
AN EXPLORATION OF COMPLEX JACOBIAN VARIETIES

MATTHEW WOOLF

Abstract. In this paper, I will describe my thought process as I read in

[1] about Abelian varieties in general, and the Jacobian variety associated to

any compact Riemann surface in particular. I will also describe the way I
currently think about the material, and any additional questions I have. I will

not include material I personally knew before the beginning of the summer,

which included the basics of algebraic and differential topology, real analysis,
one complex variable, and some elementary material about complex algebraic

curves.
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1. Abelian Sums (I)

The first thing I read about were Abelian sums, which are sums of the form

(1.1) ψ(L) =
3∑
i=1

∫ pi

p0

ω,

where ω is the meromorphic one-form dx/y, L is a line in P2 (the complex projective
plane), p0 is a fixed point of the cubic curve C = (y2 = x3 + ax2 + bx + c), and
p1, p2, and p3 are the three intersections of the line L with C. The fact that
C and L intersect in three points counting multiplicity is just Bezout’s theorem.
Since C is not simply connected, the integrals in the Abelian sum depend on the
path, but there’s no natural choice of path from p0 to pi, so this function depends
on an arbitrary choice of path, and will not necessarily be holomorphic, or even
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continuous. It’s easy to see that if we have two such paths, γ and γ′, then

(1.2)
∫
γ

ω −
∫
γ′
ω =

∫
γ−1◦γ′

ω,

so the integral of ω over any two such paths differ by the integral of ω over some
loop, but since this integral only depends on the homology class of the loop, we
get a better function if we define ψ to have domain C/Λ, where Λ is the image of
H1(C,Z) under the map [γ] 7→

∫
γ
ω, which is obviously well-defined.

The genus formula says that the genus of C is 1, so H1(C,Z) ∼= Z ⊕ Z. This
suggests that Λ is a lattice in C, but we have to prove this claim. To do this,
we select two elements γ1, γ2 which generate H1(C,Z). If their images under the
integration map,

∫
γ1
ω and

∫
γ2
ω were linearly dependent over R, then there would

be real numbers k1, k2 not both 0 such that k1

∫
γ1
ω+k2

∫
γ2
ω = 0. This would also

show that k1

∫
γ1
ω+k2

∫
γ2
ω = 0. If we assume that ω and ω generate H1

dR(C), then
we would have a contradiction. This is because de Rham’s theorem tells us that
(H1

dR(C))∗ ∼= H1(C,C). Since by assumption, the functional defined by k1γ1 +k2γ2

is zero on generators of H1
dR(C), it must be the zero functional, which means that

k1γ1 + k2γ2 = 0, which is impossible.
In order to show that ω and ω generate H1

dR(C), I needed to read a lot more,
though.

2. Complex Manifolds

First of all, I needed some basic facts about complex manifolds.
Any complex n-manifold is a real differentiable 2n-manifold, so it has a real

tangent bundle. This can be complexified at any given point by taking the tensor
product with C to get the complex tangent bundle. The complex tangent space
at a point is Tp(M) = C{ ∂

∂xi
, ∂
∂yi
}. Defining ∂

∂zi
= 1

2 ( ∂
∂xi
− i ∂

∂yi
) and ∂

∂zi
=

1
2 ( ∂
∂xi

+ i ∂
∂yi

), we see that the tangent space at a point is C{ ∂
∂zi
, ∂
∂zi
}.

Taking just C{ ∂
∂zi
}, we get the holomorphic tangent bundle, T ′p(M). Similarly,

we get the antiholomorphic tangent bundle, T ′′p (M), by taking C{ ∂
∂zi
}. Considering

the complex tangent bundle to be locally the space of C-linear derivations, T ′p(M)
consists of those derivations which vanish on antiholomorphic functions, and we
have an analogous interpretation for T ′′p (M). The complex tangent space at a
point is the direct sum of the holomorphic and antiholomorphic tangent spaces.

The holomorphic and anti-holomorphic tangent spaces are in fact independent
of the choice of coordinates, and the conjugation map on C in the tensor product
which defines the complex tangent space sends the holomorphic tangent space to
the antiholomorphic tangent space and vice versa. Also, the map on the tangent
bundle induced by a holomorphic function between complex manifolds preserves
the decomposition.

This decomposition of the complex tangent bundle also applies to the complex
cotangent bundle, so

(2.1)
n∧
T ∗z (M) =

⊕
p+q=n

(
p∧
T ′∗z (M)⊗

q∧
T ′′∗z (M)),

and we can apply this decomposition to complex-valued differential forms to get
Ap,q(M), the space of (p, q) forms.
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The de Rham differential sends sections of
∧p

T ′∗(M)⊗
∧q

T ′′∗(M) to sections of
(
∧p

T ′∗(M)⊗
∧q

T ′′∗(M))∧T ∗(M) = (
∧p+1

T ′∗z (M)⊗
∧q

T ′′∗z (M))⊕(
∧p

T ′∗z (M)⊗∧q+1
T ′′∗z (M)), applying the decomposition of the cotangent bundle, so it sends Ap,q

to Ap+1,q ⊕Ap,q+1.
By composing d with the natural projection maps to each coordinate, we get

maps ∂ and ∂. ∂
2

= 0, so we can define the Dolbeault cohomology groups Hp,q

∂
(M).

We can also define cohomology groups Hp,q(M) as the quotient group of d-closed
(p, q)-forms by d-exact (p, q)-forms. By definition, a holomorphic differential is a
(p, 0) form ω with ∂ω = 0. The sheaf of holomorphic p-forms is denoted Ωp. It is
immediately apparent that the cocycle representatives in the Dolbeault cohomology
groups Hp,0

∂
(M) are holomorphic. In fact, the relationship is a lot closer than this,

as shown by

Theorem 2.2 (Dolbeault’s Theorem). Hq(M,Ωp) ∼= Hp,q

∂
(M).

A Hermitian metric on a complex manifold is a collection of positive definite Her-
mitian (sesquilinear and conjugate-symmetric) inner products on the holomorphic
tangent space at each point z of the manifold which depends smoothly on z. More
generally, we can define a Hermitian metric on any vector bundle over a complex
manifold. Dualizing, the metric is given coordinate-wise by ds2 =

∑
hij(z)dzi⊗dzj ,

where

(2.3) hij(z) =
〈
∂

∂zi
,
∂

∂zj

〉
z

A coframe is a collection of n (1, 0) forms ϕi which form an orthonormal basis
for the holomorphic cotangent bundle with respect to the inner product induced by
the Hermitian metric. The Gram-Schmidt process allows you to construct coframes
locally.

