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Abstract. We discuss number theory with the ultimate goal of understanding

quadratic reciprocity. We begin by discussing Fermat’s Little Theorem, the

Chinese Remainder Theorem, and Carmichael numbers. Then we define the
Legendre symbol and prove Gauss’s Lemma. Finally, using Gauss’s Lemma

we prove the Law of Quadratic Reciprocity.

1. Introduction

Prime numbers are especially important for random number generators, making
them useful in many algorithms. The Fermat Test uses Fermat’s Little Theorem to
test for primality. Although the test is not guaranteed to work, it is still a useful
starting point because of its simplicity and efficiency.

An integer is called a quadratic residue modulo p if it is congruent to a perfect
square modulo p. The Legendre symbol, or quadratic character, tells us whether an
integer is a quadratic residue or not modulo a prime p. The Legendre symbol has
useful properties, such as multiplicativity, which can shorten many calculations.
The Law of Quadratic Reciprocity tells us that for primes p and q, the quadratic
character of p modulo q is the same as the quadratic character of q modulo p unless
both p and q are of the form 4k + 3.

In Section 2, we discuss interesting facts about primes and “fake” primes (pseu-
doprimes and Carmichael numbers). First, we prove Fermat’s Little Theorem, then
show that there are infinitely many primes and infinitely many primes congruent
to 1 modulo 4. We also present the Chinese Remainder Theorem and using both
it and Fermat’s Little Theorem, we give a necessary and sufficient condition for a
number to be a Carmichael number. In Section 3, we define quadratic residues and
the Legendre symbol, then examine the quadratic character of −1 modulo p (which
depends only on whether p is 1 or 3 modulo 4). We show the multiplicative prop-
erty of the Legendre symbol and prove Gauss’s Lemma. Then, using the properties
of the Legendre symbol and Gauss’s Lemma, we give a neat proof of the Law of
Quadratic Reciprocity.

2. General Facts About Primes and Prime-Look-Alikes

Proposition 2.1. f(x) = xp is the identity automorphism of Z/pZ.

Proof. First, we want to show that f is a field automorphism of Z/pZ; that is, that
f preserves multiplication and addition. That f(xy) = (xy)p = xpyp = f(x)f(y)
follows from the commutativity of multiplication.

We want to show that (x+ y)p ≡ xp + yp (mod p). The binomial theorem gives
(x + y)p =

∑p
i=0

(
p
i

)
xiyp−i. It suffices to show that each term of the expansion
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except the first and last is zero modulo p; this follows from the fact that p|
(
p
i

)
if

and only if 1 ≤ i ≤ p− 1. This fact is true because p|p! but p - i!(p− i)! for such i,
so p| p!

i!(p−i)! =
(
p
i

)
. Therefore, (x+ y)p ≡ xp + yp (mod p).

Now to show f is the identity, let p be a prime. By induction on x, we show
that xp ≡ x (mod p). This is clearly true for x ≡ 0 (mod p). Assume the claim
for x. Applying the conclusion that (x+ y)p ≡ xp + yp (mod p) to the x+ 1 case,
we have (x+ 1)p ≡ xp + 1p. But this is just x+ 1 by the induction hypothesis. So
xp ≡ x (mod p) holds for all x. �

Corollary 2.2 (Fermat’s Little Theorem). If p is prime, then for all x such that
x 6≡ 0 (mod p), xp−1 ≡ 1 (mod p).

Proof. For x 6≡ 0 (mod p), we may multiply both sides of the equality xp ≡ x
(mod p) by x−1, yielding xp · x−1 ≡ xp−1 ≡ 1 (mod p). �

Theorem 2.3. There exist infinitely many primes.

Proof. Suppose for a contradiction that there are only finitely many primes; call
them p1, . . . , pk. Consider the number x = p1 · · · pk + 1. If x is not a prime, there
exists some prime pi such that pi divides x. This implies x ≡ 0 (mod pi), but this
is impossible since x ≡ 1 (mod pi) from the definition of x. Therefore x must be
prime. Since x is greater than each prime pi, this is a contradiction. Thus, there
must exist infinitely many primes. �

Theorem 2.4. There are infintely many primes congruent to 1 modulo 4.

