
WHAT THE FUNCTOR?:
CATEGORY THEORY AND THE CONCEPT OF ADJOINTNESS

CAROLINE TERRY

Abstract. Category theory provides a more abstract and thus more general

setting for considering the structure of mathematical objects. In this paper
we will define basic concepts related to category theory and discuss examples,

such as groups and sets as categories and forgetful and free functors, following

Eugenia Cheng’s notes on category theory [1]. Our ultimate goal will be to
examine the concept of adjointness through the example of free and forgetful

functors.
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1. Some Definitions and Examples

First we define some basic concepts related to categories and see some helpful
examples.

Definition 1.1. A category C consists of:
• A collection of objects, ob C
• For every pair of objects X,Y ∈ ob C, a collection C(X,Y ) of morphisms

(also called maps) f : X → Y .
These morphisms are equipped with:
• For each object X ∈ ob C an identity map 1X ∈ ob C
• For each X,Y, Z ∈ ob C a composition map mXY Z : C(Y,Z) × C(X,Y ) →
C(X,Z) that sends (g, f) to g ◦ f = gf

Composition of morphisms satisfies the following:
• Unit laws: if f : X → Y then 1Y ◦ f = f = f ◦ 1X .
• Associativity: if f : X → Y , g : Y → Z, and h : Z → W , then h(gf) =

(hg)f .

Examples 1.2. Categories:
(1) The category Set, where objects are sets and morphisms are functions.
(2) The category Grp, where objects are groups and morphisms are group

homomorphisms.
1



2 CAROLINE TERRY

(3) The category Top, where the objects are topological spaces and the mor-
phisms are continuous maps.

(4) The category Set∗, where the objects are pointed sets and the morphisms
are base point preserving functions.

(5) The category Mon, where the objects are monoids and the morphisms are
monoid homomorphisms.

We see from these examples the wide range of mathematical structures described
by category theory. We also have a relation between two categories through what
is called a functor, which we now define.

Definition 1.3. A functor F : C → D relates two categories C and D in the
following way:

• To each object X ∈ ob C it associates an object FX ∈ obD
• To each map f ∈ C(X,Y ) it associates a map Ff ∈ D(FX,FY )

such that the following properties hold:
• For each object X ∈ ob C, F1X = 1FX
• For a map g ∈ C(X,Y ), and a map f ∈ C(Z, Y ), we have F (f ◦g) = Ff ◦Fg.

Now we look at examples of functors of two sorts: free functors and forgetful
functors. These two concepts will be useful later as examples for the concept of
adjointness.

Examples 1.4. Forgetful functors:
(1) The forgetful functor: Grp → Set sends each group G ∈ Grp to its un-

derlying set U(G) ∈ Set and each group homomorphism f ∈ Grp(G1, G2)
to the corresponding set function Uf ∈ Set(U(G1), U(G2)).

(2) The forgetful functor: Grp → Set∗ sends a group G to its underlying
set U(G), and the identity in G to the basepoint in U(G). It sends each
group homomorphism f ∈ Grp(G1, G2) to the corresponding set function
Uf ∈ Set∗(U(G1), U(G2)).

(3) The forgetful functor: Grp→Mon sends a group G to itself as a monoid
and each group homomorphism to the corresponding monoid homomor-
phism.

(4) The forgetful functors: Set∗ → Set sends each pointed set S∗ to itself
as a set and each base point preserving function to the corresponding set
function.

Definition 1.5. Some properties of functors:
• A functor F : C → D is faithful if for all X, Y ∈ ob C, the set function
C(X,Y )→ D(FX,FY ) is injective.

• A functor F : C → D is full if for all X, Y ∈ ob C, the set function
C(X,Y )→ D(FX,FY ) is surjective.
• A functor F : C → D is full and faithful if for all X, Y ∈ ob C, the set

function C(X,Y )→ D(FX,FY ) is bijective.

