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Abstract. The purpose of this paper is to show that a random walk of even

length on a finite, vertex-transitive graph returns to its origin with greatest

probability. In the course of showing this, I will introduce several relevant
concepts and build lemmas that will ultimately allow us to demonstrate the

theorem in question.
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1. Graphs and Related Terms

Definition 1.1. A graph G is a set of vertices (collectively denoted V (G)) and
ordered pairs of vertices (called edges and denoted E(G)). Two nodes a, b ∈ G are
connected or adjacent if (a, b) ∈ E(G). In an edge (a, b), we call the vertex a the
origin of that edge and the vertex b the target of that edge.

A graph is simple if all of its edges are unique (there is at most one edge be-
tween any two vertices a and b) and none of its edges connect a vertex to itself.

A graph is undirected if (a, b) ∈ E(G)⇐⇒ (b, a) ∈ E(G).

In practice, we usually describe graphs by drawing them, denoting the vertices
with circles and the edges with lines. If a graph is directed, we usually signify an
edge (a, b) without a corresponding edge (b, a) with an arrow pointing from a to b.

Definition 1.2. An undirected graph G is k-regular if every vertex in G is the
source and target of k edges.

Definition 1.3. A walk is a sequence of edges x1, x2, . . . , xn, where the target of xi

is the origin of xi+1. Each edge xi is called a step. The length of the walk is equal
to the number of steps it contains. A random walk is a walk that is constructed by:

(1) taking an initial vertex a
(2) choosing, with equal probability for all edges originating at a, a random

next step in the walk.
(3) repeating this process with a as the target of the previously chosen edge.
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Figure 1. A directed graph; an undirected, non-simple graph; a
walk of length 3

Definition 1.4. A homomorphism from a graph G to a graph H is a map σ :
V (G) → V (H) that preserves adjacency. In other words, if a, b ∈ V (G), x, y ∈
V (H), σ(a) = x, and σ(b) = y, then (a, b) ∈ E(G)⇐⇒ (x, y) ∈ E(H). A bijective
homomorphism is called an isomorphism.

Definition 1.5. An automorphism is an isomorphism from a graph to itself.

Definition 1.6. Finally, a graph G is vertex transitive if ∀a, b ∈ V (G) there is an
automorphism σ on G where σ(a) = b. Informally, a vertex transitive graph is one
that ”looks the same” at every vertex, such as a cube or a lattice.

Note that all undirected, vertex-transitive graphs are k-regular.

For the purposes of this paper, we will be assuming that all of our graphs are sim-
ple, undirected, and finite, though this proof extends easily to non-simple graphs.
We simply make this assumption for the sake of clarity. The other two conditions
are necessary for our proof.

2. The Adjacency Matrix

One way of representing a graph is as an adjacency matrix. To create an adja-
cency matrix A for a graph G with vertices {v1, ..., vn}, one creates an n×n matrix,
assigning the nth row/column to the nth distinct vertex, and determines the values
with the formula:

Am,n =
{

1 (vm, vn) ∈ E(G)
0 otherwise

Consider the example in Figure 2. Notice, for example, because the first vertex is
connected to the second, third, and fourth vertices, that there is a 1 in the second,
third, and fourth columns of the first row.

You may also notice that in this particular undirected graph, the adjacency
matrix is symmetric about its diagonal. This observation brings us to our first
theorem.

Theorem 2.1. In an undirected graph with adjacency matrix A, A = AT .

Proof. By definition, if a graph G containing vertices vx, vy is undirected, then
(vx, vy) ∈ E(G)⇐⇒ (vy, vx) ∈ E(G).
∴ Ax,y = Ay,x, by the definition of an adjacency matrix.
∴ A = AT , by the definition of transpose.
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
0 1 1 1 0
1 0 0 1 1
1 0 0 1 0
1 1 1 0 1
0 1 0 1 0


Figure 2. An example of an adjacency matrix.

Corollary 2.2. Am = (Am)T

Proof. We will prove this using induction. For the base case, take A2. Because
(AB)T = BTAT , (A ·A) = (AT ·AT ) = (A ·A)T

Then, by the inductive hypothesis, assume Am−1 = (Am−1)T .
∴ Am = (A ·Am−1) =

(
AT · (Am−1)T

)
= (Am−1 ·A)T = (Am)T �

However, the more important and surprising theorem is this one:

Theorem 2.3. Given a graph with an n × n adjacency matrix A, Am
i,j is the

number of walks of length m from vi to vj.

Proof. We will prove this using induction. For the base case, take A1.
Because a walk of length 1 consists of a single edge, the number of length-1 walks
between vi and vj is equal to the number of edges between them. Because our
graph is simple, there can be at most one edge between them.

(1) In the case that there is an edge between vi and vj , Ai,j = 1 by definition,
so it correctly denotes the number of length-1 walks between them.

(2) In the case that there is not an edge between them, Ai,j = 0 by definition,
so it still correctly denotes the number of length-1 walks between them.

