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Abstract. In this paper I analyze the game Nim, starting with an introduc-

tion of the game and ending with the solution. Within, I explain some of the

theory behind Nim and other combinatorial games, give a cursory overview of
combinatorial game theory, and describe my interactions with the game.
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1. Nim

Nim is a two-person combinatorial game played with piles of beans. The game is
set up with an arbitrary number of beans in an arbitrary number of piles. Players
take alternating turns. When it is his turn to move, a player picks a pile of beans
and removes beans from it. The player may take as many beans as he wants—the
whole pile, even—provided that he moves at least one, and only from that pile.
The game ends when there are no beans left, and all of the piles are empty. The
player who removes the last bean of the entire game wins.

2. 3–3

Consider the following Nim game. There are two piles, and each pile holds three
beans. It will be denoted in this manner—
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Here are the options the first player may choose.

Suppose the first player chooses 0–3; the second player is able to win the game
by removing three beans from the remaining pile.

If the first player tries again, and chooses 1–3,

The second player wins again.
The first player has only one other option he has not made before, 2–3.

3 3 2 3 2 2 1 2 1 1 0 1 0 0

0 2 0 0

When he reaches 2–2, the first player may play 1–2 and 0–2, but we see that in
both cases, the second player has found some way to win.

In fact, here we see that no matter which move the first player makes, there is
always a move the second player can make that will force the first player to lose.
The first player does not have such a luxury, as with any move he makes he is able
to lose, and he does not have a sure-fire way of forcing the second player to lose.
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Definition 2.1. A winning strategy is a set of moves a player can make that will
force his opponent to lose the game. If a player has a winning strategy for a specific
game, then that game is a winning game for the player with the winning strategy,
and a losing game for his opponent.

By now, we can tell that 3–3 is a losing game for the first player to move, and
a winning game for the second. It would probably be a good idea to force one’s
opponent into such a position.

We see that there are definite losing games. There are also definite winning
games. In fact, in the next section we will see that all games must fall into one of
these two categories.

3. Winning and Losing Games

Proposition 3.1. For all games G, G must be either a winning game or a losing
game.

Definition 3.2. By game, I don’t mean Nim but a certain starting position of
Nim, from which players then take turns moving until no beans are left.

Let us start with all of the games in which the first player can win (go to 0–0)
with a single move.

etc.

These are all winning games—the first player has a winning strategy, namely, mak-
ing the move 0–0.

Consider the game 3–3 previously mentioned. We know that if a player makes
a move that results in giving this game to his opponent, then he has a winning
strategy, because he then has a set of moves that will force his opponent to lose.

So all of the games in which the first player can make the game to 3–3 with a
single move are winning games.

etc.

Generalizing this,

Definition 3.3. A winning game is a game in which the first player is able to give
his opponent a losing game with a single first move.

Definition 3.4. A losing game is a game in which any move the first player makes
will not give his opponent a losing game. As a game is a winning game if it is not a
losing game, any of the first player’s options for the first move results in a winning
game for his opponent.
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Assuming both players play optimally, a winning game will result in a win for
the first player and a losing game a win for the second player.

Theorem 3.5. For all games G, G must be either a winning game or a losing
game.

Proof. Let N be the set of all winning games, and let P be the set of all losing
games.

For each game, we introduce its game-graph R = (V,E), a finite acyclical digraph
where V is the set of game positions and (u, v) ∈ E if and only if there exists a
move from u to v.

Define the set of followers of u ∈ V as

FG(u) = F (u) = {v ∈ V : (u, v) ∈ E}
The definitions of winning and losing games are that
(1) u ∈ P iff F (u) ⊆ N .
(2) u ∈ N iff F (u) ∩ P 6= ∅.

Suppose u1 is in neither P nor N . Therefore, by (1) F (u1) * N , and by (2)
F (u1) ∩ P = ∅. We have now the next move u2 ∈ F (u1) in neither P nor N , and
consequently a chain of u3, u4, . . . ui in neither P nor N where ui ∈ F (ui−1), i ≥ 2.
But we know that the end game (the game 0) ui ∈ P , and the penultimate game
ui−1 ∈ N . There is a contradiction, and therefore uj , where 1 ≤ j ≤ i, must be
either in P or N.

�

4. Combinatorial Games

Nim belongs to a class of games called combinatorial games. Combinatorial
game theory is a mathematical theory dealing with two-player games of perfect
information and no chance moves. Known to both players are the rules, moves
available for both players, and defined winning condition, and combinatorial game
theorists attempt to find the optimal strategy for each position of a game.