A consequence of this definition is that

(2.4) ds2 =
∑

ϕi ⊗ ϕi.

The real part of the Hermitian metric Re ds2 is a Riemannian metric, i.e. a
smoothly varying inner product on the real tangent space at each point, since
conjugate-symmetry and sesquilinearity become symmetry and bilinearity in this
case.

On the other hand, taking Im ds2 is an alternating form for analogous reasons,
so it represents a real 2-form. It is fairly obvious from the definition of a Hermitian
metric that it is a (1, 1)-form, and − 1

2 Im ds2 is called the associated (1, 1)-form of
the metric.

Conversely, any real (1,1)-form ω induces a quasi-Hermitian inner product on
each holomorphic tangent space since for each point z of the manifold, ω(z) ∈
T ′∗z (M)⊗T ′′∗z (M) ∼= (T ′z(M)⊗T ′z(M))∗, so ω(z) is a sesquilinear functional on pairs
of holomorphic tangent vectors. We multiply this functional by the appropriate
scalar to make sure that the metric induced by the (1,1)-form associated with a given
Hermitian metric is in fact the original metric. The (1,1) form ω is called positive
if the pseudo-Hermitian inner product it induces is actually positive definite. It is
immediate that the (1,1)-form associated with a prior Hermitian inner product is
positive.

The Riemannian metric and associated (1,1)-form are closely related by
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Theorem 2.5 (Wirtinger’s Theorem). If M is a complex manifold, then

(2.6) Vol(M) =
1
d!

∫
M

ωd,

where d = dimM and ωd is the dth exterior power of the associated (1,1)-form of
the Hermitian metric on M .

3. Hodge Theory and the Hodge Decomposition

Suppose we have a Hermitian matrix ds2 with coframe ϕi. Then we also get an
inner product on the tensor bundle T ∗(p,q)(M) = (

∧p
T ′∗(M)) ⊗ (

∧q
T ′′∗(M)) by

taking the basis induced by the coframe to be orthogonal and with each element
having length 2p+q. If we let Φ be the volume form induced by the metric by
Wirtinger’s theorem, then this gives us an inner product on Ap,q(M) defined by

(3.1) 〈ψ, η〉 =
∫
M

〈ψ(z), η(z)〉zΦ.

Using this inner product, we can construct adjoints to operators. For this pur-
pose, the operator we care most about is ∂. To do this, we first define the star
operator ∗ : Ap,q(M)→ An−p,n−q(M). We want

(3.2) 〈ψ, η〉Φ = ψ ∧ ∗η
for all ψ. To get this, we say that if η =

∑
I,J hIJϕI ∧ ϕJ , then

(3.3) ∗η = 2p+q−n
∑
I,J

εIJhIJϕIc ∧ ϕJc

where Ic = {1, . . . , n} − I and similarly with Jc, and εIJ is the sign of the per-
mutation in Sn+n′ that takes the n + n′-tuple (1, . . . , n, 1′, . . . , n′) to the n + n′-
tuple (I1, . . . , Ip, J1, . . . , Jq, I

c
1 , . . . , I

c
n−p, J

c
1 , . . . , J

c
n−q). All this is designed to get

∗ ∗ η = (−1)p+qη.
We then define the adjoint of ∂

∗
by

(3.4) ∂
∗

= − ∗ ∂∗

Using Stokes’ theorem and the fact that on An,n−1, d = ∂, we see that ∂
∗

is the
adjoint to ∂.

This adjoint is useful because you can show by variational methods that a repre-
sentative ψ of a cohomology class in Hp,q

∂
has minimal norm if and only if ∂

∗
ψ = 0.

We define the ∂-Laplacian ∆∂ : Ap,q(M)→ Ap,q(M) by

(3.5) ∆∂η = (∂ ∂
∗

+ ∂
∗
∂)η

Elements of the kernel of ∆∂ are called harmonic forms. Since

(3.6) 〈∆∂η, η〉 = 〈∂∗ ∂ η, η〉+ 〈∂ ∂∗ η, η〉 = ‖ ∂ η‖2 + ‖ ∂∗ η‖2,

we see that a form η is harmonic if and only if ∂ η = ∂
∗
η = 0. The space of

harmonic (p, q)-forms on M is denoted Hp,q(M).
The most important facts about harmonic forms are contained in the

Theorem 3.7 (Hodge Theorem). Hp,q(M) is finite-dimensional, and hence closed
in Ap,q(M), so there is an orthogonal projection operator H : Ap,q(M)→ Hp,q(M).
There is also a unique linear transformation, Green’s operator, G : Ap,q(M) →
Ap,q(M) such that GH = 0, G commutes with ∂ and ∂

∗
, and I = H+ ∆∂G.
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Note that the last equation can be rewritten as ψ = H(ψ)+∂(∂
∗
Gψ)+∂

∗
(∂ Gψ),

called the Hodge decomposition for forms, which implies

(3.8) Ap,q(M) = Hp,q(M)⊕ ∂ Ap,q−1(M)⊕ ∂∗Ap,q+1(M).

The last two direct summands are orthogonal since

(3.9) 〈∂ ψ, ∂∗ η〉 = 〈∂2
ψ, η〉 = 0,

and looking at the first form of the Hodge decomposition for forms, we see that

(3.10) 〈Hψ,∆∂Gη〉 = 〈∆∂Hψ,Gη〉 = 0,

since ∆∂ is obviously self-adjoint. The Hodge decomposition for forms thus gives
us an orthogonal decomposition of Ap,q(M).

Note that ∂(H + ∂(∂
∗
G)) = 0, but if ψ ∈ ∂∗(Ap,q+1(M)), then ∂ ψ 6= 0 unless

ψ = 0, since if ∂ ψ = 0, with ψ = ∂
∗
η, then 〈∂ ∂∗ η, η〉 = 0, so 〈∂∗ η, ∂∗ η〉 = 0, and

hence ψ = ∂
∗
η = 0.

This means that if ψ is ∂-closed, then ψ = ψ + ∂(∂
∗
Gψ), i.e. any ∂-closed form

differs from a harmonic form by a ∂-exact form, so we have

(3.11) Hp,q(M) ∼= Hp,q

∂
(M).

One very important consequence of the Hodge theorem is the

Theorem 3.12 (Kodaira-Serre Duality Theorem). Hn(M,Ωn) ∼= C and there is a
nondegenerate map

(3.13) Hq(M,Ωp)⊗Hn−q(M,Ωn−p)→ Hn(M,Ωn).

A Kähler manifold is defined to be a complex manifold with an Hermitian metric
such that the associated (1,1)-form ω is d-closed. This is equivalent to approximat-
ing a Euclidean (flat) metric to order 2 pointwise.

