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Abstract. Stefan Banach and Alfred Tarski introduced the phrase: “a pea
can be chopped up and reassembled into the Sun,” a seemingly impossible

concept. Using this theorem as motivation, this paper will explore the existence

of non-measurable sets and paradoxical decompositions as well as provide a
sketch of the proof of the paradox.

1. Introduction

Banach-Tarski states that a sphere in R3 can be split into a finite number of pieces
and reassembled into two spheres of equal size as the original. Quite deserving of
the name paradox, this theorem completely defies all geometric intuition about
the volume of a sphere. How can a simple function such as rearrangement of
the pieces double the volume? While it does seem impossible, when the idea of
infinity is considered, the paradox becomes more intuitive. An example of two
halves together equalling the same size as each half is the equal cardinality of the
odd or even integers and all integers. Using this fact as a comparison, suddenly
Banach-Tarski seems far more believable.

Physically, the Banach-Tarski Paradox cannot be achieved, because a solid sphere
is comprised of a finite number of atoms. But in an Euclidean space of dimension 3
or higher, a sphere is infinitely dense and splitting it creates pieces which are also
infinitely dense. Therefore, in actuality, it is not that surprising these pieces can
be rotated and transformed to make two spheres of equal volume as the original.
Take two subsets of R3 to represent the these spheres. Let set A be the original
sphere, and B be the union of the two spheres from rearrangement. Banach-Tarski
Paradox is then stated as follows, in its strong form.

Theorem 1.1. For any 2 bounded subsets A and B of a Euclidean Space of dimen-
sion 3 or higher with non-empty interiors, there exists partitions of A and B into
finitely many disjoint subsets

A = A1 ∪A2 . . . ∪Ak

B = B1 ∪B2 . . . ∪Bk

such that for each 1 < i < k, Ai and Bi are congruent.

Definition 1.2. Two subsetsA andB are congruent if there is a distance-preserving
bijection from A to B.
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However, before we continue onward with a discussion of the construction and
proof of this theorem, a foundation of paradoxical sets, equidecomposition, and the
axiom of choice must be built.

2. Non-measurable Sets

The proof of this theorem relies crucially on the Axiom of Choice.

Theorem 2.1. For any sets A, B and binary relation P ⊆ A× B, (∀x ∈ A)(∃y ∈
B)P (x, y) =⇒ (∃f : A→ B)(∀x ∈ A)P (x, f(x)).

The axiom asserts that given an arbitrary number of decisions, each with at
least one possible choice, then there exists a function that assigns a choice per
decision. This is where debate about the axiom stems. Its consequences include
many strange results such Banach-Tarski, but is not constructive since it never
states which choices are made.

This type of property allows for the pieces of the sphere to be constructed from
the choice sets {xi}. As a consequence, these pieces have no Lebesgue measure.
Without measure, these pieces can be distorted with transformations to produce
sets which defy geometric logic.

3. Paradoxical Sets and Equidecomposition

Paradoxical sets are sets with paradoxical decompositions, which mean that they
can be partitioned into two subsets which have a relation to the original set through
a group. These sets are crucial to Banach-Tarski because the spheres we are con-
sidering must be paradoxical.

The easiest method of obtaining a paradoxical set is to use transformations to
duplicate the set. These transformations are bijections of a single set and the
simplest way to accomplish this is to use a group. A group G acts on a set X if
to each g ∈ G there corresponds a bijective function X −→ X, such that for any
g, h ∈ G and x ∈ X, g(h(x)) = (gh)(x) and 1(x) = x, where 1 is the identity of G.

Definition 3.1. Let G be a group acting on a set X and suppose that E ⊆ X. E
is G-Paradoxical if for some m,n there exists g1, . . . , gm and h1, . . . , hn ∈ G and
pairwise disjoint A1, . . . , Am and B1, . . . , Bn ⊆ E such that E = ∪giAi = ∪hjBj .

Namely, the two disjoint subsets ∪Aiand∪Bi map to the entirety of E through
finitely many functions of G, a sort of “stretching” of the sets. In these terms,
Banach-Tarski says that any ball in R3 is paradoxical with respect to the group of
isometries of R3. The following is an example of a paradox that shows, with the
Axiom of Choice, there are certain sets which are non-measurable.