In contrast is classical game theory, in which events may happen simultaneously,
and alliances and coalitions are allowed.

Definition 4.1. A combinatorial game is a game with the following properties:
(1) There are only two players, and no coalitions. The two players are com-

monly called Left and Right.
(2) There are a finite number of positions the game can take, and often a

starting position. Each position may be defined as a new game.
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(3) There are clearly defined rules, and at each position P Left player has a set
of moves he can make, and Right has a set of moves he can make.

(4) Left and Right alternate turns.
(5) In the normal play convention, which is the one we are analyzing, a player

who cannot move loses.
(6) The game will end, as some player will find himself unable to move. Draws

by repetition are not allowed.
(7) Both players have complete information and neither is able to bluff.
(8) No part of the game is decided by chance (i.e. rolling dice).

Some other examples of combinatorial games are Go, Dots-and-Boxes, chess, and
checkers.

A generalization of the previously mentioned theorem—proved similarly—is

Theorem 4.2 (Fundamental Theorem of Combinatorial Game Theory). Let Γ be
a 2-person game with perfect information and no chance moves, whose game-graph
may be infinite. Then for every position of Γ there are precisely two possibilities:
(i) There exists a winning move for precisely one of the two players. (ii) There is
a winning move for neither player, but both can maintain a draw.

The implications of this theorem are that there are optimal moves for all positions
in combinatorial games. Imagine playing chess with a specific winning strategy—
knowing exactly which moves will guarantee your win by forcing a losing game upon
your opponent! It is just that many games are too complicated to analyze.

5. Numbers

We will be dealing with John H. Conway’s surreal numbers.
Conway starts with—
Dedekind constructed the real numbers by splitting the rational numbers into

two sets, left and right; the number x is between the set of all rational numbers
less than it and the set of all rational numbers greater than it, written as {L | R}.

Cantor constructed the infinite ordinal numbers by supposing the integers
{1, 2, 3, ...} given, their order-type w is the infinite number greater than all of the
integers, and the order-type w +1 is the infinite number greater than {1, 2, 3, ..., w}
and so on.

Von Neumann adjusted Cantor’s construction, making each ordinal number the
set of all ordinal numbers before it. In his construction,
{} is 0,
{0} is 1,
{0, 1} is 2,
{0, 1, 2, ...} is w, and so on.
The surreal numbers are a number system encompassing both the real and or-

dinal numbers; the surreal number x is the simplest number between two sets of
numbers, xL and xR, where no element of xL is greater than or equal to any element
of xR.

x = {xL | xR}
Simplest, here, means earliest created.
Construction—
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Before any numbers are created, we have the set of numbers ∅. So plugging ∅
into {L | R} (where L and R are both sets of numbers), we get {|}. We call this
number 0.

Now we have two elements that we can make sets of numbers from, 0 and ∅. We
get possible numbers {0 | 0}, {0 |}, {| 0}, and {|}.

One of the conditions of being a number is that no member of xL can be greater
than or equal to a member of xR. Since 0 = 0, {0 | 0} is not a number. Also, {|}
we have seen before.

The two numbers that are born are {0 |} = 1 and {| 0} = −1.
Now, with ∅, 0, 1, −1, we give birth to:
{| −1, 0, 1} = −2,
{−1 | 0, 1} = − 1

2 ,
{−1, 0 | 1} = 1

2 ,
{−1, 0, 1 |} = 2.
Note that only the least element of xR and greatest element of xL are important.

{| 0, 1, 2} produces the same number as {| 0, 1} and {| 0}.
We later on get numbers such as {0 | 1

2} = 1
4 , { 1

2 |
3
4} = 5

8 , {0, 1, 2 |} = 3 and so
on.

We can draw a tree of births.

Figure 1. Tree of Number Births

This is how the surreal numbers were born.

6. Games as Numbers

The mathematical definition of a game G is

Definition 6.1.
G = {GL | GR}

where GL is the set of all of the moves Left can make, and GR the set of all of
Right’s moves.

The games born earliest are:
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Here, we see that the 0 game is the end game; neither player has a move, so as
the first player who cannot make a move loses, the first player to go in this case
loses, and the second player wins.

In the case of the game with assigned value 1, we see that Left has a move,
namely, to bring the game to the 0 game, while Right has no move. Right loses.

