
CONTINUED FRACTIONS AND PELL’S EQUATION

SEUNG HYUN YANG

Abstract. In this REU paper, I will use some important characteristics of
continued fractions to give the complete set of solutions to Pell’s equation. I
would like to thank my mentor Avan for introducing and guiding me through
this extremely interesting material. I would like to cite Steuding’s detailed
but slightly flawed book as the main source of learning and Andreescu and
Andrica’s book as an inspiration for numerous fun experiments I have made
this summer.
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1. Continued Fractions

This rather long section gives several crucial tools for solving Pell’s equation.

Definition 1.1. Let a0, a1, a2, . . . , am be real numbers. Then,

a0 +
1

a1 +
1

a2 +
1

a3 +
1

a4 +
1

· · ·+ 1

am−1 +
1

am

is called a finite continued fraction and is denoted by [a0,a1,a2,. . . ,am]. If the
chain of fractions does not stop, then it is called an infinite continued fraction.

Remark 1.2. From now on, we will use an as it is defined here.

Definitions 1.3. (a) For n ≤ m, [a0,a1,. . . ,an] is called nth convergent to
[a0,a1,a2, . . . ,am]. (b) Define two sequences of real numbers, (pn) and (qn), re-
cursively as follows: (1) p−1 = 1, p0 = a0, and pn = anpn−1 + pn−2; and (2) q−1 =
0, q0 = 1, and qn = anqn−1 + qn−2.

Remark 1.4. From now on, we will use pn and qn as they are defined here.
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Theorem 1.5. Let [a0,a1,a2,. . . ,am] be a continued fraction. Then, for 0 ≤ n ≤
m, pn

qn
= [a0,a1,a2,. . . ,an].

Proof. We proceed by induction. For n = 1,

[a0, a1] = a0 +
1
a1

=
a1a0 + 1

a1

=
a1p0 + p−1

a1q0 + q−1

=
p1

q1

as desired. Now, suppose the theorem holds for n.

[a0, . . . , an+1] = [a0, . . . , an−1, an +
1

an+1
]

=
(an + 1

an+1
)pn−1 + pn−2

(an + 1
an+1

)qn−1 + qn−2

=
(an+1an + 1)pn−1 + an+1pn−2

(an+1an + 1)qn−1 + an+1qn−2

=
an+1anpn−1 + an+1pn−2 + pn−1

an+1anqn−1 + an+1qn−2 + qn−1

=
an+1(anpn−1 + pn−2) + pn−1

an+1(anqn−1 + qn−2) + qn−1

=
an+1pn + pn−1

an+1qn + qn−1

=
pn+1

qn+1

as desired. ¤

Remark 1.6. As a result of this theorem, we will refer to pn

qn
as the nth convergent.

Theorem 1.7. Suppose that a0 is an integer, that an is a positive integer for each
1 ≤ n ≤ m−1, and that 1 ≤ am. Then, pn and qn are (a) integers and (b) coprime
for each 1 ≤ n ≤ m− 1.

Proof. (a) p−1, q−1, p0, and q0 are integers by definition. an’s are also integers for
0 ≤ n ≤ m− 1 by the given. Since pn and qn (1 ≤ n ≤ m− 1) are defined as com-
binations of multiplication and subtraction of said variables (which are integers),
they must be integers as well.

(b) We use the following useful lemma:

Lemma 1.8. For 1 ≤ n ≤ m, following two relations hold:
(1) pnqn−1 − pn−1qn = (−1)n−1; and
(2) pnqn−2 − pn−2qn = (−1)nan.
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Proof. (1)

pnqn−1 − pn−1qn = (anpn−1 + pn−2)qn−1 − pn−1(anqn−1 + qn−2)
= pn−2qn−1 + anpn−1qn−1 − anpn−1qn−1 − pn−1qn−2

= (−1)(pn−1qn−2 − pn−2qn−1)
= . . .