Proof. Suppose for a contradiction that there are only finitely many primes congru-
ent to 1 modulo 4; call them p1, ..., pk. Let us consider the numbers x = 2p1 · · · pk
and N = x2 + 1. Because x is divisible by 2, x2 ≡ 0 (mod 4), so N ≡ 1 (mod 4).
Note that N ≡ 1 (mod pi) for each pi.

Assume N is not prime; then there exists a prime q such that q divides N . Since
q|(x2 + 1), x2 ≡ −1 (mod q), so x4 ≡ 1 (mod q). Since 4 is the smallest such
exponent, Theorem 2.2 implies that 4 divides q−1, so q ≡ 1 (mod 4). Thus, q = pi
for some i, but this is a contradiction: N ≡ 0 (mod q) while N ≡ 1 (mod pi)
for all i. It follows that N is prime. But since N is greater than each pi and
N ≡ 1 (mod 4), this is again a contradiction. Since either assuming N is prime or
assuming N is composite leads to a contradiction, there must be infinitely many
primes congruent to 1 modulo 4. �

Fermat’s Little Theorem can be used to test for primality. If there exists a such
that an−1 6≡ 1 (mod n), then n is not prime. Choosing a randomly and testing this
equality yields an efficient randomized primality test known as the Fermat Test.
Unfortunately, there exist non-prime numbers that always pass the Fermat Test
(see Definition 2.6).

Definition 2.5. An odd composite number n such that bn−1 ≡ 1 (mod n) is called
a pseudoprime to the base b.

Note that a pseudoprime to the base b may pass the Fermat Test when the
randomly chosen number is equal to b. The smallest pseudoprime is 341, which is
pseudoprime to the base 2 [1].

Definition 2.6. An odd composite number n is called Carmichael if an−1 ≡ 1
(mod n) for all a ∈ (Z/nZ)∗.
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The difference between a pseudoprime and a Carmichael number is that a pseu-
doprime passes the Fermat Test for some numbers a, but Carmichael numbers
pass the Fermat Test for all numbers a. In other words, a Carmichael number is
pseudoprime to every base. The smallest Carmichael number is 561.

Theorem 2.7 (Chinese Remainder Theorem). If gcd(a, b) = 1 then for all α, β ∈ Z
there exists a unique γ (mod ab) such that

γ ≡ α (mod a)

γ ≡ β (mod b).

Proof. We know x ≡ α (mod a) if and only if x = α + ka for some k. We want
to show that there exists an integer k such that α + ka ≡ β (mod b). Since
gcd(a, b) = 1, the Euclidean algorithm gives integers r, s such that 1 = ra+sb. Mul-
tiplying both sides of this equation by (β−α) , we get (β−α)−(β−α)ra = (β−α)sb.
Taking k = r(β − α), we get ka ≡ (β − α) (mod b), and thus α+ ka ≡ β (mod b).

In order to prove uniqueness modulo ab, we first prove that if y ≡ 0 (mod a)
and y ≡ 0 (mod b), then y ≡ 0 (mod ab). Since a|y and b|y, then lcm(a, b)|y. In
addition, since gcd(a, b) = 1, this implies that lcm(a, b) = ab. Therefore, y ≡ 0
(mod ab). Now, let x ≡ α (mod a), x ≡ β (mod b), and x′ ≡ α (mod a), x′ ≡ β
(mod b). Subtracting x′ from x, we get x−x′ ≡ 0 (mod a) and x−x′ ≡ 0 (mod b)
so by above we have x− x′ ≡ 0 (mod ab), as desired. �

Proof that 561 is a Carmichael number. We need to show that for all a, a560 ≡ 1
(mod 561). We know 561 factors as 561 = 3 · 11 · 17. Therefore, by the Chinese
Remainder Theorem it suffices to show

a560 ≡ 1 (mod 3)
a560 ≡ 1 (mod 11)
a560 ≡ 1 (mod 17).