From our above examples, we see that the forgetful functor: Grp → Mon is
both full and faithful since every group homomorphism is a monoid homomorphism
and every monoid homomorphism between groups is a group homomorphism. The
forgetful functor Mon → Set∗ is faithful but not full because there are maps
between monoids that are not monoid homomorphisms but which preserve the
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identity. The forgetful functor Set∗ → Set is also faithful but not full since there
are functions between pointed sets that do not preserve the basepoint.

Before we look at the examples of free functors we define the free group F (S)
on a set S.

Definition 1.6. Let S be a set. Suppose we are given a group F (S) and a function
i : S → F (S). The group F (S) is a free group on S if for all groups G and for all
functions g : S → G, there exists a unique homomorphism φ : F (S)→ G such that

S
g //

i

��

G

F (S)
φ

==zzzzzzzz

commutes, that is, such that g = φ ◦ i.

First we show such a group exists. Let S be a set, and suppose that for each
element s ∈ S we introduce a corresponding element s−1 in another set S−1 and
call this element the inverse of s. We then form a group from S and S−1 by
forming words from the elements of S and their inverses. We call the empty word
the identity, and when we have an element adjacent to its inverse, we reduce the
pair to the identity. For example, a word s1s2s−1

2 s3 would reduce to s1s3. Call this
group W (S). Now we show this group satisfies the universal property.

Let S be a set, and let W (S) be the set of words in S described above. Let
i : S → W (S) be the function sending each element in S to the corresponding
one-letter word in W (S). Then for any group G, and any function h : S → G,
we show that there exists a unique homomorphism φ : F (S) → G such that the
above diagram commutes. For an element w ∈W (S), we have by our construction
w = i(s1)i(s2) · · · = s1s2 . . . , where si ∈ S and no si, si+1 are inverses. Then we
construct a function φ that sends each w = s1s2 · · · ∈W (S) to h = g(s1)g(s2) · · · ∈
G. It is clear now that the diagram commutes since, by our construction φ ◦ i = g.
Thus W (S) is a candidate for the free group on S.

Now we show that the free group on S is unique, that is, that given two free
groups on S, there exists an isomorphism between them that preserves S. Suppose
F1(S) and F2(S) are free groups on S, with inclusions i1 : S → F1(S), i2 : S →
F2(S). Then by the definition of F1(S) as a free group on S, since we have a
group F2(S), and a set map i2 : S → F2(S), there exists a unique homomorphism
φ1 : F1(S)→ F2(S) such that

S
i2 //

i1

��

F2(S)

F1(S)
φ1

;;vvvvvvvvv

commutes, that is, such that φ1 ◦ i1 = i2.
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Now by the definition of F2(S) as a free group on S, since we have a group F1(S)
and a set map i1 : S → F1(S), there exists a unique φ2 such that

S
i1 //

i2

��

F1(S)

F2(S)
φ2

;;vvvvvvvvv

commutes, that is, such that φ2◦i2 = i1. Now substituting i2 = φ1◦i1 from the first
equation into this we obtain φ2 ◦ φ1 ◦ i1 = i1. This tells us the following diagram
commutes:

S
i1 //

i1

��

F1(S)

F1(S)
φ2◦φ1

;;vvvvvvvvv

But we know there is another map: F1(S) → F1(S) such that the diagram com-
mutes:

S
i1 //

i1

��

F1(S)

F1(S)
idF1(S)

;;vvvvvvvvv

By the definition of the free group F1(S) on S, this homomorphism is unique, so
we must have φ2 ◦φ1 = idF1(S). Similarly φ1 ◦φ2 = idF2(S). Thus F1(S) and F2(S)
are isomorphic, and the free group on S is unique up to isomorphism preserving S.

Here are some examples of functors involving free groups:

Examples 1.7. Free functors:
(1) The free functor: Set → Grp sends each set S to the free group F (S) on

S. It sends each set function to a group homomorphism in the following
way. Say we have i1 : S1 → F (S1), i2 : S2 → F (S2). Given f : S1 → S2, we
have a map i2 ◦ f from S1 to F (S2). Then by the universal property, there
exists a unique homomorphism φ : F (S1)→ F (S2) such that the following
diagram commutes:

S1

i2◦f

$$IIIIIIIII

i1

��
F (S1)

φ
// F (S2)

We define Ff = φ. Then the diagram commutes by construction. So the
free functor sends each set function f to the group homomorphism Ff .