Kähler manifolds are important because if we define the operators ∆d and ∆∂

the same way we defined ∆∂ , then on a Kähler manifold, we have

(3.14) ∆d = 2∆∂ = 2∆∂ ,

so all the various Laplacians are related.
If we define Hp,qd (M) to be the space of d-harmonic (p, q)-forms and Hrd(M) to

be the space of d-harmonic r-forms, then on a Kähler manifold, we have

(3.15) Hrd(M) =
⊕
p+q=r

Hp,qd (M),

and

(3.16) Hp,qd (M) = Hq,pd (M).

The Hodge theorem also holds for d-closed forms, so if ψ is a d-closed form, then
ψ = Hd(ψ)+dd∗Gd(ψ), so Hp,q

d (M) ∼= Hp,qd (M), and similarly, Hr
dR(M) ∼= Hr(M).

These identities, along with de Rham’s theorem, give us

(3.17) Hr(M,C) ∼= Hr
dR(M) ∼=

⊕
p+q=r

Hp,q
d (M)

and

(3.18) Hp,q
d (M) = Hq,p

d (M).

Together, these equations are the Hodge decomposition of cohomology.
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Since ∆d = 2∆∂ , the two harmonic spaces for the two Laplacians are the same,
and hence there is an isomorphism of cohomology groups

(3.19) Hp,q
d (M) ∼= Hp,q

∂
(M).

Combining this with the Dolbeault isomorphism, there is an isomorphism

(3.20) Hp,q
d (M) ∼= Hq(M,Ωp).

Applying these identities to M a compact Riemann surface, we get

(3.21) H1(M,C) = H1,0
d (M)⊕H0,1

d (M) ∼= H0(M,Ω1)⊕H0(M,Ω1).

Henceforth, I will define Hp,q(M) = Hp,q
d (M) ∼= Hp,q

∂
(m). Note that if M is an

n-dimensional complex manifold, then we have

(3.22) H2n−1(M,C) = Hn,n−1(M,C)⊕Hn,n−1(M,C),

because the dimension of the holomorphic cotangent bundle of M is n, so there are
no holomorphic p-forms for p > n, and hence Hp,2n−1−p(M) ∼= H2n−1−p(M,Ωp) is
0 for p > n, and using the fact that Hp,q(M) = Hq,p(M), we see that it is 0 for
p < n− 1, so the only nonzero terms in the Hodge decomposition of H2n−1(M,C)
are Hn,n−1(M) and Hn−1,n(M) = Hn,n−1(M).

4. Abelian Sums (II)

I now had the tools necessary to prove that ω and ω generate H1
dR(C). First,

we have to prove that ω is a holomorphic 1-form. This is a consequence of the
more general fact that if S is a projective plane curve defined by the zero locus
of the homogeneous polynomial F (x, y, z), then if f(x, y) = F (x, y, 1), then the
differential

(4.1) g(x, y)
dx

(∂f/∂y)(x, y)
,

where g is a polynomial of degree ≤ deg(f) is a holomorphic 1-form.
Since C has genus one, dimH1(C,C) = 2g, and H1(C,C) ∼= H0(C,Ω1) ⊕

H0(C,Ω1), we know that dimH0(C,Ω1) = 1, and we know that ω is a nontriv-
ial holomorphic differential, so ω and ω generate H1(C,C), which by de Rham’s
theorem is isomorphic to H1

dR(C,C), so by the previous argument, Λ is a lattice in
C.

After this, I read about one version of Abel’s theorem, which says that if we
define ψ(L) as above, with codomain C/Λ, then ψ(L) is constant. First, we note
that we can consider ψ as a map from P2∗, the set of lines in P2, but P2∗ ∼= P(C3∗) ∼=
P(C3) ∼= P2, since we can identify a line in P2 with the set of functionals on C3

which vanish on representatives in C3 of the points, and two linear functionals have
the same kernel if and only if they differ by a scalar multiple.

The torus C/Λ has a holomorphic 1-form dz which comes from taking a global
Euclidean coordinate z, which in turn descends from the natural coordinate on C.
ψ∗dz is a global holomorphic 1-form on P2. But H1(P2,C) = 0 by cellular decom-
position, and H1(P2,C) = H0(P2,Ω1) ⊕ H0(P2,Ω1) by the Hodge decomposition
and the Dolbeault isomorphism, so H0(P2,Ω1) = 0, and hence P2 has no global
holomorphic 1-forms other than 0, and thus ψ∗dz = 0. This means that ψ must be
constant, since its derivative must vanish identically.
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5. Jacobian Varieties

On a Riemann surface, a divisor is a locally finite linear combination of points.
On a general complex manifold, a divisor is a locally finite linear combination of
hypersurfaces. I later learned that this corresponded to the more general notion of
a Weil divisor. For complex manifolds, this is the same thing as a global section
of the quotient sheaf of meromorphic units by holomorphic units, H0(M,M∗/O∗),
which in a more general setting corresponds to a Cartier divisor.

Meromorphic functions have zeroes and poles along hypersurfaces, so there is a
function which sends the meromorphic function f to

∑
V ordV (f)·V . Any divisor of

this form is called principal. There is also a map called the degree map on compact
manifolds such that deg(

∑
piVi) =

∑
pi. Since the manifold is compact, this sum

is finite. Any principal divisor has degree 0.
On any curve, a degree 0 divisor can be written as

∑
pi − qi, so in particular,

any principal divisor can be written this way. If Div0(M) denotes the group of
divisors of degree 0 on M , then we can define a map µ : Div0(M) → C/Λ by
µ :
∑
pi − qi 7→

∑∫ pi
qi
ω. Using an argument very similar to that showing ψ was

constant, we can see that µ(PDiv(M)) = {0}, where PDiv(M) is the group of
principal divisors on M .

The construction of the lattice Λ can be generalized to curves of arbitrary genus.
To do this, if M is a curve, we first pick a basis for H1(M,Z), δ1, . . . , δ2g with the
property that the intersection number of δi and δj is 0 unless j = i + g, in which
case it is 1, or j = i−g, in which case it is -1. The δ1, . . . , δg are called A-cycles, and
the δg+1, . . . , δ2g are called B-cycles. We also pick a basis ω1, . . . , ωg for H0(M,Ω1).
The periods are the vectors

(5.1) Πi = (
∫
δi

ω1, . . . ,

∫
δi

ωg).

The proof that the period vectors are R-linearly independent is identical to the
genus one case. The periods thus define a lattice Λ ⊂ Cg. The torus Cg/Λ is called
the Jacobian variety of M , and denoted J (M).