= (−1)n(p0q−1 − p−1q0)
= (−1)n(−1)
= (−1)n−1

as desired.
(2)

pnqn−2 − pn−2qn = (anpn−1 + pn−2)qn−2 − (anqn−1 + qn−2)pn−2

= anpn−1qn−2 + pn−2qn−2 − pn−2qn−2 − anpn−2qn−1

= an(pn−1qn−2 − pn−2qn−1)
= (1)n−2an

= (−1)nan

as desired. ¤

To complete the proof of Theorem 1.7, consider (1) of Lemma 1.8. Since there
is a linear combination of pn and qn that is equal to ±1, by elementary proposition
from number theory, we conclude they are coprime as greatest common divisor
between them is at most (equal to) 1. ¤

We now move on to use continued fractions to approximate real numbers.

Definition 1.9. Let α be a real number. For n = 0,1,2,. . . , define a recursive
algorithm as follows: α0 = α, an = bαnc, and αn = an + 1

αn+1
.

Remark 1.10. Here, b c is used as a floor function. That means, by the last equation,
αn is positive for all positive n. Observe that 1

αn+1
= αn - bαnc. Thus, the left side

of the equation must be less than 1, and therefore αn+1 > 1. Then, by definition,
an+1 is a positive integer. Thus, we may conclude that αn,an ≥ 1 for n ≥ 1.

Observe also that, given positive m, α = [a0,a1,. . . ,am−1,αm]. It is called the
mth continued fraction of α.

Remark 1.11. Observe that, if α is rational, then the algorithm above is equivalent
to Euclidean algorithm, with αn, when reduced to a fraction of coprimes, consist-
ing of nth remainder as numerator and n + 1th remainder as denominator. That
means, the continued fraction of a rational number is finite. On the other hand,
if α is irrational, then the continued fraction must be infinite simply because any
finite continued fraction is rational (and therefore cannot be equal to an irrational
number).

Theorem 1.12. Let α be irrational and pn

qn
be a convergent to its continued fraction.

Then,

(1.13) α− pn

qn
=

1
qn(αn+1qn + qn−1)

.
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Proof. Let n be a positive number. Then, α = [a0,a1,. . . ,an,αn+1]. Then,

α− pn

qn
=

αn+1pn + pn−1

αn+1qn + qn−1
− pn

qn

=
pn−1qn + αn+1pnqn − αn+1pnqn − pnqn−1

qn(αn+1qn + qn−1)

=
pn−1qn − pnqn−1

qn(αn+1qn + qn−1)

=
(−1)(pnqn−1 − qnpn−1)

qn(αn+1qn + qn−1)

=
(−1)n

qn(αn+1qn + qn−1)

by the Lemma 1.8. ¤

Remark 1.14. Observe, for each positive n, an ≤ αn by a property of floor function.
Also, since q−1, q0, and an (n > 0) are positive integers, the same must be true for
qn (n > 0) by definition. Then,

∣∣∣∣α−
pn

qn

∣∣∣∣ =
1

qn(αn+1qn + qn−1)

<
1

qn(an+1qn + qn−1)

=
1

qnqn+1
.

By definition, qn = anqn−1 + qn−2. Since 1 ≤ an and qn−2 > 0, we conclude that
qn is strictly increasing as n increases. Then, we may conclude that the continued
fraction of a number converges to that number by the inequality just given here.
In other words,

α = limn→∞
pn

qn
= [a0,a1,a2,. . . ].

Corollary 1.15. Let α be a real number with convergent pn

qn
. Then,

|qnα− pn| < |qn−1α− pn−1|.

Proof. By Theorem 1.12,

∣∣∣∣α−
pn

qn

∣∣∣∣ =
1

qn(αn+1qn + qn−1)

⇒ |qnα− pn| =
1

qnαn+1 + qn−1

Similarly,

|qn−1α− pn−1| =
1

qn−1αn + qn−2
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It now suffices to prove the following inequality:
1

qnαn+1 + qn−1
<

1
qn−1αn + qn−2

=
1

qn−1(an + 1
αn+1

) + qn−2

=
1

qn−1an + qn−1
αn+1

+ qn−2

=
αn+1

qn−1anαn+1 + qn−1 + qn−2αn+1

⇔ qn−1anαn+1 + qn−1 + αn+1qn−2 < qnα2
n+1 + qn−1αn+1

⇔ αn+1(qn−1an + qn−2) + qn−1 < qnα2
n+1 + qn−1αn+1

⇔ qnαn+1 + qn−1 < αn+1(qnαn+1 + qn−1)
⇔ 1 < αn+1

which is true by Remark 1.10. ¤
We are now ready to move onto two extremely beautiful and important approx-

imation theorems involving convergents.