It is the opposite in the game assigned −1. Right wins, left loses.
In the * game, both players can make the move 0. It depends entirely on which

player moves first, so the game is a first-player win.
The four games belong in four outcome classes—
If the game is 0, the second player wins.
If the game is positive, Left wins.
If the game is negative, Right wins.
If the game is *, first player wins.

7. Nim as Numbers

I wanted to see if I could assign the same types of numbers to Nim. What
followed was a process of trial-and-error as I tried to work out a number system
that would represent the game.

I assigned numbers to Nim games using the G = {GL | GR} construction.
Nim is an impartial game; that is, both players are allowed to make the same

types of moves. The winner and loser are determined by who goes first, as a game is
either a winning game or a losing game. As such, I decided to make the Left player
the first player, and the Right player the second. Otherwise, the game would be
GL = GR, G = {GL | GR} = ∗, an arrangement that I thought would be boring1.

I started from the beginning (or the end, depending on which way you look at
it).

7.1. One Pile. I started with hypothetically one pile of beans, with x beans in the
pile.

This is the end game

Player one has no moves, and player two has no moves. The value I assigned to
this game is {|} = 0.

Then

We already know it is a winning game, so player one should win, and the number
should be positive.

1

Many mathematicians have analyzed Nim before, most notably Charles L. Bouton. Ironically,
they used GL = GR, assigning ∗ and an ordinal number to each Nim-pile.
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Player one has one move—he can make the move 0, taking away one bean and
ending the game. Player two, on the other hand, has no moves. He moves second,
and there are no beans left. This game receives the value {0 |} = 1.

Let us look at

There are two moves that the first player can make.

I made the 1 game −1, because although the game has a value 1, it is a value
1 for the second player, leading to a second-player win. So it is a −1 for the first
player, in the context of the game 2.

Definition 7.1. The negative of a game,

−G = {GR | GL}
where the roles of the first and second player are switched.

Grouping all of the moves together, G = {−1, 0 | 0}.
Here, I ran into a problem. 0 ∈ GL, 0 ≥ 0 ∈ GR. G = {−1, 0 | 0} is not a

number.
I felt very strongly, however, that the Nim game of two beans in one pile should

be a positive number, a first-player win. I decided to follow the game along the
path of player one’s best move, assuming that player one played optimally.

Between
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I picked the move 0 and the path that ensued, because this path led to player one
winning, whereas he would lose taking the other. The game becomes {0 |} = 1.

The way in which these numbers are assigned, the game of one bean is equivalent
to the game of two beans, because the two games share the same best move, 0.

Next is the game 3, which came out with the value 1 as well.

So, I assigned the value (+)1 to all Nim-games of one pile, with the exception
of the 0 game. The only game that is a losing game in one-pile Nim is the game 0.
All others are winning games.

With one pile done, I moved on to two piles.

7.2. Two Piles. With two piles, we have x beans in one pile and y in the other.
The end game is 0–0, which is equivalent to 0–0–0, 0–0–0–0, etc. and 0.
Next, 1–1. We know this game is a losing game, so hopefully it is negative.

{−1 | 0} = − 1
2 . It is!

2–1, played right, should be a winning game, as there is a winning strategy for
player one.
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Note that here, the game 1–1 is valued + 1
2 , because it is a − 1

2 to player two
(player two becomes the first player in the game 1–1). 1–0 is again +1 because it
is a game to first’s advantage and first player is the first player in the game 1–0.
The game 2–1 becomes {0, 1

2 | 1} = 3
4 .

3–1 has the same best move (only good move) as 2–1, so has the same value, 3
4

as 2–1.

Lemma 7.2. If games G and H have the same best move, then they have the same
value.

As a consequence, two-pile games of Nim in which x = 1 and y ≥ 2 are all valued
3
4 .

Best move just means which path I chose to follow in order to come up with
values for the games. In winning games, the best move would be to move to a
losing game. Sometimes there is more than one losing game you can go to, so I
decided to follow the path of the losing game with the higher value (which would
be the highest positive valued move for the first player). In losing games, any move
the first player can make would be negative, so I went with the path that was least
negative, still the highest value. Following the highest valued path became an easy
rule to follow, as I encountered more games.

Now suppose x = 2. We have seen these before: 2–0= {0 |} = 1. 2–1= {0, 1
2 |

1} = 3
4 .