(2) The free functor: Set∗ → Grp sends each pointed set S∗ to the free group
F (S∗) that assigns the basepoint to the identity on the free group. It sends
each set function to the corresponding group homomorphism as described
above.

There are similar free functors from Set∗ to Mon and from Set to Set∗, but we
will only be using the example from Set to Grp for the rest of the paper.
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2. Natural Transformations and Adjoint Functors

Here are a few more concepts we need to understand the definition of adjointness.

Definition 2.1. Let C be a category. The dual or opposite category Cop consists
of the following:

• ob Cop = ob C
• Cop(X,Y ) = C(Y,X)
• the identity maps are the same
• fop ◦ gop = (g ◦ f)op

Definition 2.2. A contravariant functor from C to D is a functor from Cop to D.
Equivalently, F is a contravariant functor if:

• F sends objects X ∈ ob C to objects FX ∈ obD
• F sends morphisms f ∈ C(X,Y ) to morphisms Ff ∈ D(FY, FX)
• identities are preserved
• F (f ◦ g) = Fg ◦ Ff

What we have called “functor” so far is also called a covariant functor.

Examples 2.3. Here are examples of a contravariant functor and a covariant func-
tor.

• Fix X ∈ obC. The contravariant hom functor, C(−, X) : Cop → Set sends
any Y ∈ ob Cop to the set of morphisms from Y to X. For any g : Y → Y ′,
C(−, X) gives us a map C(Y ′, X) → C(Y,X) by sending f ∈ C(Y ′, X) to
f ◦ g. This is an example of a contravariant functor.
• Fix X ∈ obC. The covariant hom functor C(X,−) : C → Set sends Y ∈

ob C to the set of morphisms from X to Y . For any morphism g : Y → Y ′,
C(X,−) gives us a map C(X,Y ) → C(X,Y ′) by sending f ∈ C(X,Y ) to
g ◦ f . This is an example of a covariant functor.

Here is a definition that will be important in understanding adjointness.

Definition 2.4. Let F , G be functors from a category C to a category D. A
transformation α : F → G, consisting of component maps αX : FX → GX, for all
X ∈ ob C, is a natural transformation if for all maps f : X → X ′ in C,

FX
αX //

Ff

��

GX

Gf

��
FX ′

αX′ // GX ′

commutes, that is, αX′ ◦ Ff = Gf ◦ αX .

This also gives a definition of natural transformations of contravariant functors.

Examples 2.5. The contravariant and covariant functors in Examples 2.3 also
provide examples of natural transformations:

(1) Let X, Y ∈ ob C, h : X → Y , and let α be the transformation between
the two contravariant functors C(−, X) and C(−, Y ) consisting of the com-
ponent transformations: {αZ : C(Z,X) → C(Z, Y )}, where Z ∈ C. These
component transformations are given by composing g ∈ C(Z,X) with h.
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For this to be a natural transformation, we need to show that given any
f : Z → Z ′, where Z, Z ′ ∈ C the following diagram commutes:

C(Z ′, X)
αZ′ //

C(f,id)

��

C(Z ′, Y )

C(f,id)

��
C(Z,X)

αZ

// C(Z, Y )

To see if this commutes, take g : Z ′ → X. Apply αZ′ to get h◦g ∈ C(Z ′, Y ).
Then apply C(f, id) to get h◦g◦f ∈ C(Z, Y ). Now take this same g but apply
C(f, id) first to get g◦f ∈ C(Z,X). Then apply αZ to get h◦g◦f ∈ C(Z, Y ).
This tells us C(f, id) ◦ αZ′ = αZ ◦ C(f, id), or that the diagram commutes
and α is a natural transformation.