By Fermat’s Little Theorem, since 3 is prime, we know a2 ≡ 1 (mod 3). So,
a560 ≡ (a2)280 ≡ 1280 ≡ 1 (mod 3). Similarly, since a10 ≡ 1 (mod 11), a560 ≡
(a10)56 ≡ 1 (mod 11), and since a16 ≡ 1 (mod 17), a560 ≡ (a16)35 ≡ 1 (mod 17).
Therefore, 561 is a Carmichael number. �

Proposition 2.8. If x = p1·p2 · · · pk where pi are distinct primes and (pi−1)|(x−1)
for all i, then x is a Carmichael number.

Proof. Examining the proof that 561 is Carmichael, we see that the same proof
works for any x satisfying the hypotheses of the proposition. Consider the Carmichael
number 561, which is equal to 3 · 11 · 17. The key to our proof was using Fermat’s
Little Theorem for the primes 3, 11, and 17 to show that a2 ≡ 1 (mod 3), a10 ≡ 1
(mod 11), and a16 ≡ 1 (mod 17). We were then able to show that a560 ≡ 1 (mod 3)
because (3−1)|560 and a560 ≡ a(3−1)280 ≡ 1 (mod 3). We used the same approach
for 11 and 17. �

The converse of the above proposition is true as well [3].
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3. Quadratic Reciprocity

Definition 3.1. An integer k is a quadratic residue modulo n if it is congruent
to a perfect square modulo n; that is, there exists an x ∈ Z such that x2 ≡ k
(mod n).

Definition 3.2. The Legendre symbol
(
a
p

)
for an integer a and an odd prime

p is defined as (
a

p

)
=


+1 if (∃x) x2 ≡ a (mod p)
0 if a ≡ 0 (mod p)
−1 otherwise

For nonzero a, the Legendre symbol equals 1 when a is a quadratic residue
modulo p and −1 when a is not a quadratic residue modulo p. The Legendre
symbol is also known as the quadratic character of a modulo p.

Lemma 3.3. If p is an odd prime and P = 1
2 (p− 1), then aP ≡

(
a
p

)
(mod p).

Proof. Case 1. Say a ≡ 0. Then aP ≡ 0 =
(

0
p

)
.

Case 2. Say a is a nonzero quadratic residue. Then it suffices to show that
aP ≡

(
a
p

)
= 1. Let a ≡ b2 for some b. Then aP ≡ b2P ≡ bp−1. But we know that

bp−1 ≡ 1 (mod p) by Fermat’s Little Theorem. Thus, aP ≡
(
a
p

)
.

Case 3. Say a is a not a quadratic residue. Then it suffices to show that
aP ≡

(
a
p

)
= −1. Consider (aP )2 = a2P . Substituting for P we have a2P = ap−1,

but by Fermat’s Little Theorem this is congruent to 1. Thus aP is a square root
of 1 modulo p, so aP must be congruent to 1 or −1. Consider the polynomial
aP − 1 ≡ 0. This is a degree P polynomial so it can have at most P roots. By
Case 2, for any quadratic residue a, aP = 1, so each quadratic residue is a root of
this polynomial. Since the function x 7→ x2 is two-to-one on (Z/pZ)∗, exactly half
of the nonzero elements modulo p are quadratic residues. Thus, the P quadratic
residues are exactly the P roots of the polynomial xP − 1, so if a is not a quadratic
residue, aP ≡ −1 =

(
a
p

)
. �

Proposition 3.4. The Legendre symbol is multiplicative:
(
ab
p

)
=
(
a
p

)(
b
p

)
.

Proof. Write
(
a
p

)
as aP and

(
b
p

)
as bP . Then,

(
a
p

)
·
(
b
p

)
= aP · bP = (ab)P =(

ab
p

)
. �

Lemma 3.5. Let p be prime. Then the quadratic character of −1 modulo p depends
only on whether p is 1 or 3 modulo 4, that is,(

−1
p

)
=

{
1 if p ≡ 1 (mod 4)
−1 if p ≡ 3 (mod 4)

Proof. Case 1. p ≡ 1 (mod 4). If a|(p− 1) then there exists an x such that xa ≡ 1
(mod p), but xb 6≡ 1 (mod p) for any 0 < b < a (see [2] for a proof of this fact).
Since 4|(p − 1), there exists an x such that x4 ≡ 1 (mod p), but x2 6≡ 1 (mod p).
We know (x2)2 ≡ 1; therefore, x2 is either 1 or −1. We have already ruled out
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x2 ≡ 1 (mod p), so it must be the case that x2 ≡ −1 (mod p). Thus, −1 is a
quadratic residue modulo p.