The 2–2 game, however, is new.
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Player one may choose 2–1 and 2–0, but both paths are negative. Between − 3
4

and −1, I chose to follow the path of − 3
4 , the higher value.

Assuming player one makes the move 2–1,

We run into the same problem, unless we assume that player two plays optimally
as well.

The path thus far becomes

The set of Left’s moves, and the set of Right’s moves, create G = {−1,− 3
4 |

− 1
2 , 0} = {− 3

4 | −
2
4} = − 5

8 .
Now 3–2.

The game 3–2 becomes {0, 1
2 , 5

8 |
3
4 , 1} = 11

16 .
2–4, 2–5, etc.— Two-pile Nim-games with x = 2 and y ≥ 3 are all thus valued

11
16 .

Following the method described, table 1 is a table of two-pile Nim-game values.
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Table 1. Two-Pile Nim-game Values, x–y

1 2 3 4 5 6 7 8

1 − 1
2

3
4

3
4

3
4

3
4

3
4

3
4

3
4

2 3
4 − 5

8
11
16

11
16

11
16

11
16

11
16

11
16

3 3
4

11
16 − 21

32
43
64

43
64

43
64

43
64

43
64

4 3
4

11
16

43
64 − 85

128
171
256

171
256

171
256

171
256

5 3
4

11
16

43
64

171
256 − 341

512
683
1024

683
1024

683
1024

6 3
4

11
16

43
64

171
256

683
1024 − 1365

2048
2731
4096

2731
4096

7 3
4

11
16

43
64

171
256

683
1024

2731
4096 − 5461

8192
10923
16384

8 3
4

11
16

43
64

171
256

683
1024

2731
4096

10923
16384 − 21845

32768

In the table, the negative values are the losing games, and the values of the
winning games are determined by which losing game the player can reach in one
move. Therefore all games which can be reduced to 1–1 in one step are valued 3

4 ,
and all games which can be reduced to 2–2 in one step are valued 11

16 , and so on.
As seen in the table, there is a clear diagonal of losing games. Two-pile Nim-

games are losing games when x = y. All other two-pile Nim-games are winning
games.

7.3. Three Piles. In three-pile Nim, we have three piles of beans, with x beans
in one pile, y beans in another, and z in the third.

Here are some tables I made for three-pile Nim-games: table 2, and table 3 on
page 13. Table 2 supposes x = 1, and is fixed. Table 3 supposes x = 2.

We can already see a few losing games: 1–2–3, 1–4–5, 1–6–7, and 2–1–3, 2–4–6,
2–5–7. As with two piles, the values of the winning games are determined by which
losing game(s) the first player is able to reach.

8. The Game Tree

If we correspond our game values to the number tree, we see figure 2 on page 15.
The first number is 0, and with it comes all of the games valued 0—which is just
the end game, 0. Then games valued 1 are games in which the player can move to
a 0 game in one step. The game 1–1, valued (−) 1

2 is a losing game, and all of the
games that can reach 1–1 in one step are valued 3