(2) Let X, Y ∈ ob Cop, h : Y → X, and let α be the transformation between
the two covariant functors C(X,−) and C(Y,−) consisting of the component
transformations {αZ : C(X,Z) → C(Y,Z)}, for Z ∈ C. These component
transformations are given by composing g ∈ C(X,Z) with h. For this to
be a natural transformation, we need to show that given any f : Z → Z ′,
where Z, Z ′ ∈ C, the following diagram commutes:

C(X,Z)
αZ //

C(id,f)

��

C(Y, Z)

C(id,f)

��
C(X,Z ′)

αZ′
// C(Y,Z ′)

To check if this commutes, take g : Z → Z ′. Apply αZ to get g ◦ h ∈
(Y, Z). Then apply C(id, f) to get f ◦ g ◦ h ∈ C(Y,Z ′). Now take g again
and first apply C(id, f) to get f ◦ g ∈ C(X,Z ′). Then apply αZ′ to get
f ◦g◦h ∈ C(Y, Z ′). So we see the diagram does commute and α is a natural
transformation.

Now we define adjointness.

Definition 2.6. Let C and D be categories. The functors F : C → D and G : D → C
are adjoint if there exists an isomorphism

D(FX, Y ) ∼= C(X,GY )

that is natural in X and Y . We then say F is left adjoint to G, and G is right adjoint
to F , and denote this by F a G. We will denote the component transformations of
such an isomorphism as {ηX,Y : D(FX, Y )→ C(X,GY )}

Now we explain what naturality in X and Y means. First notice that if we fix
X ∈ ob C, then D(FX,−) and C(X,G−) are both covariant functors D → Set.
Similarly, if we fix Y ∈ obD, then D(F−, Y ) and C(−, GY ) are both contravariant
functors C → Set.

Thus, by naturality in Y , we mean that for our fixed X ∈ ob C, then ηX,− :
D(FX,−) → C(X,G−) is a natural transformation. That is, for any g : Y → Y ′,



WHAT THE FUNCTOR?: CATEGORY THEORY AND THE CONCEPT OF ADJOINTNESS 7

where Y , Y ′ ∈ obD, the following diagram commutes:

D(FX, Y )
ηX,Y //

D(id,g)

��

C(X ′, GY )

C(id,Gg)
��

D(FX, Y ′)
ηX,Y ′

// C(X,GY ′)

Similarly, by naturality in X, we mean that if we fix Y ∈ obD, then η−,Y :
D(F−, Y ) → C(−, GY ) is a natural transformation. That is, for any f : X → X ′,
where X, X ′ ∈ ob C, the following diagram commutes:

D(FX ′, Y )
ηX′,Y //

D(Ff,id)

��

C(X ′, GY )

C(f,id)

��
D(FX, Y )

ηX,Y

// C(X,GY )

3. The Free and Forgetful Functors as Adjoints

Now that we defined the concept of adjointness, here is the example we have
been working up to.

Example 3.1. Let F be the free functor from Set to Grp and let U be the forgetful
functor from Grp to Set. Then F a U . That is, there exists a natural isomorphism

Grp(F (S), G) ∼= Set(S,U(G))

where here, and throughout the following explanation, U represents the forgetful
functor: Grp→ Set, F the free functor: Set→ Grp, S a set, and G a group.

To see why this is true, we first need to show that there exists a bijection between
the two sets. This means we need to find a map : Grp(F (S), G) → Set(S,U(G))
and a map : Set(S,U(G)) → Grp(F (S), G) such that their composition gives the
identity.

A map from Set(S,U(G)) → Grp(F (S), G) is given us by the definition of a
free group. If i : S → U(F (S)) is the inclusion given in the definition, then given a
morphism f ∈ Set(S,U(G)) we have a unique morphism ψ ∈ Grp(F (S), G) such
that the following diagram commutes:

S
f //

i

��

U(G)

U(F (S))
Uψ

::ttttttttt

This also gives us a map from Grp(F (S), G) → Set(S,U(G)). If i : S →
U(F (S)), then given a group homomorphism ψ ∈ Grp(F (S), G), take Uψ ◦ i which
we can see from the above diagram is in Set(S,U(G)).