Theorem 1.16. (The Law of Best Approximations) Let α be a real number
with convergent pn

qn
and n ≥ 2. If p,q are integers such that 0 < q ≤ qn and p

q 6=
pn

qn
, then

|qnα− pn| < |qα− p|.
Moreover, a reduced fraction p′

q′ with q′ ≥ q2 that satisfies the latter inequality is a
convergent.

Proof. By Corollary 1.15, we have already proven the case in which p
q is a conver-

gent. Suppose q = qn. Then, p 6= pn.∣∣∣∣
p

q
− pn

qn

∣∣∣∣ =
|p− pn|

qn

≥ 1
qn

.

∣∣∣∣α−
pn

qn

∣∣∣∣ <
1

qnqn+1

<
1

2qn

because qn+1 ≥ 3 if n ≥ 2 (qn is strictly increasing for n ≥ 1 and q1 ≥ q0 = 1). By
the Triangle Inequality, we have∣∣∣∣α−

p

q

∣∣∣∣ ≥
∣∣∣∣
p

q
− pn

qn

∣∣∣∣−
∣∣∣∣α−

pn

qn

∣∣∣∣

>
1
qn
− 1

2qn

=
1

2qn

>

∣∣∣∣α−
pn

qn

∣∣∣∣
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Multiplying both sides by q = qn, we obtain the desired inequality.
Now suppose 0 < q < qn. We may set up following system of two equations with

two variables X and Y:

pnX + pn−1Y = p(1.17)
qnX + qn−1Y = q(1.18)

A series of basic manipulations from high school mathematics yields the following
unique solution (x,y):

x =
pqn−1 − qpn−1

pnqn−1 − pn−1qn

y =
pqn − qpn

pnqn−1 − pn−1qn

By Lemma 1.8, the denominators reduce to ±1:

x = ±(pqn−1 − qpn−1)
y = ±(pqn − qpn)

Therefore, x and y are nonzero (otherwise p
q is a convergent) integers. By the

equation 1.18, since qn > q, we conclude that x and y have opposite signs. By
Lemma 1.8, α − pn

qn
alternates signs. That is, α − pn

qn
and α − pn−1

qn−1
have opposite

signs. This implies that qnα − pn and qn−1α − pn−1 have opposite signs as well.
Therefore, x(qnα− pn) and y(qn−1α− pn−1) have the same sign. Thus,

qα− p = (qnx + qn−1y)α− (pnx + pn−1y)
= x(qnα− pn) + y(qn−1α− pn−1)

⇒ |qα− p| = |x(qnα− pn|+ |y(qn−1α− pn−1)|
⇒ |qα− p| > |qn−1α− pn−1|

> |qnα− pn|

as desired. In particular, this inequality holds for qn−1 < q < qn, which, by Induc-
tion Principle, implies only convergents satisfy the said inequality. ¤

Theorem 1.19. (a) Given any two consecutive convergents to a real number α,
there is at least one satisfying

∣∣∣α− p
q

∣∣∣ < 1
2q2

(b) Any reduced fraction that satisfies the above inequality is a convergent.

Proof. (a) By Lemma 1.8, given any two consecutive convergents, exactly one is
greater than or equal to α, and the other is less than or equal to α. Thus,

(1.20)
∣∣∣∣
pn+1

qn+1
− pn

qn

∣∣∣∣ =
∣∣∣∣α−

pn+1

qn+1

∣∣∣∣ +
∣∣∣∣
pn

qn
− α

∣∣∣∣
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Now, suppose the said inequality is not true for some consecutive convergents pn

qn

and pn+1
qn+1

. By Lemma 1.8,

1
qnqn+1

=
∣∣∣∣
pn+1qn − pnqn+1

qnqn+1

∣∣∣∣ =
∣∣∣∣
pn+1

qn+1
− pn

qn

∣∣∣∣

=
∣∣∣∣α−

pn+1

qn+1

∣∣∣∣ +
∣∣∣∣
pn

qn
− α

∣∣∣∣

≥ 1
2q2

n+1

+
1

2q2
n

⇒ 1
qnqn+1

≥ 1
2q2

n+1

+
1

2q2
n

=
q2
n + q2

n+1

2q2
nq2

n+1

⇒ 2qnqn+1 ≥ q2
n + q2

n+1

⇒ 0 ≥ (qn − qn+1)2

Because qn is strictly increasing for positive n, this may be true only if n = 0 and
q1 = q0 = a1 = 1. Thus, by contradiction, (a) is true for all positive n, and we
only need to check for the case n = 0 (the two consecutive convergents being p0

q0

and p1
q1

):

