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Abstract. One way to draw a graph is to position its vertices in the plane,

connecting adjacent vertices with line segments that correspond to edges. This

rectilinear embedding raises many questions: “Which graphs have embeddings
that have no crossings?”, “How many essentially different embeddings does a

certain graph have?”, or even “Can I find an embedding that has a certain

set of desired crossings?”. This paper will concern itself primarily with the
third question, restricting its attention to rectilinear embeddings of complete

graphs. We will recast these geometrical problems in combinatorial terms,

and end with a conjectured “good characterization” of valid combinatorial
configurations.

Contents

1. Introduction 1
2. Definitions and Preliminary Observations 3
3. Theorems relating geometrical and combinatorial configurations 4
4. A conjecture 7
References 8

1. Introduction

Some branches of mathematics are known for the ease with which a novice can
stumble across difficult problems. Although number theory is the most celebrated of
these branches, the relatively young field of combinatorial geometry is certainly not
far behind. The question of rectilinear crossing number—a quintessential problem
of combinatorial geometry—is a beautiful example of a simple question that remains
quite open.

The question first came up in railway design, of all places. If a rail yard has
several loading docks or depots that all need to be connected by track, the station-
master would do well to place the depots in such a way that the tracks do not cross,
so as to lower the probability of collisions, derailments, etc.. For instance, if there
were four depots, only a foolish stationmaster would place them at the corners of a
convex quadrilateral: putting one depot in the convex hull of the other three avoids
crossings altogether. Of course, a rail yard with five depots cannot avoid a crossing:
K5 is non-planar, and remains so with the extra restriction of line-segment edges.
Nevertheless, a wise stationmaster can limit the configuration to a single crossing
by putting two depots in the convex hull of the other three.
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With as few as twenty depots, however, the minimum number of crossings is
already unknown. Asymptotics have been investigated, and bounds (usually derived
from smaller cases) have been discovered, but a formula for the exact number
remains well out of reach. Part of the difficulty of tackling the problem is the
infinite size of the space of configurations: if each of n depots can move freely in
two dimensions, the space of configurations will be 2n-dimensional, with the same
cardinality as the continuum. An exhaustive listing of these configurations would
be not only infeasible, but impossible: the continuum is uncountable.

Still, the situation is not hopeless. If we consider two configurations to be dif-
ferent when their crossings are different, then we have a finite space of options:
with only m =

(
n
2

)
edges, there are at most 2(m

2 ) options because for every pair of
edges, we must decide whether they cross. Many of these options will be impossible,
however. For instance, a combinatorial configuration may prescribe exactly 1000
crosses for K18, even though the minimum number of crosses is known to be 1029.
Such a configuration would therefore be invalid.

If there were an easy way to tell the valid configurations from the invalid ones,
perhaps a sticky problem of geometry could be reduced to standard combinatorics:
each configuration could be represented as a graph that takes the

(
n
2

)
line segments

as vertices, with two segments sharing an edge iff they cross. Theorems might be
proved about graphs that correspond to valid configurations, and conclusions could
be drawn about geometry using techniques from combinatorics.

This paper will conjecture an “easy test”—which is also known as a “good
characterization”—for the geometrical validity of a combinatorial configuration.
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2. Definitions and Preliminary Observations

Before we begin, we will make the problem precise. The above description relies
on points “in the plane.” As it turns out, we do not want this plane to have an
origin or any other distinguished points. We want the “affine plane,” a plane of
points that behaves just like R2 translated some unknown amount from the origin.
It will make sense to speak of the difference of two points—it is simply a vector—but
their sum will remain undefined because the origin could be anywhere.

Definition 2.1. Let E2, the affine plane, be {~p − ~o|~p ∈ R2}, where ~o is some
unknown vector in R2 that represents the location of the origin. For convenience,
we will write ~p − ~o as simply P . Note that the difference of two elements of the
affine plane is a vector in R2.

Definition 2.2. A configuration is a finite set of points in the affine plane.

Definition 2.3. A linear combination of P and Q in the affine plane is an
element of the set

{αP + (1− α)Q|α ∈ R}
These points are weighted averages of P and Q, and make up the straight line
containing P and Q.

Observation 2.4. E2 is closed under linear combinations.

Proof.