Now we show that the composition of these maps gives the identity. Start
with ψ : F (S) → G. Taking Uψ ◦ i (i : S → U(F (S))), we get a morphism in
Set(S,U(G)). Now given this morphism, the definition of the free group gives us
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a unique homomorphism φ : F (S)→ G such that

S
Uψ◦i //

i

��

U(G)

U(F (S))
φ

::ttttttttt

commutes, that is, such that φ◦ i = Uψ ◦ i. Since Uψ makes the diagram commute,
and the homomorphism for which the diagram commutes is unique, we must have
φ = Uψ, which gives us back our original ψ ∈ Grp(F (S), G). Starting with f :
S → U(G), the universal property tell us there exists a unique homomorphism ψ ∈
Grp(F (S), G), such that the following diagram commutes. Then taking Uψ ◦ i = f
we get back our original function in Set(S,U(G)).

Now we show that this isomorphism is natural in S and in G. First notice, if
we fix S ∈ Set we have two covariant functors Grp(F (S),−) and Set(S,U(−)),
and if we fix G ∈ Grp we have two contravariant functors Grp(F (−), G) and
Set(−, U(G)).

We now show naturality in G. Fix S ∈ Set. Let αS,− : Grp(F (S),−) →
Set(S,U(−)) be as defined above. Let i : S → F (S). Given any g : G→ G′, where
G, G′ ∈ Grp, we need to check that the following diagram commutes:

Grp(F (S), G)
αS,G //

Grp(id,g)

��

Set(S,U(G))

Set(id,Ug)

��
Grp(F (S), G′)

αS,G′
// Set(S,U(G′))

That is, we need to check Set(id, Ug) ◦ αS,G = αS,G′ ◦Grp(id, g). We show that
chasing the diagram both ways gives the same result. Take ψ ∈ Grp(F (S), G).
Then apply αS,G to get Uψ ◦ i ∈ Set(S,U(G)). Then apply Set(id, Ug) to get
U(g ◦ ψ) ◦ i = Ug ◦Uψ ◦ i ∈ Set(S,U(G′)). Now take the same ψ ∈ Grp(F (S), G)
and apply Grp(id, g) to get g ◦ ψ ∈ Grp(F (S), G′). Then apply αS,G′ to get
U(g ◦ ψ) ◦ i = Ug ◦ Uψ ◦ i ∈ Set(S,U(G′)). We have shown Set(id, Ug) ◦ αS,G =
Ug ◦ ψ ◦ i and αS,G′ ◦Grp(id, g) = Ug ◦ Uψ ◦ i, so the diagram commutes.

Now we show naturality in S. Fix G ∈ Grp and let η−,G : Grp(F (−), G) →
Set(−, U(G)) be as defined above. Let S, S′ ∈ Set, i : S → U(F (S)), i′ : S′ →
U(F (S′)). Given any f : S → S′, we need to check that

Grp(F (S′), G)
ηS′,G //

Grp(Ff,id)

��

Set(S′, U(G))

Set(f,id)

��
Grp(F (S), G)

ηS,G

// Set(S,U(G))

commutes, that is, that ηS′,G ◦ Set(f, id) = Grp(Ff, id) ◦ ηS,G. We show that
chasing the diagram both ways gives the same result. Take ψ ∈ Grp(F (S′), G),
then apply ηS′,G, to get Uψ ◦ i′ ∈ Set(S′, U(G)). Then applying Set(f, id) we
get Uψ ◦ i′ ◦ f ∈ Set(S,U(G)). Now again take ψ ∈ Grp(F (S′), G) and apply
Grp(Ff, id), to get ψ◦Ff ∈ Grp(F (S), G). Then apply ηS,G to get U(ψ◦Ff)◦i =
Uψ ◦UFf ◦ i. The diagram commutes if ηS′,G ◦Set(f, id) = Grp(Ff, id) ◦ ηS,G, or
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if Uψ ◦ i′ ◦f = Uψ ◦UFf ◦ i. To show this we need only check that i′ ◦f = UFf ◦ i,
or that the following diagram commutes:

S
f

//

i

��

S′

i′

��
U(F (S))

UFf
// U(F (S′))

But we showed in Examples 1.7 that this diagram does commute. Thus i′ ◦ f =
UFf ◦ i, and so U and F are adjoints.
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