The matrix Ω with columns the periods is called the period matrix. It is possible
to prove certain equations about the periods that show that by choosing good bases
for the homology and cohomology, the period matrix is of the form Ω = (I, Z),
where Z = tZ and ImZ is positive definite.

Another way of thinking of this is that integration gives a map from H1(M,Z) ∼=
Z2g to H0(M,Ω1)∗ ∼= Cg. The argument that the periods are linearly independent
over R then shows that the image of H1(M,Z) is a lattice, and the Jacobian variety
is then the quotient.

We can define a map M ×M → J (M) by sending (w, z) to the residue class
of the integration along γ functional, where γ is a path from w to z. Any two such
paths differ by an element of H1(M,Z), so this map is well-defined. From this we
get a function µ′ from Div0(M) to J (M). We also get a map µ from M to J (M)
by fixing a base point p0. We can think of µ′ as the composition of µ and the
map which sends the point p ∈ M to the divisor p − p0. The map µ is called the
Abel-Jacobi map. Abel’s theorem gives us a lot of information about the former
map.

Theorem 5.2 (Abel’s Theorem). If µ : Div0(M) → J (M) is the map defined
above, then kerµ = PDiv(M).
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Note that this means that if µ′ is the map from M to J (M), then if µ′(p) =
µ′(q), µ(p − q) = 0, so there is a meromorphic function on M which has a simple
pole at q, and is holomorphic on M − {q}, but this would give us a non-constant
degree 1 map to P1, which would have to be an isomorphism, so if M 6∼= P1, then
µ′ is injective.

A divisor D is called effective if each of the nonzero pi in D =
∑
piVi is positive.

This is denoted D ≥ 0. We can define a complex manifold M (d), called the d-fold
symmetric product of M , by taking the quotient of Md by the natural action of
the symmetric group Sd. In the case of curves, we can identify M (d) with the set
of effective divisors on M of degree d.

By fixing a base point p0 ∈ M , we get a map µ : M (d) → J (M). The Jacobi
inversion theorem describes one particular case of this map.

Theorem 5.3 (Jacobi Inversion Theorem). If M is a curve of genus g, then µ :
M (g) →J (M) is surjective and generically injective, i.e. the set of points on M (g)

at which µ is not injective forms a subvariety of strictly smaller dimension.

This means that M (g) and J (M) are in some sense “almost” isomorphic. In-
deed, an open dense subset of the former is isomorphic to an open dense subset of
the latter.

One immediate consequence of the Jacobi inversion theorem is that all genus one
curves are tori. This is because we know that the Abel-Jacobi map is an injection
by Abel’s theorem, and since M (1) = M , the Jacobi inversion theorem tells us that
it is surjective, so it is an isomorphism.

In particular, this means that any projective plane cubic C has a group struc-
ture. Another way to see this is to take H = Div(C)/G, where G is the subgroup
generated by some chosen base point p0 ∈ C and by divisors of the form p+ q + r,
with p, q, r ∈ C such that there is a line in P2 which intersects C at p, q, and r.
The fact that the line intersects C at three points counting multiplicity is again
just Bezout’s theorem.

The elements of this group are points on C. Since points are divisors, and the
equivalence relation we take doesn’t identify distinct points, we see that points of
C form a subset of H. That they are all of H is a consequence of the fact that any
two points of C lie on a unique line. The element −p of H corresponds to the third
point on the line containing p0 and p, and the element p + q is the inverse of the
third point of the line containing p and q.

The fact that the function ψ we defined above is constant says that if we have
the same base point for the group structure as defined by the Abel-Jacobi map and
the group structure as defined by the divisor construction, then the two are related
by a translation.

Actually, we are cheating with this construction somewhat, since we are really
constructing Pic0(M), which is the dual torus to M , and implicitly using the fact
that since all one-dimensional complex tori are principally polarized, they are self-
dual.

Now we want to see whether Jacobian varieties can always be embedded in pro-
jective space. Actually, we’re going to look at something more general – which
complex tori can be embedded into projective space. This required more back-
ground though.
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6. Line Bundles

By looking at the transition functions, you can see that the set of line bundles
on a manifold M is in bijection with H1(M,O∗). We can define a group structure
on the set of line bundles too, with multiplication being the tensor product, and
inversion being the dual bundle. The set of line bundles with this group structure
is then isomorphic as a group to H1(M,O∗). This group is called the Picard group,
Pic(M).

The exponential short exact sequence of sheaves

(6.1) 0→ Z→ O → O∗ → 0

with the first map being the inclusion and the second being f 7→ e2πif gives a
map of cohomology H1(M,O∗) → H2(M,Z). The first group is the group of line
bundles, so we have a map from the group of line bundles to H2(M,Z). The image
of a line bundle L under the map is called the (first) Chern class of L, and denoted
c1(L). This definition isn’t the most general one possible, but it will suffice for
our purposes. There is an injection H ′2(M,Z) → H2

dR(M,R) of the torsion-free
part of H2(M,Z) into H2

dR(M,C) which comes from the exact sequence of sheaves
0 → Z → R composed with the isomorphism of de Rham’s theorem. If we have a
Hermitian metric on L, then c1(L) is the (1,1)-form associated with the metric.

There is a short exact sequence of sheaves

(6.2) 0→ O∗ →M∗ →M∗/O∗ → 0

which induces a long exact sequence of cohomology groups

(6.3) . . .→ H0(M,M∗)→ H0(M,M∗/O∗)→ H1(M,O∗)→ . . . .

The first map sends a nonzero meromorphic function to its divisor, f 7→ (f), while
the second sends a divisor to a line bundle, D 7→ [D]. By Poincaré duality, there
is a differential form ηD corresponding to any divisor. The Chern class of the line
bundle [D] is then equal to ηD.

If we have a trivialization of line bundle L over the open set Uα, then we have an
isomorphism betweenO(L)(Uα), the holomorphic sections of L over Uα, andO(Uα).
A section is a function σ : Uα → LUα . Composing this with the trivialization ϕα,
we get a function from Uα to Uα → C. Composing this with the projection onto the
second coordinate gives a holomorphic function on Uα. Conversely, a holomorphic
function on Uα can be multiplied with the identity map on Uα to get a map from
Uα to Uα ×C, and applying the inverse of the trivialization gives us a section of L
on Uα.

Using this isomorphism, a section of L over U is a collection of holomorphic
functions sα defined on Uα ⊂ U such that sα = gαβsβ on Uα ∩ Uβ . If we weaken
our requirements by saying that the sα need only be meromorphic, then we get
a meromorphic section of L, which is the same thing as a section of the sheaf
O(L) ⊗O M. If s, s′ are two meromorphic sections of L, then their ratio is a
meromorphic function, since

(6.4)
sα
s′α

=
gαβsβ
gαβs′β

=
sβ
s′β
.

