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Abstract. This paper provides proof of Ramsey's Theorem as it applies to
(undirected) graphs, along with a short discussion of the thereom and the
di�culty of �nding Ramsey numbers.

1. Introduction: Background and Definitions

The �rst results in what is today considered Ramsey Theory were actually proved
earlier by Issai Schur and Bartel L. Van der Waerden, and pertained to arithmetic
progressions and regular equations, respectively. The �eld, which is named after
Frank P. Ramsey, deals with the study of sets and under what conditions order
arises in subsets. Ramsey's only contribution to this �eld was the theorem bear-
ing his name, which guarantees that a complete subgraph of a given size with a
monochromatic edge coloring can be found in any complete graph with r-color edge
coloring, provided the graph is of large enough size.

1.1. De�nitions.

De�nition 1.1. A graph G is a pair of sets (V,E), denoted G(V,E), where V is
a nonempty set of elements called vertices, and E is a set of unordered pairs of
distinct vertices called edges.

The order of a graph is the number of vertices, which in the following will usually
be denoted by n. If there exists an edge between two vertices, v1 and v2, then they
are said to be adjacent.

An isolated vertex is a vertex that has no other vertices adjacent to it.
An m-independent set is a graph of m isolated vertices.

Example 1.2. Figure 1.1 shows G, a graph of order 6, consisting of the set of
vertices

V = {v1, v2, v3,v4, v5, v6}
and the set of edges

E = {v1v2, v1v3, v2v3, v2v4, v3v4, v4v5, v5v6}.

Figure 1.1.
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De�nition 1.3. A graph G′(V ′, E′) is said to be a subgraph of G if V ′ ⊆ V and
E′ ⊆ E.

Example 1.4. The graph H in �gure 1.2 is a subgraph of G from the previous
example.

Figure 1.2.

De�nition 1.5. A complete graph on n ∈ N vertices, denoted by Kn, is a graph
such that each vertex of Kn is adjacent to all other vertices.

Example 1.6. Figure 1.3 shows K4, K3, and K2 graphs, respectively.

Figure 1.3.

De�nition 1.7. An r-coloring of a set S is a function χ : S → C, where |C| = r.
Let χ be an r-coloring of the edges of a graph Ki

k. We say that (Ki
k, χ) (or

simply Ki
k) is a monochromatic complete graph on k vertices if Ki

k is a complete
graph on k vertices and χ(e) = i for each edge e of Ki

k.

1.2. Motivation. With these concepts de�ned, let us now provide some motivation
for Ramsey's Theorem. The �rst example is known as the party problem.

Example 1.8. At a party there are a number of people who either know each other
or don't know each other. Now, what is the smallest party (number of people) that
is necessary such that there exist three people who mutually know each other or
three people where no two know each other? We de�ne the concept of �knowing
each other� as follows. If A knows B, then B knows A. If A, B, C, and D
�mutually know each other� then each member knows every other member. So, this
problem corresponds to �nding a least positive integer n such that a 2-coloring of
Kn, let's say with colors red and blue, admits either a red or blue triangle, i.e. a
monochromatic K3 subgraph. We now show that n = 6.

By the pigeonhole principle, there exists a person, say A, who either knows or
doesn't know at least 3 of the others. So, suppose that A knows B, C, and D.
Now, if any two B, C, and D know each other, then we are done, since they also
know A. If no two of B, C, or D know each other then we are done because we
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found 3 people who mutually don't know each other. If A doesn't know B, C, or
D, then a similar argument yields our conclusion.

We have shown that n ≤ 6; now we show that n > 5, which implies that n = 6.
More speci�cally, we will prove that there exists a 2-coloring of the edges of K5

which does not contain a monochromatic triangle. We use the colors red and blue.
Label the vertices of the K5 with (A, . . . , E). Color the edges AB, BC, CD, DE,
and EA red. Color the remaining edges blue. Now there exist no red or blue
triangles.

2. Ramsey's Theorem

2.1. Ramsey's Theorem for Complete Graphs.

Theorem 2.1 (General Ramsey's Theorem). Let ki ≥ 1 for all 1 ≤ i ≤ r. Then

there exists a least positive integer R = R(k1, . . . , kr) such that every r-coloring of

the edges of KR forces KR to have a monochromatic complete subgraph Kki
of color

i, for some 1 ≤ i ≤ r.

Proof. First note that for any ki = 1, R(k1, . . . , kr) = 1: the set of edges for a
complete graph on 1 vertex is empty and thus monochromatic of any color, in
particular color i. Also note that R(n) = n since Kn with a 1-coloring is by
de�nition monochromatic, and R(n, 2) = n since for any 2-coloring ofKn, either one
of the edges has the second color or all of the edges have the �rst color. Given that
R(k1, . . . , kr) exists, then by the same reasoning, R(k1, . . . , kr, 2) = R(k1, . . . , kr).

We claim that if ki = 2 for all i, then R(k1, . . . , kr) exists and equals 2. To
see this, note that in K2 there exist two vertices with one edge between them
of some color i. Taking the subgraph consisting of the entire graph, we have a
monochromatic K2 = Kki

.
Now we will induct on the sum

∑
ki. Note that the proof is complete when

r = 1 since R(n) = n, so we only consider r ≥ 2. We use the previous claim as the
base case for our induction. Now for the inductive step we assume that R exists
when the sum of its r entries is (

∑
ki)− 1. Let

m = R(k1, . . . , kr − 1) + . . .+R(k1 − 1, . . . , kr).