Z = αP + (1− α)Q

Z = α (~p− ~o) + (1− α) (~q − ~o)
Z = (α (~p− ~q) + ~q)− ~o

So Z ∈ E2, as required. �

Definition 2.5. Given a configuration A = {A1, A2, A3, ..., Ak} the convex hull
of A, which we denote A = A1A2A3...Ak, is the set of convex combinations of the
Ai. That is, B is an element of A1A2A3...Ak exactly when there exist βi with∑k

i=1 βi = 1 and 0 ≤ βi, such that

B =
k∑

i=1

βiAi

The previous proof can be extended to show that A ⊆ E2, that is, every element of
a convex hull of points in the affine plane will also be in the affine plane.

Note that the conventional notation for a line segment between two points can
be considered a special case of this notation: PQ means the set of points between
P and Q, just as it should.

Definition 2.6. We say a point P is inside a configuration C when P ∈ C, where
C stands for the convex hull of the points in the configuration C.

Definition 2.7. We say a configuration C is convex if removing a point makes its
convex hull smaller. That is, C is convex if for all P in C, C \ {P} ( C.
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Definition 2.8. We say that PQ crosses RS—usually written PQ× RS—if the
two line segments intersect at some point other than an endpoint. More precisely,(
PQ \ {P,Q}

)
∩
(
RS \ {R,S}

)
6= ∅.

Definition 2.9. We say that PQ avoids RS—usually written PQ ‖ RS—if the
two line segments do not intersect: PQ ∩ RS = ∅. Similarly, we say a segment
completely avoids a configuration C if it avoids every segment with endpoints in
C.

Axiom 2.10. Two line segments never intersect at more than one point:

‖PQ ∩RS‖ > 1⇒ PQ = RS

.

Definition 2.11. The cross-count of a configuration C is the number of crosses in
C. In other words, it is the cardinality of the following set of unordered quadruples:

{{P,Q,R, S}|P,Q,R, S ∈ C ∧
(
PQ×RS ∨ PR×QS ∨ PS ×QR

)
}

3. Theorems relating geometrical and combinatorial configurations

The following theorems show a correspondence between geometrical configura-
tions and their combinatorial counterparts. These theorems are biconditional: they
relate the two spaces in a powerful way. They allow us to understand the geometry
in terms of the combinatorics and vice-versa.

Theorem 3.1. A configuration G is convex ⇔ G has a cross-count of
(‖G‖

4

)
Proof. Let Q be the set of unordered quadruples taken from the configuration G:

Q = {{P,Q,R, S}|P,Q,R, S ∈ G}

⇒: Assuming G is convex, we must show that there are exactly
(
n
4

)
crosses. Since

the cardinality of Q is already
(
n
4

)
, it will suffice to show that every quadruple of

points leads to a crossing. Let {P,Q,R, S} be a quadruple in G. If one of these three
points were to lie in the convex hull of the other three, say P = α1Q+ α2R+ α3S
then the set G would not be convex: removing the point P would have no effect on
the convex hull because you could enlist the above mixture of Q, R, and S to take
its place. We may assume, therefore, that there is no way to write any of these four
points as a convex combination of the other three.

Let’s take a look at three vectors emerging from P , ~u = Q − P , ~v = R − P ,
~w = S − P . The plane is two-dimensional, so these three vectors must be linearly
dependent:

µ~u+ ν~v + ω~w = ~0

Now consider the signs of these three coefficients, µ, ν, and ω. If they all had
the same sign, then the point P would be in the convex hull of Q, R, and S: simply
divide both sides by ζ = µ+ ν + ω and add P to find the right combination:
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µ~u+ ν~v + ω~w

ζ
+ P = P

µ~u+ ν~v + ω~w

ζ
+
ζ

ζ
P = P

µ~u+ ν~v + ω~w + ζP

ζ
= P

µ (~u+ P ) + ν (~v + P ) + ω (~w + P )
ζ

= P

µQ+ νR+ ωS

ζ
= P

µ

µ+ ν + ω
Q+

ν

µ+ ν + ω
R+

ω

µ+ ν + ω
S = P

This final combination is a convex combination not only because µ/(µ + ν +
ω) + ν/(µ + ν + ω) + ω/(µ + ν + ω) = 1, but also because these three values are
positive—a result of µ, ν, and ω having the same sign.