The meromorphic functions representing a meromorphic section on a given open
set differ only by multiplication by a nowhere zero holomorphic function, so taking
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the divisors of these functions, we can find the divisor of any meromorphic sec-
tion. Conversely, divisors are defined locally by nonzero meromorphic functions,
and these local defining functions give a meromorphic section of the line bundle
corresponding to that divisor.

Let L(D) denote the space of meromorphic functions f such that D + (f) ≥ 0.
Also, let |D| denote the set of divisors on M linearly equivalent to D, that is, the
set of effective divisors D′ such that D′ −D is principal.

Let s0 be a global meromorphic section of L, where L = [(s0)]. Then for any
holomorphic section s of L, fs = s

s0
is an element of L(D), and for any f ∈ L(D),

f ·s0 is holomorphic, so L(D) is isomorphic toH0(M,O(L)) under the multiplication
by s0 map.

One example of a line bundle is the canonical bundle. If M is an n-dimensional
complex manifold, then the canonical bundle on M is KM =

∧n
T ′∗M , the nth ex-

terior power of the holomorphic cotangent bundle. Holomorphic sections of KM

correspond to holomorphic n-forms, and meromorphic sections correspond to mero-
morphic n-forms. Divisors of holomorphic sections of the canonical bundle are called
canonical divisors.

If M is compact, then D′ ∈ |D| means that there is some f such that D =
D′ + (f). Since both D and D′ are effective, f ∈ L(D). If there are two different
functions f and g on M which have the same divisor, then the divisor associated
to the quotient f/g is 0, and hence f/g must be a global holomorphic function,
and hence constant. This means that two such functions differ by a nonzero scalar
multiple, so we have

(6.5) |D| ∼= P(L(D)) ∼= P(H0(M,O(L))).

A linear system of divisors is a set of divisors corresponding to some subspace
of this projective space. A complete linear system is a linear system of the form
|D|. The base locus of a linear system is defined to be the intersection of all the
divisors. An divisor D′ which is in the base locus of a linear system is called a fixed
component of the linear system.

The base points of a linear system are those points where all sections in the cor-
responding subspace of H0(M,O(L)) vanish. Let E be a subspace of H0(M,O(L))
such that the corresponding linear system has no base locus. Choose a basis
s0, . . . , sN for E. For p ∈ M , we can find an open set Uα containing p and
a trivialization ϕα : LUα → Uα × C. The isomorphism between O(L)(Uα) and
O(Uα) then gives us functions s0,α, . . . , sN,α. If we choose another trivialization,
ϕβ , then on Uα ∩ Uβ , we have si,α/si,β = gαβ . This means that the vectors
(s0,α(p), . . . , sN,α(p)) and (s0,β(p), . . . , sN,α(p)) differ by gαβ(p), so we have a well-
defined function ıE : M → PN defined by ıE(p) = [s0(p), . . . , sN (p)], so long as
not all the si vanish at some point. The fact that they do not all vanish is simply
a restatement of the assumption that E has no base locus. The map into pro-
jective space induced by the complete linear system coming associated with all of
P(H0(M,O(L))) is denoted ıL.

A line bundle L is called positive if there is a positive (1,1)-form which is a
representative of the Chern class of L, taken as a de Rham cohomology class. We
can get a positive line bundle on Pn as follows. First take the trivial vector bundle
Pn × Cn+1. Next consider the subbundle which associates to each point of Pn its
fiber under the natural projection map. This is a line bundle by the definition of
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Pn, called the universal line bundle. It has a Hermitian form coming from the inner
product on Cn+1. The dual bundle, denoted H, called the hyperplane bundle also
has a Hermitian form, which is positive definite. This hermitian metric is actually
Kähler, and is called the Fubini-Study metric. One consequence of this is that any
algebraic variety (a submanifold of some projective space) is Kähler. Another is
that we can pull back H to a positive line bundle on any algebraic variety, so every
algebraic variety has a positive line bundle.

In fact, the converse of this statement is also true.

Theorem 6.6 (Kodaira Embedding Theorem). If L→M is a positive line bundle,
then there is a k0 such that for k ≥ k0, ıLk is an embedding, where Lk is the kth
tensor power of L.

The Chern class of L will contain a closed positive (1,1)-form with integral co-
homology class, called a Hodge form, by definition of positive line bundle. Con-
versely, suppose we have a Hodge form, ω. In the exact sequence H1(M,O∗) →
H2(M,Z) → H2(M,O), we have H2(M,O) ∼= H0,2

∂
(M), so nonzero elements of

this group are represented by pure (0,2)-forms. Since ω is a pure (1,1) form, it is
sent to 0, but by the exactness of this sequence, that means that ω represents the
Chern class of some line bundle which is thus positive, so by the Kodaira embedding
theorem, M is an algebraic variety.

We can use the Kodaira embedding theorem to show that Pm×Pn is an algebraic
variety. If π1 and π2 are the projections onto the first and second coordinates
respectively, then π∗1H⊗π∗2H is a positive line bundle, hence some power of it must
give rise to an embedding of Pm × Pn into projective space. In fact, this bundle
itself is very ample, which means that it gives rise to an embedding into projective
space. This map is called the Segré map.

One example of the Segré map is the map τ : P1 × P1 → P3 defined by
τ(([w1, w2], [z1, z2])) = [w1z1, w1z2, w2z1, w2z2]. This formula for the map easily
generalizes to give us an explicit formula for the Segré map from Pm × Pn to
P(m+1)(n+1)−1. More generally, if X and X ′ are algebraic varieties with Hodge
forms ω and ω′, then X ×X ′ is an algebraic variety with Hodge form π∗1ω + π∗2ω

′,
where π1 and π2 are the projections onto the first and second coordinate respec-
tively.

7. Abelian Varieties

In this section, we want to study Abelian varieties – complex tori which are
also algebraic varieties, in order to prove that all Jacobian varieties are algebraic
varieties. However, before we do this, we will start off with some general facts about
complex tori. They are not necessary to what follows, but I feel they are interesting
in their own right. The first fact is that complex tori are the only complex compact
connected Lie groups. The second is that any map between complex tori is a group
homomorphism followed by a translation.

Now we will look more specifically at Abelian varieties. First, we note that if
M = V/Γ is a torus, where V is an n-dimensional complex vector space and Γ
is a lattice, then T ′µ(M) ∼= V , so any Hermitian inner product on V induces a
translation-invariant Kähler metric on M .

