THE GRIGORCHUK GROUP

KATIE WADDLE

ABSTRACT. In this survey we will define the Grigorchuk group and prove some
of its properties. We will show that the Grigorchuk group is finitely generated
but infinite. We will also show that the Grigorchuk group is a 2-group, meaning
that every element has finite order a power of two. This, along with Burnside’s
Theorem, gives that the Grigorchuk group is not linear.
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INTRODUCTION

In a 1980 paper [2] Rostislav Grigorchuk constructed the Grigorchuk group,
also known as the first Grigorchuk group. In 1984 [3] the group was proved by
Grigorchuk to have intermediate word growth. This was the first finitely generated
group proven to show such growth, answering the question posed by John Milnor
[5] of whether such a group existed. The Grigorchuk group is one of the most
important examples in geometric group theory as it exhibits a number of other
interesting properties as well, including amenability and the characteristic of being
just-infinite. In this paper I will prove some basic facts about the Grigorchuk group.

The Grigorchuk group is a subgroup of the automorphism group of the binary
tree T', which we will call Aut(T'). Section 1 will explore Aut(T"). The group Aut(7T)
does not share all of its properties with the Grigorchuk group. For example we will
prove:

Proposition 0.1. Aut(T) is uncountable.

The Grigorchuk group, being finitely generated, cannot be uncountable. The Grig-
orchuk group does inherit some properties from Aut(7"), however. We will prove:

Proposition 0.2. Aut(7T) is residually finite.

The Grigorchuk group, as a subgroup of a residually finite group, inherits this
property. Finitely generated residually finite groups are Hopfian, thus we will also
prove:
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Corollary 0.3. The Grigorchuk group is Hopfian.

We will give generators for the Grigorchuk group in Section 2 and exhibit some
of the group’s basic properties. We will prove that the generators all have order
two (Proposition 2.3) and that some of the relations amongst the generators allow
us to write down elements of the group in a useful way (Proposition 2.4). These
facts will lead to a proof of the following:

Theorem 0.4. The Grigorchuk group is infinite.
Finally, in Section 3 we will prove the major result of this paper:
Theorem 0.5. The Grigorchuk group is a 2-group.

This shows that the Grigorchuk group is a finitely generated infinite group in which
every element has finite order. A problem posed by William Burnside in 1902
stumped group theorists for a long time. The question was the following:

Question 0.6. Must a finitely generated group where every element has finite order
be finite?

The Grigorchuk group, by definition and Proposition 2.3 and Theorem 0.4 an-
swers this question negatively, though it is not the only such group. The first
example of an infinite group with Burnside type was given by Golod and Shafare-
vich in 1964 [4]. The modified question to ask then, is what conditions must be
imposed to get a positive answer. It turns out that it is sufficient for finite-ness to
show that the group is linear, that is, homomorphic to a subgroup of GL(n,K) for
some integer n and some field K. This result is beyond the scope of this paper, but
taken for granted, it allows us to say that I' is not a linear group.

1. PRELIMINARIES

Definition 1.1. Let a rooted binary tree T = (V, E) be a tree with vertex set V
all finite sequences of elements of {0,1}. We will write a vertex as (j1,J2,--.,Jk)-
Two vertices are connected by an edge in E if their lengths as sequences differ by
one, and the shorter sentence is obtained from the longer one by deleting its last
term. Note that the empty set is a vertex, and it is considered the root of the tree.

We will refer to all seqences with length k as L(k), and call this a level of T.
Note that

V= [j L(k).
k=0

Automorphisms of the binary tree fix the root (), and permute subtrees that
begin on the same level. All adjacent vertices must remain adjacent, so we can
think of an automorphism as a series of ”twists” of branches of the tree. We will
call the automorphism group Aut(T).

Consider an automorphism g € Aut(7T). It permutes the vertices at each level,
but the allowed permutations at a given level depend on the permutations of the
previous levels (since adjacent vertices must remain adjacent). We can write g as
a sequence of permutations {x;}, where x; is the permutation of L(1), x5 is the
permutation of the vertices of L(2) after x is performed, and so on. This way of
representing automorphisms can be used to prove that the cardinality of Aut(7T) is
uncountable.
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FIGURE 1. Here is part of a binary tree.