Pick a vertex from Km and call it v, so now there are m − 1 edges from v to the
other vertices. Let Si be the set of edges of color i coming out of v. Since

⋃
Si is

the set of all edges coming out of v, note that∑
|Si| = m− 1.

Now for some i it must be true that |Si| ≥ R(k1, . . . , ki − 1, . . . , kr), because if

|Si| < R(k1, . . . , ki − 1, . . . , kr)

for all i then
|Si| ≤ R(k1, . . . , ki − 1, . . . , kr)− 1

for all i, so
∑
|Si| ≤ m− r < m− 1, a contradiction. So, we may assume without

loss of generality that |S1| ≥ R(k1 − 1, . . . , kr).
Let V be the set of vertices connected to v by an edge of color 1 so that |V | ≥

R(k1−1, . . . , kr). We denote by KV the complete subgraph with vertices V . By the
inductive hypothesis, KV contains either a monochromatic Kki subgraph of color i
for some 2 ≤ i ≤ r or a monochromatic Kk1−1 subgraph of color 1. If KV contains
a subgraph of the �rst kind then we are done. If KV contains a subgraph of the
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second kind, then add v, which is connected to each vertex of Kk1−1 by an edge of
color 1, giving us a monochromatic Kk1 subgraph of KR of color 1. �

2.2. Computation of Ramsey Numbers. Despite this proof that the Ramsey
numbers exist, the upper bound on these numbers grows very fast, as one can tell
by the proof. On the other hand, for lower numbers it is relatively accurate. Take
the case discussed in Example 1.8, which corresponds to R(3, 3) = 6. The proof of
Ramsey's Theorem gives an upper bound of R(3, 3) ≤ 6, and in the example we
showed that indeed R(3, 3) = 6. For R(3, 3, 3), the proof gives an upper bound of
18, and it has been proven to be 17 (see [1]).

Ramsey numbers have been notoriously hard to compute. Using various meth-
ods, people have been able to narrow the bounds of some numbers, but for most
cases the di�erence in the lower and upper bounds is still very large. For example,
take R(r, s) such that r = s:

n Bounds on R(n, n)(see[4])
1 R(1, 1) = 1
2 R(2, 2) = 2
3 R(3, 3) = 6
4 R(4, 4) = 18
5 43 ≤ R(5, 5) ≤ 49
6 102 ≤ R(6, 6) ≤ 165
7 205 ≤ R(7, 7) ≤ 540
8 282 ≤ R(8, 8) ≤ 1870
9 565 ≤ R(9, 9) ≤ 6588
10 798 ≤ R(10, 10) ≤ 23556

An example of an improvement that can be made on the upper bounds of Ram-
sey's numbers comes from the case of two colors, which we call red and blue. From
the proof, we get the bound

(*) R(r, s) ≤ R(r − 1, s) +R(r, s− 1).

By making the following observation we can improve upon this (see [2]). Let
n = R(r− 1, s)+R(r, s− 1)− 1. If Kn is 2-colored with neither a red Kr subgraph
nor a blue Ks subgraph, then each vertex v is connected to the remaining n − 1
vertices by precisely R(r − 1, s)− 1 red edges and R(r, s− 1)− 1 blue edges. This
is because if a vertex v has R(r − 1, s) − 1 red edges, then the set of vertices that
is connected to v by red edges, call it V , has |V | = R(r − 1, s) − 1. Therefore,
we can �nd a graph for which V has no Kr−1 monochromatic red subgraph or Ks

monochromatic blue subgraph, which means that connecting v to each vertex of V
by a red edge cannot give a Kr monochromatic red subgraph. The same holds for
the blue edges. So, the total number of red edges is exactly n(R(r − 1, s) − 1)/2,
where this number is the number of red edges per vertex multiplied by the number
of vertices and divided by two for double counting. This number must be an integer,
which is impossible if R(r− 1, s) and R(r, s− 1) are even. Since we must allow for
the case when R(r−1, s) and R(r, s−1) are even, our supposition that there exists
neither a red Kr subgraph or a blue Ks subgraph must be incorrect, and we can
infer that the inequality (*) must be strict.
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3. Conclusion

While Ramsey's theorem is relatively easy to prove, actually �nding the Ramsey
number for each case has proven to be extremely di�cult. Even though many minor
improvements have been made on the bounds on the R(n, n) over the last quarter
century, it may be the case that we'll never know what R(n, n) is for n ≥ 5.

References

[1] Beineke, L. W., Wilson, R. J., Cameron, P. J., Topics in Algebraic Graph Theory. 2004
[2] Graham, R. L., Rothchild, B. L., Spencer, J. H. Ramsey Theory. 1980
[3] Landman, B. M., Robertson, A. Ramsey Theory on the Integers. 2004
[4] Weisstein, Eric W. "Ramsey Number." . http://mathworld.wolfram.com/RamseyNumber.html