Under this metric, harmonic forms are translation-invariant because translations,
being nullhomotopic, induce the identity map on H1(M,C), to which H (M) is
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isomorphic. Since an invariant form is determined by its value on the tangent space
at a point, the space of all invariant (p, q)-forms is

∧p
V ∗ ⊗

∧q
V
∗
. A dimension

counting argument then shows that all invariant forms are harmonic, so

(7.1) Hr(M,C) ∼= H r(M) ∼=
⊕
p+q=r

(
p∧
V ∗ ⊗

q∧
V
∗
).

This means that the one-forms dz1, . . . , dzn, and dz1, . . . , dzn on V freely generate
H∗(M,C) as a graded ring.

We can get another basis for the cohomology of M by noticing that since V
is the universal cover of M , elements of H1(M,Z) can be lifted to distinct paths
in V starting at the origin, so identifying a loop with its endpoint in V , we get
H1(M,Z) = Λ. This identification then gives us a basis dx1, . . . , dx2n for the
cohomology on M which come from a complex basis e1, . . . , en for V and an integral
basis λ1, . . . , λ2n for Λ respectively.

The Kodaira embedding theorem says that M is an Abelian variety if and only if
there is a positive (1,1)-form of integral cohomology class ω. The cohomology class
of this form is called a polarization of the Abelian variety M . By looking at how
this form would look in terms of the two bases, we get conditions on the relation
between the two that tell us when a torus is an Abelian variety.

Proposition 7.2 (Riemann Conditions). Let Ω be the n×2n change of basis matrix
from λi to ei. Then M is an Abelian variety if and only if we can choose λi and ei
such that Ω is of the form Ω = (∆δ, Z), where ∆δ is a diagonal matrix with integer
coefficients such that for each α for which the equation makes sense, δα | δα+1, and
Z is a symmetric matrix with ImZ positive definite.

In terms of these bases, the Hodge form is ω =
∑
δαdxα ∧ dxn+α. If all the

δα are equal to 1, then the polarization corresponding to ω is called a principal
polarization.

Riemann’s bilinear equations told us that for a Jacobian variety, we could choose
a basis for the integral and de Rham cohomologies such that the corresponding
change of basis matrix was of the form Ω = (I, Z) with Z symmetric and ImZ
positive definite. The Riemann conditions then tell us that any Jacobian variety
is an Abelian variety, indeed a principally polarized Abelian variety. Recalling
that J (S) was isomorphic to H0(S,Ω1)∗/H1(S,Z), the polarizing form ω is the
intersection form H1(S,Z) ⊗Z H1(S,Z) → Z. This is an element of H2(J (S),Z),
and hence by the inclusion map, of H2

dR(J (S)) too.
We know that

(7.3) H1(V,O) ∼= H1,0

∂
(V ) ∼= H1,0(V ) ⊂ H1(V,C) = 0,

and H2(V,Z) = 0, since V ∼= Cn is contractible, so the long exact sequence in
cohomology associated to the exponential sheaf sequence gives us · · · → 0 →
H1(V,O∗) → 0 → · · · , so every line bundle over V is trivial. This means that
given a line bundle L→M , we can pull back L by the projection π to get a trivial
bundle, π∗L.

For any λ ∈ Λ, the fibers of π∗L at z and z + λ are identified, so for any global
trivialization ϕ of π∗L, the map ϕz+λ◦ϕ−1

z : C→ C is a linear automorphism, which
can be identified with an element of C×, and varying this with z gives us a nowhere
zero holomorphic map eλ, with the compatibility condition eλ′(z+λ)eλ(z) = eλ(z+
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λ′)eλ′(z) = eλ+λ′(z). Conversely, given such functions, called multipliers, V ×C/∼,
where (z, ξ) ∼ (x+λ, eλ(z)ξ) gives a line bundle on the torus V/Λ, so the multipliers
correspond to line bundles. Not all the multipliers are needed to determine a a line
bundle; rather, we only need to specify those corresponding to some basis of Λ.

By projecting V first onto (C×)n before onto M , we can find a global trivial-
ization of π∗L such that eλα ≡ 1 for α = 1, . . . , n. Given any invariant positive
integral (1,1)-form ω, we can choose a basis zα for V such that if we take multipli-
ers eλα ≡ 1 and eλn+α = e2πizα for α = 1, . . . , n, then we get a line bundle L with
Chern class [ω].

Since translation is nullhomotopic, the Chern class of a line bundle is translation-
invariant. If a line bundle L is given by multipliers eλα ≡ 1, eλα+n = e2πizα , for
α = 1, . . . , n, which I will henceforth call nice multipliers, then any translate of
L is given by multipliers eλα ≡ 1 and eλα+n = cαe

2πiα, and conversely, any line
bundle given by such multipliers is a translate of L. It can be shown that any line
bundle with Chern class zero can be realized by constant multipliers, and since the
tensor product on line bundles has the effect of multiplying multipliers, this means
that given a line bundle L′ with Chern class [ω], if L is a line bundle given by nice
multipliers with the same Chern class as L′, then L′ ⊗ L∗ is a line bundle with
Chern class zero, so it can be given by constant multipliers, so the multipliers of L′

are multiplies of the multipliers of L, and hence L′ is a translate of L.
If eλi is a collection of nice multipliers for a line bundle L, then given a trivial-

ization ϕ of π∗L which induces the eλi as multipliers and a holomorphic section θ̃ of
L, the trivialization gives us a holomorphic map θ on V satisfying θ(z+λα) = θ(z)
and θ(z + λα+n) = e2πizαθ(z).

For any positive line bundle, we can find a translate, L, which is given by
multipliers eλα ≡ 1 and eλα+n = e−2πzα−πZαα , where Z comes from the polar-
ization induced by the Chern class of our line bundle. Global sections corre-
spond to entire holomorphic functions θ on V such that θ(z + λα) = θ(z) and
θ(z + λα+n) = e−2πizα−πiZααθ(z).

Because the θ functions are periodic in the λα, they can be expanded as a power
series of the form

(7.4) θ(z) =
∑
l∈Zn

alz
′l,

where the z′α = e2πiδ−1
α zα are chosen such that z′α(w + λα) = z′α.

The second conditions then give us the equations

(7.5) al+λα = e2πi〈l,∆−1
δ
λn+α〉+πiZαα · al,

so the theta function is determined by the choice of al where 0 ≤ lα < δα. Con-
versely, we can show that any choice of these coefficients gives a convergent power
series. Since the group of θ functions is isomorphic to H0(M,O(L)), we have just
shown that the dimension of H0(M,O(L)) is

∏
δα. If L induces a principal po-

larization on M , then H0(M,O(L)) is one-dimensional, and is generated by the
section corresponding to the Riemann theta function, which is defined by

(7.6) θ(z) =
∑
l∈Zn

eπi〈l,Zl〉 · e2πi〈l,z〉.