Proof of 0.1. [Aut(T) is Uncountable] At each level, let 0 correspond to the constant
permutation. Given the lexicographic ordering of the level’s vertices, let 1 be the
transposition of the first two vertices. Consider an infinite sequence of 0’s and 1’s.
This is a well-defined element of Aut(T'), keeping in mind that the ith permutation
permutes the vertices of L(7) after all the permutations of lower levels have been
performed. But this gives a bijection between a subset of Aut(7T") and the set of
infinite sequences of 0’s and 1’s, which is uncountable. ([l

Let T(k) be the subtree of T spanned by all vertices with length at most k.
Define Aut(T'(k)) analogously to Aut(7T'). Note that Aut(7T'(k)) is finite for any k.
Then let

St(k) ={g € Awt(T)|V = € T(k), g(x) = z}.
be the set of automorphisms in Aut(T) that fix T'(k).

Proposition 1.2. St(k) is a normal subgroup of finite index in Aut(T).

Proof. Let ¢ : Aut(T) — Aut(T(k)) be the function taking an automorphism
g € Aut(T) to the automorphism it performs on 7T'(k). This is a homomorphism,
with kernel St(k), thus St(k) is normal in Aut(7"). Then by the first isomorphism
theorem, St(k) has finite index in Aut(T). O

With further calculations, the following can be used to show facts about semi-
direct products of subgroups of Aut(T).
Definition 1.3. A short exact sequence

1 A B—1sC 1

is said to split if there is a homomorphism h : C' — B such that goh is the identity
on C.
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Proposition 1.4. The following is a short exact sequence that splits:

f

1 St(k) Aut(T) —Z> Aut(T (k) —= 1

where f is inclusion and g takes a € Aut(T) to the induced automorphism on T (k).

Proof. We know that Im(f) = St(k) = Ker(g), as the automorphisms that fix
T (k) are exactly those that fix the first & levels of Aut(T"), so the sequence is exact.
Let h : Aut(T'(k)) — Aut(T) map b € Aut(T'(k)) to the automorphism of Aut(7T)
that performs b on the first k levels allowing levels > k to rearrange only as needed.
Then f o h is the identity on Aut(7T'(k)), and the sequence splits. O

Now let us consider some characteristics that the Grigorchuk group will inherit.

Definition 1.5. A group G is residually finite if for every nontrivial element g € G,
there exists a homomorphism from G to a finite group that maps g to a nontrivial
element.

Lemma 1.6. A group G is residually finite if

N H={1}
H<G@
finite index
Proof. Let g € G, g # 1. Because the intersection of the finite index subgroups is
trivial, there exists a finite index subgroup H that doesn’t contain g. Let

N = ()h'Hh.
heG
Note that N < H is also of finite index, as there are finitely many conjugates each
of finite index, and the intersection of these must be of finite index. Since g ¢ N,
the quotient map f : G — G\ N takes G to a finite set G \ N and maps g to a
nontrivial element. Thus G is residually finite. (]

Proof of 0.2. [Aut(T) is residually finite] T will present two proofs.

First proof: Let g € Aut(T), g # 1. Then there is some = € L(k) for some k such
that g(z) # x. Define ¢ : Aut(T) — Sym(L(k)) such that ¢(h) is the permutation
h performs on L(k). Note that Sym(L(k)) is finite. By construction of ¢ we know
that ¢(g) # 1, and Aut(T) is residually finite.

Second proof: Note that {St(k)|k € N} C{H < Aut(T)|H of finite index} by
Proposition 1.2 so by Lemma 1.6 is sufficient to prove the following:

() St(k) = {1}.
k=1
Let g € St(j), g # 1. Then 3 x € L(i) for some i such that g(z) # x. But then

g & St(i), so g & (2, St(k). U

Given a subgroup of a residually finite group, restriction of homomorphisms to
the subgroup gives the desired property. Thus subgroups of residually finite groups
are also residually finite.