0 <
p1

q1
− α = a1a0 + 1− α = a0 + 1− α = a0 + 1− [a0, 1, a2, a3, . . . ]

< 1− 1

1 +
1
a2

= 1− a2

a2 + 1
≤ 1

2

which satisfies the statement of the theorem.
(b) Suppose p

q satisfies the said inequality. By the law of best approximations,
it suffices to show p

q is a best approximation to α.

Let P
Q be such that P

Q 6= p
q and |Qα− P | ≤ |qα− p| = q

∣∣∣α− p
q

∣∣∣ < 1
2q . Then,

1
qQ

≤ |pQ− Pq|
qQ

=
∣∣∣∣
p

q
− P

Q

∣∣∣∣

≤
∣∣∣∣α−

p

q

∣∣∣∣ +
∣∣∣∣
P

Q
− α

∣∣∣∣

<
1

2q2
+

1
2qQ

=
q + Q

2q2Q

⇒ 1 <
q + Q

2q

⇒ 2q < q + Q

⇒ q < Q

Thus, p
q is a best approximation. ¤
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We now move on to the discussion of quadratic irrationals. We first present two
well-known theorems, Lagrange’s and Galois’, without proof. Both may be proved
with what we have demonstrated so far (plus some basic knowledge of polynomials),
and have quite long proofs that would only make this already-too-long paper even
longer.

Definitions 1.21. Let α be an irrational number. α is called a quadratic irra-
tional if it is a root of integer polynomial of degree two. The other root β is called
a conjugate of α.

Definitions 1.22. Let [a0,a1,a2,. . . ] be a continued fraction such that an = an+l

for all sufficiently large n and a fixed positive integer l. Then, it is periodic and l
is called a period.

Theorem 1.23. (Lagrange’s Theorem) An irrational number is quadratic irra-
tional if and only if its continued fraction is periodic.

Definition 1.24. Let α be a quadratic irrational and β be its conjugate. Then, α
is reduced if α > 1 and -1 < β < 0.

Theorem 1.25. (Galois’ Theorem) Let α be irrational. Then, α is purely peri-
odic if and only if α is reduced. If α = [a0, a1, a2, . . . , al−1] and β is its conjugate,
then - 1

β = [al−1, . . . , a2, a1].

We finally conclude this section with the following simple theorem:

Theorem 1.26. Let d be a non-square natural number. Then, there exist integers
a1, a2, . . . , an such that [b

√
dc,a1, a2, . . . , a2, a1, 2b

√
dc] is the continued fraction of√

d. Also, a1, a2, . . . , a2, a1 is a palindrome.

Proof. Observe that -1 < α = b
√

dc -
√

d < 0 and 1 < β = b
√

dc +
√

d.

(x− α)(x− β) = x2 − (α + β)x + αβ

= x2 + 2b
√

dcx + b
√

dc2 − d

which is an integer polynomial of degree two. Thus, α and β are quadratic irra-
tionals and conjugates of each other. More, β is reduced. By Galois’ Theorem, β
is purely periodic.

β =
√

d + b
√

dc = [2b
√

dc, a1, a2, . . . , al−1]

= [2b
√

dc, a1, a2, . . . , al−1, 2b
√

dc]
⇒
√

d = [b
√

dc, a1, a2, . . . , al−1, 2b
√

dc]
On the other hand, observe:

1√
d− b

√
dc =

1
−
√

d + b
√

dc
= [al−1, . . . , a2, a1, 2b

√
dc]

by Galois’ Theorem. That means,
√

d = [b
√

dc, 1√
d− b

√
dc ]

= [b
√

dc, al−1, . . . , a2, a1, 2b
√

dc]
Thus, we have obtained the desired palindrome. ¤
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2. Solution to Pell’s Equation

Definition 2.1. Let d be a natural number. Then, Pell’s equation is X2−dY 2 =
1.