Case 2. p ≡ 3 (mod 4). Suppose for a contradiction that
(
−1
p

)
6= −1, that is,

there exists an x such that x2 ≡ −1 (mod p). Then, taking the square of both
sides of the equation, we have x4 ≡ 1. By Fermat’s Little Theorem, we know that
xp−1 ≡ 1 (mod p). Substituting p−1 = 4k+2, we have x4k+2 ≡ 1. We can rewrite
this as x4k+2 = x4k · x2 = (x4)k · x2 = 1k · x2 = −1. But this is a contradiction
since x4k+2 = 1. Thus, −1 is not a quadratic residue modulo p. �

Lemma 3.6 (Gauss’s Lemma). Let a 6≡ 0 (mod p) where p is a prime greater than
2. Let P = 1

2 (p− 1). Form the numbers a, 2a, 3a, . . . , Pa and reduce each of these
numbers to fall within the interval

(
−p2 ,

p
2

)
by taking them modulo p. Let ν be the

number of negative numbers in the resulting set. Then
(
a
p

)
= (−1)ν . In other

words, a is a quadratic residue if ν is even, and a non-residue if ν is odd.

Proof. Express the numbers a, 2a, . . . , Pa as congruent to ±1,±2, . . . ,±P . No
number in the set 1, 2, . . . , P will occur more than once, whether positive or neg-
ative: if a number occured twice with the same sign, it would mean that two
of the numbers in a, 2a, . . . , Pa were congruent to one another modulo p, which
cannot happen since multiplication by a is injective. If the same number oc-
cured twice with opposite signs, it would mean that the sum of two numbers in
a, 2a, . . . , Pa was congruent to zero modulo p, which also cannot happen. There-
fore, we have that {a, 2a, . . . , Pa} = {±1,±2, . . . ,±P} with a definite sign for each
number. We get (a)(2a) · · · (Pa) ≡ (±1)(±2) · · · (±P ) (mod p). Canceling P ! we
get aP ≡ (±1)(±1) · · · (±1) = (−1)ν where ν is the number of negative signs above.
Therefore, aP ≡

(
a
p

)
= (−1)ν by Lemma 3.3. �

Theorem 3.7 (Law of Quadratic Reciprocity). Let p and q be two different odd
primes. The quadratic character of p (mod q) is the same as the quadratic character
of q (mod p) unless both p and q are of the form 4k+3, in which case the characters
are opposite.

Another way of saying this is that if p and q are prime numbers, then the product
of their Legendre symbols is

(
p
q

)
·
(
q
p

)
= (−1)

p−1
2

q−1
2 . This product depends only

on the parity of the exponent, and is only −1 when both p and q are of the form
4k+ 3. There are two cases in proving this theorem: one where p ≡ q (mod 4) and
one where p 6≡ q (mod 4). We will need one lemma for each case, but their proofs
are very similar.

Lemma 3.8. Let a be any natural number, and p and q be odd primes. If p ≡ q

(mod 4a), then
(
a
p

)
=
(
a
q

)
.