Corollary 1.7. The Grigorchuk group, being a subgroup of a residually finite group,
1s residually finite.
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Definition 1.8. A group G is Hopfian if any surjective homomorphism G — G is
also injective.

Proposition 1.9. Any finitely generated residually finite group is Hopfian.

Proof. We will prove the contrapositive. Let G be a non-Hopfian group. Then there
exists a surjective homomorphism ¢ : G — G that is not injective. Let go € Ker(¢)
such that go # 1. Assume G is residually finite, so there is a homomorphism
m: G — A with A a finite group, such that 7(go) # 1.

Using the surjectivity of ¢, for each n > 1, choose some g, € G such that
¢"(gn) = go. Let m, : G — A such that for all g € G, m,(g9) = 7(¢"(g)). A little
calculation shows that m,(gn) = 7(¢"(9n)) = 7(go) # 1, similarly, 7, (gm) # 1.
If m # n, we can assume without loss of generality that m > n, since otherwise
we could make the following argument about g,,. Let m > n. Then m,(g,) =
(™1 (66" (9n)))) = m(E™ "1 (6())) = (6 "1(1)) = 7(1) = 1. Since
7n(gn) # 1 this shows all the 7; are distinct. But G is finitely generated, and A is
finite, so there are only finitely many possible homomorphisms G — A, contradic-
tion. So G is not residually finite, and our claim holds. (|

Proof of 0.3. The Grigorchuk group, being finitely generated and residually finite,
is Hopfian. O

2. THE DEFINITION OF THE GRIGORCHUK GROUP

Here we will define the Grigorchuk group. To do so we must define four auto-
morphisms on the binary tree that will be its generators.

Let T; be the subtree of all vertices whose sequence begins with j. Define the
homomorphism d; : T' — T} that takes a vertex = to the vertex jz by concatenation
of the sequences j and z. Given two automorphisms gy and g;, we can define
g = (g0, g1) which acts on T; as 6igic5i_1.

Definition 2.1. If j € {0,1}, define j by 0 =1 and 1 =0. Then let a : V' — V be
defined by a(j1,j2,---,7%) = (J1,J2,---,Jk). Let e be the identity automorphism.
Define b, ¢, and d recursively. All fix the root and L(1) and then using the notation
defined above,

b= (a,c) ¢ = (a,d) d = (e, b).

An explicit example gives
b(1,0,1,1) = 81(e(87 (1, 0,1,1))) = 61(c(0,1,1)) = 81 (%o (a(dy ' (0,1, 1))
= 61(60(0’(1’ 1))) = 61(50(07 1)) = 61(0a 0) 1) = (17 Oa 0) 1)

In shorthand, we have
07]T27j3a s 7jk)
17 c(j2aj3a s ajk))
O7j27j37 cee 7jk?)
17d(j27j37 cee ajk))
O7j27j3a s 7jk)
17 b(j27j3a cee 7jk:))

b(0, 32,35 - - - 5 Jk
b(1, 52,73, -+ Jk
(0, 72,73, -+ -, Jk
(
(

e(1, 72,735+ Jk
d(0,72,73, -+ Jk
d(1, j2,jas - - - Jk
Here are some more examples:
b(1,1,0,1,1,0,1) = (1,¢(1,0,1,1,0,1)) = (1,1,d(0,1,1,0,1)) = (1,1,0,1,1,0,1)

) (
) (
) (
) (
) (
) (
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C(l7 17 07 17 1707 1) = (17 d(17 07 17 17 O’ 1)) = (17 17 b(07 1) 1707 1)) = (17 1707 07 17 07 1)
d(1,1,0,1,1,0,1) = (1,b(1,0,1,1,0,1)) = (1,1,¢(0,1,1,0,1)) = (1,1,0,0,1,0,1)
Definition 2.2. Define the Grigorchuk group I' as the group of automorphisms

generated by a, b, c, and d:
I ={a,b,c,d)

Let’s prove some facts about these generators and a few of the relations amongst
them.