Along with the usual relations for the Riemann theta function, we also have θ(z) =
θ(−z) by the symmetry of the defining equation.
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Note that since sections of positive line bundles are given by theta functions, the
Kodaira embedding theorem tells us that we can embed M into projective space
using the theta functions defined by some power of any positive line bundle. In this
case, the Kodaira embedding theorem can be improved upon to give us an explicit
exponent.

Proposition 7.7. If L → M is any positive line bundle on an Abelian variety,
then H0(M,O(Lk)) has no base points for k ≥ 2 and is an embedding for k ≥ 3.

If we take L to be a line bundle which induces a principal polarization, then
H0(M,O(L3)) will be 3n-dimensional, so we can embed any n-dimensional Abelian
variety into P3n−1.

We know as a corollary of the Kodaira embedding theorem that the product of
two Abelian varieties M and M ′ (of dimensions m and n respectively) is also an
Abelian variety. By composing the embedding of each into projective space with
the Segré map, if the embeddings of M and M ′ are into P3m−1 and P3n−1, then the
new embedding of the m+ n-dimensional torus is into P3m+n−1. Nevertheless, this
bound is not sharp, because any algebraic variety of dimension n can be embedded
in P2n+1.

I now want to show that all meromorphic functions on the torus come from ra-
tional functions of theta functions. The fact that certain rational functions of theta
functions descend to meromorphic functions on the torus is a consequence of the
fact proved above that the ratio of two meromorphic sections is a well-defined mero-
morphic function. The fact that these are all the meromorphic functions requires
some general facts about algebraic varieties.

First, note that ratios of homogeneous polynomials of the same degree in the ho-
mogeneous coordinates of some Pn give rise to well-defined meromorphic functions
on Pn. This is a consequence of the fact that homogenous polynomials of degree d
are in bijection with the sections of the dth power of the hyperplane bundle, Hd.
These are actually all the meromorphic functions on Pn. Rational functions on Pn
descend to meromorphic functions on algebraic subvarieties so long as the ratio-
nal function doesn’t have a pole along the subvariety, and we have the following
important theorem:

Theorem 7.8. For any given embedding of an algebraic variety M into projective
space, all the meromorphic functions on M are restrictions of rational functions on
the projective space.

Since we have shown that any Abelian variety can be embedded into projective
space with theta functions, this theorem tells us that any meromorphic function
is a rational function of theta functions. Indeed, any meromorphic function on an
n-dimensional Abelian variety is the ratio of two homogeneous polynomials of the
same degree in 3n different θ functions.

We can consider all the theta functions on a variety to form a graded ring for
some suitable grading (not N), since the sum of two theta functions corresponding
to the same line bundle gives another theta function corresponding to that line
bundle and the product of two theta functions is again a theta function for the
tensor product of the corresponding line bundles. The grading is then the monoid
of positive and trivial line bundles with the tensor product, where we say that the
theta functions associated to the trivial bundle are the constant functions.
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There is also a more algebraic way to think about Abelian varieties. First, since
we have identified the tangent space on any point of M with V , we can identify V ∗

with H0(M,Ω1). Kodaira-Serre duality and the Dolbeault isomorphism then tell
us that V ∼= Hn(M,Ωn−1) ∼= Hn−1,n(M). Also, since we have said Λ ∼= H1(M,Z),
so Poincaré duality tells us that Λ ∼= H2n−1(M,Z). If we take VR = Λ ⊗Z R, then
VR ∼= H2n−1(M,R), and if we take VC = VR ⊗R C, then VC = H2n−1(M,C), and
using the Hodge decomposition, we can get VC = Hn−1,n(M)⊕Hn−1,n(M) ∼= V⊕V .
A Hodge form would be given by a skew-symmetric bilinear form Q : Λ⊗Z Λ→ Z.
If we take the tensor product of Λ with C over Z, then we can identify this space
with V ⊕ V by the above argument, so we get Q : (V ⊕ V ) ⊗Z (V ⊕ V ), with the
conditions Q(v, v′) = 0 for v, v′ ∈ V , and −iQ(v, v) > 0 for 0 6= v ∈ V .

In the special case of the Jacobian variety, we saw that the Jacobian of a curve S
could be defined by J (S) = (H0(S,Ω1)∗/γ(H1(S,Z)), where γ is the integration
map, but since we know that γ is nondegenerate, we can identify the image of
H1(S,Z) with its dual, H1(S,Z), and by Kodaira-Serre duality and the Dolbeault
isomorphism, we get H0(S,Ω1)∗ ∼= H0,1(S), so J (S) = H0,1(S)/H1(S,Z), and
the bilinear form Q which gives the polarization comes from the cup product on
H1(S,Z).

8. Intermediate Jacobians

If M is any algebraic variety, then we can define Pic0(M) to be the subgroup of
Pic(M) consisting of those line bundles whose Chern class is zero. By the expo-
nential sheaf sequence we get the exact sequence of cohomology
(8.1)
H0(M,O)→ H0(M,O∗)→ H1(M,Z)→ H1(M,O)→ Pic(M)→ H2(M,Z).

By definition, Pic0(M) is the kernel of the last map, so by exactness, it is the
image of H1(M,O). Since M is compact, H0(M,O) ∼= C and H0(M,O∗) ∼= C×.
The map between them is the exponential map, which is surjective, so by exact-
ness, the map from H0(M,O∗) to H1(M,Z) is the zero map, and so the map
from H1(M,Z) to H1(M,O) is injective, and hence we can identify Pic0(M) with
H1(M,O)/H1(M,Z).

If M is an Abelian variety, then by the previous identifications, we have

(8.2) Pic0(M) = V
∗
/Λ∗,

so Pic0(M) is also a complex torus. In fact, the polarization on M induces a
polarization on Pic0(M), so Pic0(M) is an Abelian variety, called the dual Abelian
variety of M , and denoted M̂ .