Now, by the inductive hypothesis, assume (Am−1)i,j correctly denotes the num-
ber of walks of length m − 1 between vi and vj . Then, by definition of matrix
multiplication,

(Am−1 ·A)i,j =
n∑

k=1

(Am−1)i,k ·Ak,j

Because the penultimate edge in any walk terminating at vj will necessarily termi-
nate at a neighbor of vj , it is sufficient to count the number of length-(m−1) walks
to a neighbor of vj . Because Ak,j will have a value of 0 if vk is not a neighbor of
vj and 1 if it is, (Am−1 ·A)i,j is the sum of the number of length-(m− 1) paths to
neighbors of vj .
∴ (Am−1 ·A)i,j is the number of length-m paths from vi to vj . �
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3. Vertex Transitivity

There is one important property of walks on vertex-transitive graphs that will
be used in our final solution, and so that will be discussed here. First, however, we
will lay the foundation for proving this property with a lemma.

Lemma 3.1. A graph isomorphism preserves the number of walks between two
points

Proof. Let G and H be two isomorphic graphs with an isomorphism σ : V (G) →
V (H). Let vx, vy ∈ G. Because σ preserves adjacency, for any step s in any arbi-
trary path from vx to vy there must exist an equivalent step r under transformation
by σ. Furthermore, because σ is bijective and therefore injective, both the source
and the target of s map to unique vertices in V (H), so no other edge in E(G) maps
to r. Because every step s in every path from vx to vy maps to a distinct edge in
E(H) under σ, every path from vx to vy maps to a distinct path. Therefore, the
number of paths from σ(vx) to σ(vy) is at least the number of paths from vx to
vy. Furthermore, because σ is bijective, every path from σ(vx) to σ(vy) will map
to a distinct path from vx to vy under σ−1 by the same reasoning. Therefore, the
number of paths from vx to vy is at least the number of paths from σ(vx) to σ(vy).
Therefore there must be the same number of length-m paths from vx to vy as there
are from σ(vx) to σ(vy). �

The major property of vertex transitive graphs, however, is this:

Theorem 3.2. Given a vertex-transitive graph G with an adjacency matrix A, for
any m, every row of Am contains the same entries, though possibly in a different
arrangement.

Proof. Let Am
f be an arbitrary row of Am. Because G is vertex-transitive, there

is an automorphism σ mapping vf , the vertex in G corresponding to Am
f , to v1,

the vertex in G corresponding to Am
1 . Then, for any vertex vj ∈ G, there will be

a corresponding vk = σ(vj). Because σ is an isomorphism, and so preserves the
number of walks between two points, the number of walks between vf and vj will
equal the number of walks from v1 to vk Therefore, by Theorem 2.3, for 1 ≤ f, j ≤ n
the jth entry in Am

f will be equal to a corresponding kth entry in Am
1 . �

The significance of this is that if one views the rows of Am as vectors, then each
vector has the same magnitude. This will be useful in our final proof.

4. Tying it together

Here we will present our final proof. Note that the theorem in question only
asserts that the probability of a random walk returning to its origin is never less
than the probability of its arriving elsewhere1.

Theorem 4.1. A random walk of even length on a vertex-transitive graph returns
to its origin with greatest probability.

1As an example of the probability of a random walk returning to its origin equaling the probabil-
ity of its arriving elsewhere, consider a square. It is a vertex transitive graph, but any even-length

random walk will be as likely to return to the corner opposite its origin as to its origin.



EVEN WALKS ON VERTEX-TRANSITIVE GRAPHS 5

Proof. To show this, we’ll prove that the given statement is equivalent to ”given
an arbitrary even length, an arbitrary walk of that length returns to its origin with
greatest probability” and then prove this new statement.

Consider all walks of arbitrary even length m on a vertex-transitive graph G with
adjacency matrix A. Because G is vertex-transitive and therefore k-regular, the
chance of a length-m random walk matching any given length-m walk is 1

|V (G)| ·
1

km .
Because a random walk is equally likely to match any length-m walk, taking a
length-m random walk on G is equivalent to arbitrarily choosing a length-m walk
from the set of all possible length-m walks. So in order to show that a length-m
random walk returns to its origin with greatest probability, we must show that
an arbitrarily chosen length-m walk returns to its origin with greatest probability.
By Theorem 2.3, the number of length-m walks that return to their origin are
represented along the diagonal of Am, so in order to show that an arbitrarily chosen
length-m walk terminates at its origin with greatest probability, we can show that
no non-diagonal entries of the matrix Am are greater than any diagonal entries.

Because m is even, we can express Am as
(
A

m
2
)2. By Corollary 2.2, A

m
2 =

(A
m
2 )T , and we know, by the definition of dot product, that:

(Am)i,j = (A
m
2 )i • (A

m
2 )j

Now, we can express the dot product of two vectors a and b as ‖a‖‖b‖ cos(θ),
and because all row vectors in A

m
2 have the same magnitude, by Theorem 3.2, the

sole determinant of the size of their product is the cosine of the contained angle.
Because the contained angle will be 0 when i = j, as the two row vectors are the
same in this case, no entries in Am can be greater than any entry along the diagonal.
Therefore a random walk of arbitrary even length m originating from any vertex in
G returns to its origin with greatest probability. �
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