Proposition 2.3. We have
ad=bv==d*=¢
Proof. For a:

a(a(j17j2a cee 7jk)) = a(jlaj27 cee a]k) = (j17j27 cee 7jk)
so a? =e.

Let’s consider b, ¢, and d. 1 will prove by induction on n that all the vertices
in a level L(n) are held constant by b2, c?, or d2. By definition of each, the claim
holds for L(1). Now assume L(k) is held constant for all k¥ < n when b2, ¢?, or d? is
applied. We know (z,y)? = (22, y?) since performing automorphisms on different
subtrees vertices is commutative. This means that

b = (a®, c?) = (e,c?)
= (a27d2) = (6, (62>d2)) = (67 (e’dz))
d* = (e*,b*) = (e, b?)
Consider a vertex of L(n), v = (j1,...,jn). Either v = (0,j2,...,jn) or v =
(1,72, ..., 7n). If we take b2(v) we get (0,e(ja,...jJn) or (1,c?(j2,...,7n)) respec-
tively. The first is trivially v, the second is v by the inductive hypothesis, since

(J2,--+,Jn) is a sequence of length n — 1. Similar arguments can be made when
applying ¢? and d?. O

Proposition 2.4. The following are some of the relations in I':

bc=cb=d cd=dc=0 db=0bd=c
Proof. 1 will prove by induction on n that the stated relations hold on vertices
of L(n). First note that the relations hold on L(1) trivially since b, ¢, and d are

all constant on L(1). Assume the relations hold on L(k) for all & < n. Because
automorphisms on different subtrees are commutative, we know the following:

be = (a,c)(a,d) = (a®,cd) = (e, cd)

cd = (a,d)(e, ) (a,db)
= (1,b)(a,c) = (a,bc)

Now consider a vertex v = (j17 e n) of L(n). If v = (0, j2, ..., jn) then
be(v) = (0, (o . 4u)) = d(v),

and if v = (1, jo,. .., jn) then

be(v) = (1, ¢d(jz, - -, jn)) = (1,6(j2, .-, jn)) = d(v)
where the second equality holds by the inductive hypothesis since (ja,...,Jn) is
a sequence of length n — 1. Similar arguments can be made for the other stated
relations. (]
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Remark 2.5. An element of I' can be written as a reduced word in a, b, ¢, and d. As
all the generators are their own inverses, we need only positive letters, and given
the above relations, we can collapse any repeated letters to one or the empty letter,
and any combinations of b, ¢, and d to a single letter. Thus any word can be written
as

Upauiauza ... uj—1auy
where uy,...,u;_1 € {b,¢,d} and wug,u; € {0,b,¢c,d}.
We will now show that T' is infinite. To do so, recall St(1), the subgroup of

Aut(T) from Section 1 that holds L(1) constant. Here we will examine Str(1),
which we will take to be the intersection of St(1) with T".

Proposition 2.6. A word in {a,b,c,d} is in Str(1) if and only if it has an even
number of occurrences of a.

Proof. First consider a word g with an even number of occurences of a. Since b, ¢,
and d all hold L(1) constant, performing g on L(1) merely requires flipping 0 and
1 as many times as a occurs. Since this is an even number, L(1) will return to its
starting position, thus making g € Str(1).

If the word has an odd number of occurences of a, 0 and 1 in L(1) will be
exchanged an odd number of times, thus L(1) will not be kept constant, and the
claim holds. ]

Definition 2.7. Define

= (o, 1) : Str(1) =T xT

as we defined b, ¢, and d above, i.e. for g € Str(1), for x € T; g(x) = 6;¢:0; *(x).
So ¢ (b) = (a,c), etc. In particular, ¢g(b) = a.