If M is any compact Kähler manifolds, then we can associate a number of tori
to M , called Griffiths’ intermediate Jacobians. First, we define

(8.3) Vq = Hq−1,q(M)⊕ · · · ⊕H0,2q−1(M)

for 1 ≤ q ≤ dimM . By the Hodge decomposition, H2q−1(M,C) = Vq ⊕ V q. If Λq
is the image of H2q−1(M,Z) in Vq, then the qth intermediate Jacobian is defined
to be Jq(M) = Vq/Λq. For q = 1, we have J1(M) = H0,1(M)/H1(M,Z) is the
Picard variety Pic0(M). We define the Albanese variety to be Alb(M) = Jn(M) =
Hn−1,n(M)/H2n−1(M,Z) ∼= H1,0(M)∗/H1(M,Z) by Poincaré and Kodaira-Serre
duality. Notice that the Picard and Albanese varieties are dual complex tori.
If M is an algebraic variety, then Alb(M) is an Abelian variety, so Pic0(M) is
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too. We know that Pic0(Alb(M)) = H0,1(Alb(M))/H1(Alb(M),Z) ∼= V
∗
n/Λ

∗
n,

but Vn = Hn−1,n(M), so by the Hodge decomposition and Kodaira-Serre duality,
V
∗
n
∼= H0,1(M), while Λ∗n ∼= H1(M,Z), so Pic0(Alb(M)) ∼= H0,1(M)/H1(M,Z) =

Pic0(M), and similarly, Alb(Pic0(M)) = Hn−1,n(Pic0(M))/H2n−1(Pic0(M),Z) =
V1/Λ1

∼= Pic0(M). Actually the same argument shows that for any Abelian variety
M , Alb(M) ∼= M .

By picking a base point p0 ∈ M , we get a map φnM : M → Alb(M), called the
Abel-Jacobi map, by a simple generalization of the one-dimensional case. Actually,
this construction can be generalized to give a map φkM : Zk(M)hom → Jk(M),
where the domain is the group of n − k-cycles homologous to 0. There’s also a
generalization of Abel’s theorem:

Theorem 8.4 (Abel’s theorem). If D is a divisor homologous to 0, then φ1
M (D) = 0

if and only if D is a principal divisor.

And of the Jacobi inversion theorem:

Theorem 8.5 (Jacobi inversion theorem). For sufficiently large k, the map from
M (k) to Alb(M) induced by φnM is surjective.

Also, the Albanese map has the universal property that for any map f : M → T ,
where T is a complex torus, such that f(p0) = 0, there is a unique map g such that
the following diagram commutes:

M
φnM //

f

##HH
HH

HH
HH

HH
Alb(M)

g

��
T

A consequence of this universal property is that if M embeds into any complex
torus, then the Albanese map is an embedding. This naturally leads to the question
of which complex manifolds can be embedded into complex tori. This is obviously
possible for all irrational curves and for all complex tori, but I have no idea about
which others, if any.

9. Curves and their Jacobians

We can get an embedding of any compact Riemann surface S except P1 into
some projective space PN by embedding it in its Jacobian variety and then embed-
ding that into PN . By the theorem stated above about meromorphic functions on
algebraic varieties, any meromorphic function on S is the restriction of a rational
function on PN , but this rational function also restricts to a meromorphic function
on J (S), so any meromorphic function on S is the restriction of a meromorphic
function on its Jacobian variety. Note that this gives us a bound on the transcen-
dence degree of the field of meromorphic functions on S (albeit an awful one, since
this degree is actually just one, the dimension of S).

Any Jacobian variety J (S) has a natural principal polarization, [ω], as we
showed above. We can find a line bundle L whose Chern class is [ω]. Since it is a
principal polarization, some translate of L will have a global holomorphic section θ̃
represented by the Riemann theta function. The divisor of θ̃ is denoted Θ and called
the theta divisor. Since θ̃ is holomorphic, Θ is effective, and so we can identify it
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with a subset of J (S). For any x ∈ J (S), we define Θx ⊂ J (S) to be Θ + x,
the translate of Θ by x.

Let µ be the one-dimensional Abel-Jacobi map. We can consider µ(S) as a
submanifold of J (S) isomorphic to S for S 6∼= P1, since we know that in this case,
µ is injective. We can show that for any x ∈ J (S), either µ(S) ⊂ Θx or the
intersection number of µ(S) and Θx is precisely g, the genus of S. If µ(S) 6⊂ Θx,
then we can write µ∗Θx = z1(x)+ . . .+zg(x). If K is a canonical divisor on S, then
we can define the constant κ to be κ = −1/2µ(K). We then have the following
proposition:

Proposition 9.1. If µ(S) 6⊂ Θx, then

(9.2)
g∑
i=1

µ(zi(x)) + κ = x.

Define Wd ⊂J (S) to be Wd = µ(S(d)). The Jacobi inversion theorem says that
for d ≥ g, Wd = J (S). In fact, for no lower d is this map surjective. This is one
of the consequences of

Theorem 9.3 (Riemann’s theorem).

(9.4) Θ = Wg−1 + κ

This is important because Θ is defined purely in terms of the Abelian variety
J (S), while κ and Wg−1 are defined by S. This relation allows us to get informa-
tion about the theta divisor using knowledge of S. For example, if S has genus at
least five, then the set of singular points of Θ has dimension at least g − 4.

The fact that Jacobian varieties carry a lot of information about curves is perhaps
made most clear by

Theorem 9.5 (Torelli’s theorem). If S and S′ are algebraic curves such that
(J (S), [ωS ]) ∼= (J (S′), [ωS′ ]) as principally polarized Abelian varieties, then S ∼=
S′.

Torelli’s theorem proves that the map from the moduli space of curves of genus g
to g-dimensional principally polarized Abelian varieties is injective. Is it surjective?
In general, no. We know that the moduli space of a genus g surface has dimension
3g − 3. A principally polarized Abelian variety is characterized by the symmetric
matrix Z with ImZ > 0, but a matrix is positive definite if and only if its eigenvalues
are positive, and the eigenvalues of a matrix depend continuously upon the matrix,
so the set of such Z is an open subset of the set of symmetric matrices, which has
dimension 1/2g(g + 1) for a g × g matrix, so for g > 3, the map of moduli spaces
cannot be surjective. The problem of how to determine whether a principally
polarized Abelian variety is a Jacobian variety is called the Schottky problem.

Note that the generalization of this statement to ask whether a given Abelian
variety is the Albanese or Picard variety for some algebraic variety is trivial, since
for any Abelian variety M , M ∼= Alb(M) ∼= Pic0(Pic0(M)). Since not all the
intermediate Jacobians are Abelian varieties, this still leaves the question of whether
all tori are the intermediate Jacobian of some complex manifold. We could also
generalize in another direction, and ask whether every Abelian variety or complex
torus is the intermediate Jacobian of some complex manifold of bounded dimension.
If not, it would also be interesting to see how the minimal dimension of Abelian
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variety which is not the intermediate Jacobian of some manifold of dimension ≤ d
varies with d.
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