In particular, v2k+3 has two neighbors in C0, i. e., v2(k+1)+1 is adjacent to v0.
Thus v0 is connected to every vertex of index 2k + 1, and since the cycle has odd
length, this includes every vertex in the cycle. �

Again, the converse of this theorem is false: obviously C5 is a strongly regular
graph in which a 5-cycle doesn’t induce K5. The remainder of this section will
discuss the family of graphs satisfying the consequence of Theorem 4.5.

1Since both K2 and K2 are distance-equitable induced subgraphs, πd(v0, v2k+2) is equitable

whether or not v0 and v2k+2 are adjacent. This is the key that allows this argument to be applied

starting from any vertex of C.
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4.1. Graphs in which every odd cycle induces a complete graph. We begin
by proving that this family is infinite by showing that any complete bipartite graph
of the form Km,m for m > 3 has this property. These graphs have no odd cycles,
so the strong consequence ofTheorem 4.5 is vacuously satisfied.

Definition 4.6. A graph G is bipartite if there exist two disjoint sets V0, V1 ⊆
V (G) whose union is V (G) and that have the property that any vertex in Vi has
no neighbors in Vi.A bipartite graph is complete bipartite if any vertex v in V0

is connected to every member of V1 and vice versa. These graphs are uniquely
determined by the sizes of V0 and V1 up to isomorphism and are denoted Ka,b,
where a = |V0| and b = |V1|.

Lemma 4.7. The complete bipartite graph Ka,b is strongly regular if and only if
a = b.

Proof. Suppose Ka,b is strongly regular. Let V0 and V1 be the bipartition of Ka,b

and let v0 ∈ V0 and v1 ∈ V1. As Ka,b is complete bipartite, v0 is connected to every
member of V1 and therefore has degree |V1| = b. Likewise v1 has degree |V0| = a.
As Ka,b is strongly regular, b = k = a and so a = b.

Conversely, suppose a = b = m. Ka,b then has 2m vertices. Any vertex has m
neighbors, namely all those vertices that are in the opposite Vi. Any pair of adjacent
vertices has no neighbors in common, as each has neighbors exclusively within the
other’s Vi. Any pair of non-adjacent vertices has m neighbors in common, as they
are both connected to each member of the opposite Vi. Thus Ka,b = Km,m is
strongly regular with parameters (2m,m, 0,m). �

Theorem 4.8. {K1,K2,K2} ⊆ DE(Km,m).

Proof. By the preceding lemma, Km,m is strongly regular with parameters (2m,m, 0,m).
In particular, Km,m is distance regular, and so by Theorem 2.5 K1 ∈ DE(Km,m).

Let V0, V1 be the bipartition of Km,m. Let v0 ∈ V0, v1 ∈ V1 be a pair of adjacent
vertices of Km,m. Now consider πd(v0, v1) = {C0, C1, . . . }. Since v1 is connected
to every member of V0 and v0 is connected to every member of V1, C1 contains
all vertices of Km,m except for v0 and v1. Now, we will show that πd(v0, v1) is
equitable with partition matrix

Bπ =
(

1 m− 1
1 m− 1

)
b0,0 is 1 as each vertex in C0 has one neighbor in C0, namely the other vertex.
b0,1 is m − 1 as G is m-regular and so the rows of the partition matrix must

add up to m.
b1,0 is 1 as each vertex in C1 is connected to the single vertex in C0 that is in

the opposite part Vi.
b1,1 is m− 1, by similar logic to b0,1.

The fact that these values are well-defined independent of v0 and v1 proves that the
partition is equitable for any pair of adjacent vertices {v0, v1} ⊆ V (Km,m). That
is to say K2 ∈ DE(Km,m)

Now, let v0, v1 be a pair of nonadjacent vertices of Km,m. As Km,m is complete
bipartite, they must both be in either V0 or V1. Without loss of generality, suppose
they are in V0. Then consider πd(v0, v1) = {C0, C1, . . . }. Since the neighbors of v0
and v1 are precisely the members of V1, it follows that V1 = C1. The remaining



EQUITABLE PARTITIONS IN GRAPH THEORY 9

m − 2 vertices comprise C2, as they are neighbors of every point in V1 but not of
v0 or v1. The following argument shows that πd(v0, v1) is equitable with partition
matrix

Bπ =

 0 m 0
2 0 m− 2
0 m 0


b0,0 is 0 as v0 is not connected to v1 by assumption.
b0,1 is m as each of v0 and v1 is connected precisely to the m members of V1.
b0,2 is 0 as vertices in C0 and C2 are all in V0 and therefore have no connecting

edges.
b1,0 is 2 as each vertex in C1 is connected to both v0 and v1.
b1,1 is 0 as each vertex in C1 is a member of V1 and therefore has no neighbors

within V1.
b1,2 is m− 2, as G is regular of degree m and thus the rows must add to m.
b2,0 is 0 as members of V0 cannot be connected.
b2,1 is m as each member of C2 is connected to all of the m members of V1 = C1.
b2,2 is 0 by the same logic as the b2,0 case.

These values are well-defined independent of v0 and v1, and so πd(v0, v1) is equitable
for any pair of non-adjacent vertices {v0, v1} ⊆ V (Km,m). That is to say that
K2 ∈ DE(Km,m). �

5. Open Questions

The work we have done so far suggests sevral open questions, which we have not
yet had the time to attempt. In no particular order:

• Classify the (strongly regular) graphs G satisfying {K1,K2} ⊆ DE(G).
• Classify the graphs G satisfying {K1,K2,K2} ⊆ DE(G). Are there any

besides the complete bipartite graphs Km,m? Are there infinitely many
more? We note that any such graphs would have girth 3, as by Corollary
4.4 they are strongly regular and thus by Lemma 4.7 they are either Km,m

or they are non-bipartite, which is to say they have odd cycles and therefore
triangles by Theorem 4.5. They must also have a degree of at least ` − 1,
where ` is the largest odd cycle; this fact follows trivially from Theorem
4.5.
• What does K2 ∈ DE(L(G)) imply about G (where L(G) is the line graph

of G)? What about {K1,K2,K2} ∈ DE(G)? More generally, clarify the
relationship between DE(G) and DE(L(G)). This is motivated by the ob-
servation that the only examples we found of strongly regular graphs with
K2 * DE(G) are the five-cycle, the octahedron graph, and the grid graphs,
and these are all line graphs.
• What can be said about graphs in which every odd cycle induces a complete

subgraph?
• Are there conditions on distance-equitable induced subgraphs that imply

that every cycle in a graph induces a complete subgraph? What can be
said about graphs with this property?
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