Let us calculate 1 for some useful elements of Str(1). First the easy ones.
P(b) = (a,c)  ¥(c) =(a,d)  P(d) = (e,b)
Going beyond those requires a little hard work.
Lemma 2.8. The following hold:
Y(aba) = (¢, a) Y(aca) = (d,a) Y(ada) = (b,1)
Proof. To calculate ¥ (aba) consider (0, jo,...,jn), (1,72,...,4n) €T:
aba(03j27"'ajn) - ab(laj2>"'7jn)
= Cl(l,C(jQ,...,jn)
= (0,c(j2,---n))
aba(l,ja, ..., jn) = ab(0,j2,...,jn)
= a(07a(j27"'7jn)
= (17a(j27"'7jn))

So ¢o(aba) = ¢, and ¢1(aba) = a, thus giving p(aba) = (¢, a). Similar calculations
give the other two results. O

Proposition 2.9. The homomorphism ¢y : Str(1) — T' is surjective.
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Proof. Note that the following hold:
(b)) =c  di(c)=d  ¢1(d) =0

Also, above we showed that ¢1(aba) = a, which means that ¢; maps to all of
the generators of I' and, as it is a homomorphism, must be surjective. O

Proof of Theorem 0.4. [T is infinite] We know Str(1) is a strictly proper subgroup
of T since a is an element of T but not of Str(1). Str(1) is mapped onto I by ¢;.
This is only possible if I' is infinite. (|

3. THE GRIGORCHUK GROUP IS A 2-GROUP

In order to prove Theorem 0.5 we will need to define the length of an automor-
phism in I'. The proof will proceed by induction on the length of elements of T'.
We will also prove base cases for the inductive argument as Propositions 3.2 and
3.3.

Definition 3.1. For an automorphism v in I" define its length I(7) as the smallest
integer n for which there exists a sequence (s;)"_; with s; € {a,b,c,d} such that
$182 -+ S, = . In other words, [(v) is the minimum number of letters required to
make a word in {a,b,c,d} that represents 7.

Proposition 3.2. For v € T such that I(y) =2, v'¢ = 1.

Proof. By Proposition 2.4 any pairing of elements of {b, ¢,d} can be reduced to a
single letter, and any repeated letter is the identity, so we must only show that the
elements ab, ba, ac, ca, ad, and da have order dividing 16.

(1) Consider ad and da first. By Lemma 2.8, ada = (b, 1) (where the ada and
¥(ada) are considered to be the same automorphism). So ad has order 4
by the following calculation:

(ad)* = (adad)? = ((b,1)(1,D)) = (b,b)* = (b*,b%) = (e,¢)
Similarly for da:
(da)* = (dada)* = ((1,b)(b,1)) = (b,b)* = (b*,b?) = (e, €)
(2) Now consider ac and ca. By Lemma 2.8, aca = (d,a). So we have:
(ac)? = acac = (d, a)(a,d) = (da, ad)
(ca)? = caca = (a,d)(d,a) = (ad, da)

Since ad and da were shown in (1) to have order 4, the calculations above
give that ac and ca have order 8.
(3) Lastly, let’s look at ab and ba. Above we found that aba = (¢, a), giving:

(ab)? = abab = (c,a)(a,c) = (ca, ac)
(ba)? = baba = (a,c)(c,a) = (ac, ca)

Since ac and ca were shown in (2) to have order 8, these calculations
show that ab and ba have order 16.

O

Corollary 3.3. All words in {a,b} have order dividing 16.
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Proof. Let w be a reduced word in {a,b}. Assume w has an odd number of letters.
Then w starts and ends with the same letter, so w = uvuvu - - - uvu. It is clear that
the following holds:

ww = (vwouvw - - - wou) (wouon - - - uvu) = w(w(u- - uw(v(uw)v)u- - u)v)u =e

So w has order 2, and the claim holds. Now assume w has an even number of letters,
k. Then w = 25 where z is ab or ba. Note then that w'6 = (2%)16 = (216)5 = ¢
since the order of ab or ba is 16. Thus the order of w divides 16, proving the

claim. O

Proof of Theorem 0.5. [T is a 2-group] Let k = I(y) be the length of v and let w be
a reduced word of length k representing v. We will prove this theorem by induction
on k.