Proof. Using Gauss’s Lemma, we know
(
a
p

)
is determined by ν, the number of the

integers a, 2a, . . . , Pa (where P = p−1
2 ) that lie between 1

2p and p, or between 3
2p

and 2p, etc. (These intervals correspond to values between −p2 and 0 when reduced
modulo p as in Gauss’s Lemma.) Since Pa is the largest multiple of a that is less
than 1

2pa, the last interval that we have to consider is ((b− 1
2 )p, bp), where b is 1

2a

or 1
2 (a− 1) (whichever is an integer). Thus ν is the number of multiples of a that
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lie in the intervals ( 1
2p, p), ( 3

2p, 2p), . . . , (b− 1
2p, bp). Dividing through by a, we get

the new intervals ( p2a ,
p
a ), ( 3p

2a ,
2p
a ), . . . , ( (2b−1)p

2a , bpa ), and ν is now the number of
integers in the union of these intervals. Now write p as 4ak + r and substitute for
p yielding (2k + r

2a , 4k + r
a ), (6k + 3r

2a , 8k + 2r
a ), . . . , ( (2b−1)(4ak+r)

2a , 4bk + br
a ). We

can disregard the 2k and 4k, etc. and consider ( r2a ,
r
a ), ( 3r

2a ,
2r
a ), . . . , ( (2b−1)r

2a , bra )
because changing the endpoints of an interval by an even integer does not change
the parity of the number of integers in the interval, and it is only the parity of
ν that determines

(
a
q

)
. It is now clear from the form of these intervals that the

parity of ν depends only on r, and not on the specific prime p which leaves the
remainder r when divided by 4a; thus,

(
a
p

)
depends only on the remainder of p

modulo 4a. �

Lemma 3.9. Let a be any natural number, and p be an odd prime. If p ≡ −q
(mod 4a), then

(
a
p

)
=
(
a
q

)
.

Proof. Write q as 4ak′ − r. So, q = 4a(k′ − 1) + (4a − r). Applying the same
method from Lemma 3.8, we know that the remainder of q modulo 4a completely
determines

(
a
p

)
. In order to find the number of integers in the intervals in the

case, we need to replace r by 4a − r. After simplification, and again removing
even integers from both ends of the interals, we have the intervals (− r

2a ,−
r
a ),

(− 3r
2a ,−

2r
a ), . . . , (− (2b−1)r

2a ,− bra ). Since these intervals are exactly the negatives
of the intervals ( r2a ,

r
a ), ( 3r

2a ,
2r
a ), . . . , ( (2b−1)r

2a , bra ) the number of integers in the
union of the intervals is the same in both cases. Thus, we have the same result,(
a
p

)
=
(
a
q

)
. �

Proof of Quadratic Reciprocity. Suppose p and q are odd primes.
Case 1. Let p ≡ q (mod 4); then p−q = 4a for some a and we have the following

equalities: (
p
q

)
=
(

4a+q
q

)
=
(

4a
q

)
=
(

4
q

)(
a
q

)
=
(
a
q

)
(
q
p

)
=
(
p−4a
p

)
=
(
−4a
p

)
=
(
−1
p

)(
4
p

)(
a
p

)
=
(
−1
p

)(
a
p

)
.

In the above equalitites we can disregard the 4 since multiplying by a quadratic
residue does not change the quadratic character of

(
a
q

)
or of

(
−a
q

)
.

Taking the product of the Legendre symbols, we have(
p

q

)(
q

p

)
=
(
a

q

)(
−1
p

)(
a

p

)
.

By Lemma 3.8, since p ≡ q (mod 4a), the expression on the right simplifies to(
a
p

)2 (
−1
p

)
=
(
−1
p

)
. Then, by Lemma 3.5,(
p

q

)(
q

p

)
=
(
−1
p

)
=

{
1 if p ≡ 1 (mod 4)
−1 if p ≡ 3 (mod 4)

which is exactly what we needed.
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Case 2. Let p 6≡ q (mod 4); then one of p or q is congruent to 1 (mod 4) and
the other congruent to 3 (mod 4). Thus p ≡ −q (mod 4), so p + q = 4k for some
k, and we have (

p
q

)
=
(

4k−q
q

)
=
(

4k
q

)
=
(

4
q

)(
k
q

)
=
(
k
q

)
.

Similarly,
(
q
p

)
=
(
k
p

)
. Since p ≡ −q (mod 4k),

(
k
p

)
=
(
k
q

)
by Lemma 3.9. There-

fore
(
p
q

)(
q
p

)
=
(
k
p

)(
k
p

)
=
(
k
p

)2

= 1, as we wanted. �
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