Theorem 3.2. S1 is countably SO2-paradoxical (Paradoxical with a countable
number of pieces).
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Proof. Consider RSO2, the subgroup of SO2 generated rotations of rational mul-
tiples of 2π. Let H be a choice set for the cosets of SO2/RSO2. Then let
M = {σ(1, 0) : σ ∈ H}. Note that RSO2 is countable. It is them possible to
enumerate it with ρi. Then let Mi = ρi(M). This makes {Mi} a countable parti-
tion of S1.

So each set in {M2,M4,M6, . . .} may be individually rotated to make
{M1,M2,M3, . . .} whose union is S1. Similarly, this can be done with {Mi : i odd}.
Hence, S1 is countably SO2-paradoxical. �

Corollary 3.3. There does not exist a countably additive rotation-invariant mea-
sure of total measure 1 defined for all subsets of S1.

Corollary 3.4. There does not exist a countably additive, translation-invariant
measure of total measure 1 defined on all subsets of Rn and normalizing [0, 1]n.
Thus, there is a subset of [0, 1] which is not Lebesgue-measurable.

Continuing, we now move to the topic of equidecomposability of these paradox-
ical sets. The prime example for this is the one of a broken circle. It will be shown
next that a broken circle S1 \ {pt} can be partitioned into two sets, then rejoined
to create a complete circle.

Definition 3.5. Let G act on a set X, and let A,B ⊆ X. A and B are G-
equidecomposable if A and B can be partitioned into A1, . . . , An and B1, . . . , Bn

such that each Aiis congruent to Bi. (∃gi ∈ G such that gi(Ai) = Bi).

In words, this means two subsets A,B ∈ Rn are equidecomposable if they can be
partitioned into the same finite number of pieces. A can be reassembled to make
B and vice versa. Further, if A ∼ B and A is paradoxical, then B is paradoxical
as well.

Theorem 3.6. S1 \ {pt} is equidecomposable to S1

Proof. Since we are considering a broken circle, let the group used be the isomentry
group of R2 where S1 is {x : |x| = 1}. Consider R2 identified with C. Let the broken
point (pt) be 1 = ei0. Also, let A = {ein : n ∈ N} and B = (S1 \ {pt}) \ A be
all other points. The points ein are unique, because 2π is irrational. Let B be
fixed while rotating A by exactly one radian. This will shift each point in A by one
radian and the circle will be complete. �

4. Paradoxical Groups

There are many specifics to determine whether a group is paradoxical, but for
this particular topic, we won’t go into those details. We will, instead, take for
granted the known fact that a free group on two generators is a paradoxical group.
In fact, it is equidecomposable with two copies of itself, under its own group action.
To show this, the simplest method is using the Schroder-Bernstein Theorem which
implies the following
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Theorem 4.1. Suppose group G acts on X. If each of A,B ⊆ X is G-equidecom-
posable with a subset of the other, then A is G-equidecomposable with B.

Consider this free group of two generators to be a group of rotations of the
sphere.

Theorem 4.2. There exist rotations S, T of the unit sphere in R3 that are inde-
pendent. These rotations generate the free group F on two generators.

To use this theorem, let us define our group as the rotations of angle arccos(1/3)
about perpendicular axes:

S =

 1
3

−2
√

2
3 0

2
√

2
3

1
3 0

0 0 1

 , T =

1 0 0
0 1

3
−2
√

2
3

0 2
√

2
3

1
3


Then, it can be shown that any word W on S, T, S−1, T−1 sends (1,0,0) to a vector

(a,
√
b, c)/3n, where a, b, and c are integers, b > 0, n is the length of the word W ,

and b is not divisible by 3. These rotations are also independent because (1,0,0) is
never sent to itself by a nontrivial word.

With this, which we call our free group F , we can proceed to a sketch of the
construction of the paradox.

5. Construction of the Paradox

To construct the paradox, we need to show that the unit ball B3 is equidecom-
posable with two unit balls under the isometry group of R3. This is easily achieved
if a spherical shell S2 is first considered. Then, the ball can be viewed as a collection
of these spherical shells. This covers all points of the ball, except the center. We
begin by removing the center of such a sphere.