We will treat the cases of £ odd and even separately. We will rely on orders
of some elements that we have already calculated, and on some of the relations
we have proven between the generators a,b, c, and d. In both cases we will make
counting arguments about the number of letters needed in words. In the even case
we will use the homomorphism 1 to make such a counting argument.

If k = 0, then v = e, and if £ = 1 then 42 = 1 by Proposition 2.3. We showed
above in Proposition 3.2 that if kK = 2 the claim holds.

Assume k£ > 3 and that the claim holds for words with length up to k& — 1.

First assuming k is odd, if the first letter of w is a, the last letter is also (see
Remark 2.5), in which case w = axa for some word z of length &k — 2. By the
inductive hypothesis, 2 has order 2™ for some M > 0. Since conjugation doesn’t
affect order, w has order 2™ and the claim holds.

If the first letter is not a, then the first and last letters are in {b, ¢, d}. So we have
w = uzv with u,v € {b,¢,d}, and I(z) = k — 2. Consider vwu = uuzrvu = zvu.
Since v,u € {b, ¢, d} they reduce to one letter by Proposition 2.4 so we have that
uwu has length at most I[(x) +1 = k — 1. Therefore uwu has order 2™ for some
M > 0. Again, since conjugation does not affect order, w has the same order as
UWU.

Now let’s consider the case where k is even. By replacing vy with bvb, cye, or
dvyd as necessary, we can assume without loss of generality that w begins with a,
SO W = aujaus - - - au; where [ = g and u; € {b,c,d}.

Consider the subcase where [ is even, [ = 2m for some natural number m. We
have | a’s in w, an even number, so v € Sts(1) by Proposition 2.6, so we can take
P(y):

V() = Y(auwra)y(uz) . .. Y(auzm-1a)y(uem) = (0,71)
with the middle product having 2m terms. For all u;, ¢;(au;a) = v for some
v € {a,b,c,d, e}, so each term of the middle product contributes at most one
letter to the words representing vy and ;. By the inductive hypothesis, then,
ng =e= ﬁN for some M, N > 0. The order of v must divide the least common
multiple of 2™ and 2V, which must be a power of 2.
Now assume [ is odd. Then k& = 4m —2 for some m > 2. This gives the following:

V=ww = (auiaus ... Usm_ 20Uy, _1)(aU1aUs . . . Usm 20U, 1)
= (auia)us...ugm—2(auzm—1a)us (auza) ... (ausm—2a)uom—1
Note the final product has 8m — 4 terms. Again, v2 € Stg(1) so we can take 1(y?):
(v?) = Ylaura)P(uz) . .. Y(uzm—2)¢((atiom-1a)t(u1)th(auza) . .. P(atiom—2a) Y (Uzm-1)
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= (o, 0)

Both « and ( are of length less than or equal to 4m — 2, but this isn’t sufficient to
use the inductive hypothesis, so we are going to split up the subcase a little further.

(1)

(2)

3)

Assume for some j, u; = d. Then ¢4 (au;a) = e and ¢o(u;) =€, so o and
(3 are each represented by a word of length at most 4m — 3 = k — 1, so the
inductive hypothesis applies, and the order of v divides the least common
multiple of the orders of o and 3, each a power of two.

Assume for some j, u; = ¢. Then ¢g(auja) = d and ¢1(u;) = d. Either o
and ( are both words of length 4m — 2 involving d, so by 1 each has order
a power of 2, or both have length shorter than 4m — 2 and the inductive
hypothesis holds. Either way the order of v divides the least common
multiple of the orders of a and 3, and both are powers of two.

If there are no ¢’s or b’s in w then it is a word solely in {a, b}, and so we
can apply Corollary 3.3.

O

The fact that I" is a 2-group gives us the interesting, non-intuitive fact that I' is
finitely generated and every element has finite order, but the group itself is infinite.
Thus according to the discussion in the introduction, we have the following:

Corollary 3.4. T is not a linear group.
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