Since we have already shown that P does not lie in the convex hull of the other
three points, we may assume that µ, ν, and ω have differing signs. This means we
will be able to rewrite the original statement of linear dependency. We will use only
positive coefficients by shifting terms that would have negative coefficients to the
other side. Our equation will now have two terms on one side and one on the other
since the three signs are not all the same. If we let µ′, ν′, and ω′ be the positive
versions of the coefficients, our equation may look something like this:

ν′~v = µ′~u+ ω′ ~w

We now claim that—at least in this case—segment PR crosses segment QS. In
general, the side of the equation with a single term will correspond to the point
opposite P , and the other two points will form the other diagonal. In order to
see this, observe that vector addition will put ~v pointing somewhere between the
directions of ~u and ~w. This makes ~v the middle vector, and makes PR a diagonal.
It makes sense that the two diagonals should cross, and indeed they do: α =
µ′ω′/(µ′ + ω′) of the way from P to R and β = ω′/(µ′ + ω′) of the way from Q to
S.

In order to complete this half of the proof, it will help if we pin down µ, ν, and ω.
An astute reader will note that they are not uniquely defined—in fact, any multiple
of their values would work. Therefore, let us assume that the product of the two
coefficients that were on the same side equals the third. In this case, µω = ν. We
can do this safely because the left side gives quadratic growth over the right side,
which grows linearly.
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µω = ν

µω~v = ν~v

µP + ωP + µω~v = µP + ωP + (µ~u+ ω~w)

(µ+ ω − µω)P + µω (~v + P ) = µ (~u+ P ) + ω (~w + P )

(µ+ ω − µω)P + µωR = µQ+ ωS

µ+ ω − µω
µ+ ω

P +
µω

µ+ ω
R =

µ

µ+ ω
Q+

ω

µ+ ω
S

(1− α)P + αR = (1− β)Q+ βS

This proves that PR and QS cross. An assiduous reader will want to check
where exactly we used Axiom 2.10.
⇐: Assuming there are exactly

(
n
4

)
crosses, we must now show that G is convex.

The cardinality of Q is of course
(
n
4

)
, where n is the size of G. This means that

every quadruple of points in G must be convex if we are to have enough crosses in
total. We will prove the contrapositive. Assume G is not convex. This means that
there is a point in G that can be removed without changing the convex hull of G.
Call this point P . We will show that P is part of a quadruple in G that has no
cross, thus proving that there are not as many as

(
n
4

)
crosses.

Let {G1, G2, G3, ...} be the other points in G, that is, G \ {P}. Now, by the
definition of convex hull, we have nonnegative βi such that:

P =
n−1∑
i=1

βiGi

Because we are in two dimensions, we know that any set of three points has ~0 as
one of its linear combinations (this follows from linear dependence). Therefore, as
long as we can find three non-zero coefficients, we can shift them around until one
of them becomes 0. We have to be careful, though: the sum of the βi must always
be 1, which means the sum of the remaining coefficients must be non-zero in order
to pick up the slack.

Therefore: we can reduce all but three of the βi to 0, leaving P inside the convex
hull of three other points. This set of four points will not have a crossing, and we
are done. �

Now we may safely consider convexity to be a combinatorial property in addition
to a geometrical one.

Theorem 3.2. A point P in the affine plane is inside a convex configuration G
with more than three points iff

(1) G ∪ {P} is non-convex and
(2) there are at most two segments connecting P to a point in G that completely

avoid G.

Proof. This proof will be less formal than the last, and correspondingly clearer.
⇒: Imagine a convex polygon with every diagonal drawn in: lines are crossing

every which way, giving the impression of an enormously complicated spider web.
We must place a point inside this polygon, connecting it to each vertex. If we place
our point (red) very near to a side of the polygon, then the two segments to the
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two nearest vertices will completely avoid the configuration. This, however, is the
best we can do. There is no way to have three segments avoid crossings because a
fourth point—G has more than three—will be separated from the first by segments
to the second and third.

Furthermore, the resulting configuration will not be convex because removing
the point you just added will not alter the convex hull.
⇐: This time, let us try to place a point outside the polygon. We have two

options. The first is to place our point (blue) close to one of the sides of the
polygon. However, this fails because the new configuration is still convex. We
may try to place a point (green) so that some other point is swallowed, but ours
remains on the edge. This fails as well, because such a point will have at least three
segments coming out of it that completely avoid the original configuration.

�

4. A conjecture

Conjecture 4.1. A combinatorial configuration of a complete graph can be realized
geometrically iff

(1) any segment that begins outside a convex subconfiguration and ends inside
that configuration must not completely avoid that configuration and

(2) any subconfiguration with exactly five points must have at least one crossing.

Although the above conjecture is probably false, the process of finding a “good
characterization” usually begins with several conditions that must be met. Later,
when a counterexample is found, the conditions can be strengthened until a “good
characterization” is reached.
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