Remarks 2.2. The case in which d is a perfect square is trivial. Let d = m2.

X2 − dY 2 = (X −mY )(X + mY ) = 1
⇒ X −mY = ±1

X + mY = ±1

Solving this linear system of equations yields the only solutions: (±1,0). Note that
these are solutions regardless of d.

Observe that if (x,y) is a solution, then (−x,−y) and (±x,∓y) are also solutions.
Thus, it suffices to consider only positive solutions.

For convenience, if (x,y) is a solution, then we call x + y
√

d a solution as well.

Theorem 2.3. (a) Let d not be a perfect square and α =
√

d. Note that αn is as
defined in Definition 1.9. For nonnegative n, there exist integers Qn and Pn such
that αn = Pn+

√
d

Qn
and that d− P 2

n ≡ 0 (mod Qn). (b) For each n ≥ 2, we have:

(2.4) p2
n−1 − dq2

n−1 = (−1)nQn

Proof. (a) We proceed by induction. For n = 0, α0 =
√

d, Q0 = 1, and P0 = 0.
For n = 1,

α1 =
1√

d− b
√

dc

=

√
d− b

√
dc

d− b
√

dc2
⇒ Q1 = d− bdc2 and

P1 = b
√

dc
Now assume the statement for n.

αn+1 =
1

αn − an

=
1

Pn+
√

d
Qn

− an

=
Qn

Pn +
√

d− anQn

=
Qn(Pn − anQn −

√
d)

(Pn − anQn)2 − d

:=
Pn+1 +

√
d

Qn+1

⇒ Pn+1 = anQn − Pn, which is integral, and

Qn+1 =
d− (Pn − anQn)2

Qn

=
d− P 2

n

Qn
+ 2anPn − a2

nQn,
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which is integral because d− P 2
n ≡ 0 (mod Qn) by assumption. Finally,

Qn =
d− (Pn − anQn)2

Qn+1

=
d− Pn+1

Qn+1

⇒ d− P 2
n+1 ≡ 0 (mod Qn)

as desired.
(b)

√
d =

αnpn−1 + pn−2

αnqn−1 + qn−2

=
(Pn +

√
d)pn−1 + pn−2Qn

(Pn +
√

d)qn−1 + qn−2Qn

⇒
√

d((Pn +
√

d)qn−1 + qn−2Qn) = (Pn +
√

d)pn−1 + pn−2Qn

⇒
√

d(Pnqn−1 + Qnqn−2 +
√

dqn−1) = pn−1

√
d + Pnpn−1 + pn−2Qn

⇒ (Pnqn−1 + Qnqn−2)
√

d + qn−1d = pn−1

√
d + Pnpn−1 + pn−2Qn

⇒ pn−1 = Pnqn−1 + qn−2Qn and
dqn−1 = Pnpn−1 + pn−2Qn

Multiply the first by pn−1 and the second by qn−1, and obtain:

p2
n−1 − dq2

n−1 = Qn(pn−1qn−2 − pn−2qn−1)

p2
n−1 − dq2

n−1 = (−1)nQn

by Lemma 1.8. ¤

Definition 2.5. Given Pell’s equation with some d, let (x,y) be the positive solution
with the minimum x. Such solution is called the minimal solution.

We finally give the complete solution to Pell’s equation:

Theorem 2.6. Let variables be as defined in the previous theorem. Let l be the
minimal period of the continued fraction of

√
d. (a) The minimal solution to Pell’s

equation is:

(x1,y1) =

{
(pl−1, ql−1) if l is even
(p2l−1, q2l−1) if l is odd

(b) All the solutions (x,y) to Pell’s equation are up to sign given by the powers of
the minimal solution (x1,y1):

x + y
√

d = ±(x1 + y1

√
d)±n (n = 0,1,2,. . . )
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Proof. (a) We first establish that all the solutions to Pell’s equation X2− dY 2 = 1
must consist of convergents to

√
d. Let (x,y) be a solution. Observe first that:

∣∣∣∣
√

d− x

y

∣∣∣∣ =

∣∣∣∣∣
y
√

d− x

y

∣∣∣∣∣

=
∣∣∣∣

dy2 − x2

y(y
√

d + x)

∣∣∣∣

=
1

y2(
√

d + x
y )

<
1

2y2
(since d > 1 and x > y)

By Theorem 1.19, we conclude (x,y) is a convergent to
√

d.
We now use (2.4) to show that: (1) Qn 6= −1 for every positive integer n; and (2)

Qn = 1 if and only if n is a multiple of l. Thus, with regard to (2.4), the minimal
solution is obtained by taking the smallest positive odd multiple of l minus 1, as
(a) states.

To show (1), observe that α1 = αn+1 if and only if n is a multiple of l because l

is minimal. Let Qn = 1. Then, by Theorem 2.3, αn = Pn +
√

d. Being quadratic
irrational, by Lagrange’s Theorem, αn has purely periodic continued fraction ex-
pansion. By Galois’ Theorem, αn is reduced:

−1 < βn = Pn −
√

d < 0

⇒
√

d− 1 < Pn <
√

d

⇒ Pn = b
√

dc
Thus, α = b

√
dc+

√
d. This implies that αn+1 = α1, and n is a multiple of l.

On the other hand, if n is a multiple of l, n = kl, then:

Pkl +
√

d

Qkl
= αkl = [0, a1, a2, . . . , al−1] =

√
d− b

√
dc

⇒ 1 =
1

Qkl
⇒ Qkl = 1, as desired.

For (2), suppose Qn = −1. By Theorem 2.3, αn = −Pn −
√

d. αn is quadratic
irrational, and thus is reduced by Galois’ Theorem:

−1 <− Pn +
√

d < 0 and 1 <− Pn −
√

d

⇒
√

d < Pn<−
√

d + 1 ⇒
√

d <
1
2

This is contradiction. Thus, Qn 6= 1 for all n, as desired.
(b) We observed before that, given a solution (x,y), signs of x and/or y may

be changed without contradicting the statement x2 − dy2 = 1. We then concluded
that it sufficed to find positive solutions. With regard to this, observe that

±1
x + y

√
d

=
±(x− y

√
d)

x2 − dy2

= ±x∓ y
√

d (x2 − dy2 = 1)

Thus, we may change the signs of x and y only by taking powers and multiplying
by -1. Thus, it now suffices to show this theorem for only positive solutions.
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Let ε := x1 + y1

√
d and (x,y) be a positive solution to Pell’s equation. Then,

there exists n such that εn ≤ x + y
√

d < εn+1.
Now, let X + Y

√
d = ε−n(x + y

√
d). Observe that, due to the definition of ε, 1

≤ X + Y
√

d. It suffices to show that it is equal to 1. We do this by contradiction;
suppose ε > X + Y

√
d > 1 (the first inequality is due to the definition of epsilon

also). By rules of elementary algebra, we get the following conjugation to this
quadratic irrational: X − Y

√
d = εn(x − y

√
d). Then, (X + Y

√
d)(X − Y

√
d) =

X2 − dY 2 = εnε−n(x− y
√

d)(x + y
√

d) = x2 − dy2 = 1. We then have:

0 < ε−n< (X + Y
√

d)−1 = X − Y
√

d < 1

⇒
{

2X = (X + Y
√

d) + (X − Y
√

d) > 1 + ε−1 > 0
2Y
√

d = (X + Y
√

d)− (X − Y
√

d) > 1− 1 = 0

Thus, (X, Y ) is a positive solution with X + Y
√

d < x1 + y1

√
d. That is, X <

x1. This is a contradiction to the minimality of (x1, y1), and thus our assumption
(X + Y

√
d > 1) is false, as desired. ¤

Remarks 2.7. In fact, (a) alone suffices to give the complete set of solutions to Pell’s
equation. The set of (positive) solutions deduced from (a) would be:

(xk, yk) =

{
(pkl−1, qkl−1) if l is even
(p2kl−1, q2kl−1) if l is odd

(b) shows that the complete set of solutions to Pell’s equation is infinite cyclic group
generated by the minimal solution.
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