Lemma 5.1. B3 is equidecomposable with B3/{0} where 0 is the center of the ball.

Proof. Take a small circle which passes through 0 and is contained in B3. Then let
ρ be a 1 radian rotation of the circle. The it follows that 0, ρ0, ρ20, ρ30, . . . are all
distinct. If ρ is then applied to this set of points again, the set remains the same
except 0 is now gone. This creates a equidecomposition of B3 with B3/{0}. One
piece is 0, ρ0, ρ20, ρ30, . . . going to ρ0, ρ20, ρ30, . . . under rotation ρ, the other is the
remaining points in the ball going to itself. �

Now that the center is out of the way, we must remove the other countably many
points in the shell which are problematic.

Lemma 5.2. Let D be the set of points S2, our shell, that are fixed by some
nontrivial element of F (constructed earlier). Then S2 is equidecomposable with
S2 \D.
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Proof. D is countable because F is a countable set of words and each rotation of
F places only two points of S2 on the rotational axis. Hence, there exists an axis
that passes through the center, but not any points of D. Moreover, there exists a
rotation ρ about the orbit such that D, ρD, ρ2D, ρ3D, . . . are all disjoint. As in the
proof of the previous lemma, when the rotation is applied to the set which is the
union of D, ρD, ρ2D, ρ3D, . . ., D itself is removed. Thus, an equidecomposition of
S2 and S2 \D is created. �

Now, continuing with our shell S2 \D which has no troublesome points, we use
the Axiom of Choice to duplicate it. S2 \D can be split into two sets, each of which
is equidecomposable with S2/D. To do this we note that distinct rotations send
points of S2/D to distinct images.

First, let us define an orbit. We will call Fx = {fx|f ∈ F} the orbit of such
a point x ∈ S2 \ D. Two points are in the same orbit if and only if there exists
a rotation which transports the first to the second. These orbits partition S2 \D
since they are equivalence classes under the relation x ∼ y ⇐⇒ y ∈ Fx. Using
the Axiom of Choice, we will choose one member from each orbit to form a set M .
Then all points x ∈ S2 \D can be written as x = fm for some f ∈ Fandm ∈ M .
It follows then that these sets partition S2 \D also.

Because F is equidecomposable with two copies of itself (from Schroder-Bernstein
Theorem), it can be partitioned into the subsets F1, F2 both of which are F -
equidecomposable with F . Let φi : Fi −→ F where i = 1, 2 be F-equidecompositions.
Consider these to be maps from ftoφif . The sets F1M,F2M partition FM =
S2 \ D. And there exist equidecompositions φ̄ : FiM −→ FM = S2 \ D from
fm 7→ (φif)m.

To prove this claim, let Aik ⊆ Fi be a piece that goes to Bik ⊆ F under φi,
by φik ∈ F . There there exists a corresponding piece of φ̄i which sends the piece
AikM to BikM . And so S2 \ D has been successfully partitioned into two sets
equidecomposable with the original.

If each shell of the sphere is treated in this way simultaneously, we end up with
an equidecomposition of B3 \ {0} with two copies of itself. And using the Core
Lemma in the beginning of this section, we find that B3 is actually equidecompos-
able with two copies of itself. This completes the construction of the paradox.

A few notes about the paradox follow. The theorem only holds for dimension
3 or higher because there are no free non-abelian groups in the lower dimensions
to make the paradox possible. It has also been proven that the paradox can be
accomplished with as few as five pieces.

6. Conclusions

So we have examined the Banach-Tarski Paradox inside out. Even after all this
analysis, the idea of doubling the volume of a ball but not using more matter is
still counterintuitive. But when proposed with the thought that each piece is not
Lebesgue measurable and properties such as volume are undefined on them, things
become much easier to put into perspective.
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However, this is not the end of the paradox. If we take a look at the result and
apply it to probability theory, we see even stranger things such as the existence of
events with undefined probability, but that is a problem for another day. For now,
we will be content knowing that we have made peace with such a logic defying idea.
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