4 . Then games valued (−) 5
8 , all

of the games that can reach (−) 5
8 in one step are valued 11

16 . . .
The number system I assigned follows the path converging to 2

3 . Indeed, that
is how the number 2

3 is created: 2
3 = {0, 1

2 , 5
8 , 21

32 . . . | . . . 43
64 , 11

16 , 3
4 , 1}. The games



NIM 13

Table 2. Three-Pile Nim-game Values, 1–y–z

1 2 3 4 5 6 7 8

1 3
4

3
4

3
4

3
4

3
4

3
4

3
4

3
4

2 3
4

11
16 − 21

32
43
64

43
64

43
64

43
64

43
64

3 3
4 − 21

32
43
64

43
64

43
64

43
64

43
64

43
64

4 3
4

43
64

43
64

171
256 − 341

512
683
1024

683
1024

683
1024

5 3
4

43
64

43
64 − 341

512
683
1024

683
1024

683
1024

683
1024

6 3
4

43
64

43
64

683
1024

683
1024

2731
4096 − 5461

8192
10923
16384

7 3
4

43
64

43
64

683
1024

683
1024 − 5461

8192
10923
16384

10923
16384

8 3
4

43
64

43
64

683
1024

683
1024

10923
16384

10923
16384

43691
65536

Table 3. Three-Pile Nim-game Values, 2–y–z

1 2 3 4 5 6 7 8

1 3
4

11
16 − 21

32
43
64

43
64

43
64

43
64

43
64

2 11
16

11
16

43
64

11
16

11
16

11
16

11
16

11
16

3 − 21
32

43
64

43
64

43
64

43
64

43
64

43
64

43
64

4 43
64

11
16

43
64

171
256

683
1024 − 1365

2048
2731
4096

2731
4096

5 43
64

11
16

43
64

683
1024

683
1024

2731
4096 − 5461

8192
10923
16384

6 43
64

11
16

43
64 − 1365

2048
2731
4096

2731
4096

10923
16384

2731
4096

7 43
64

11
16

43
64

2731
4096 − 5461

8192
10923
16384

10923
16384

10923
16384

8 43
64

11
16

43
64

2731
4096

10923
16384

2731
4096

10923
16384

43691
65536
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valued less than 2
3 are losing games, and the games with values greater than 2

3 are
winning games.

Gameplay the way I defined it follows such a pattern—each player makes moves
that are games created earlier. If it is a winning game, the first player moves to
the highest losing game option, following the path to the losing game preceding it.
If it is a losing game, the first player moves to the highest negative game option,
which would be following the path to the winning game(s) preceding it. Starting
from whichever position, players follow the path upwards until 0 is reached.

Sometimes there were two or more losing games the first player could reach from a
winning game, such as with the game 2–2–3, which could move to either 2–2 or 1–2–
3. In the way that I assigned the numbers, the player moves to the highest negative
value. When actually playing the game, a player could choose other losing games
to move to, some would lead him to win in fewer steps. As previously mentioned,
moving to the highest value was a rule that helped in assigning numbers to games.
However, when following this rule, winning games were valued positive numbers,
and losing games negative numbers. This is because the highest valued move for
a winning game would be a positive number for the first player, as it would be a
losing game, and the highest valued move for a losing game would be the highest
negative, but still negative.

9. Patterns

When I was assigning numbers to Nim-games, I noticed patterns in losing games.
Take three-pile Nim, with x, y, and z; all of the losing games fell into certain

rules.

If x = 0, G is a losing game if y = z.
Losing games are 0–0–0, 0–1–1, 0–2–2, 0–3–3, 0–4–4, etc.

If x = 1, G is a losing game if y ≡ 0 (mod 2), z = y + 1.
Losing games are 1–0–1, 1–2–3, 1–4–5, 1–6–7, 1–8–9, 1–10–11, etc.

If x = 2, G is a losing game if y ≡ 0, 1 (mod 4), z = y + 2.
Losing games are 2–0–2, 2–1–3, 2–4–6, 2–5–7, 2–8–10, 2–9–11, 2–12–14, 2–13–15,

etc.

If x = 3, G is a losing game when y ≡ 0, 1 (mod 4):

• If y ≡ 0, z = y + 3.
• If y ≡ 1, z = y + 1.

Losing games are 3–0–3, 3–1–2, 3–4–7, 3–5–6, 3–8–11, 3–9–10, etc.

If x = 4, G is a losing game if y ≡ 0, 1, 2, 3 (mod 8), z = y + 4.
Losing games are 4–0–4, 4–1–5, 4–2–6, 4–3–7, 4–8–12, 4–9–13, etc.

If x = 5, G is a losing game when y ≡ 0, 1, 2, 3 (mod 8):

• If y ≡ 0, 2, z = y + 5.
• If y ≡ 1, 3, z = y + 3.

Losing games are 5–0–5, 5–1–4, 5–2–7, 5–3–6, 5–8–13, 5–9–12, etc.
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211
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3 4
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Figure 2. We correspond our game values to the number tree.

If x = 6, G is a losing game when y ≡ 0, 1, 2, 3 (mod 8):
• If y ≡ 0, 1, z = y + 6.
• If y ≡ 2, 3, z = y + 2.

Losing games are 6–0–6, 6–1–7, 6–2–4, 6–3–5, 6–8–14, etc.

If x = 7, G is a losing game when y ≡ 0, 1, 2, 3 (mod 8):
• If y ≡ 0, z = y + 7.
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• If y ≡ 1, z = y + 5.
• If y ≡ 2, z = y + 3.
• If y ≡ 3, z = y + 1.

Losing games are 7–0–7, 7–1–6, 7–2–5, 7–3–4, 7–8–15, etc.

If x = 8, G is a losing game if y ≡ 0, 1, 2, 3, 4, 5, 6, 7 (mod 16), z = y + 8.
Losing games are 8–0–8, 8–1–9, 8–2–10, 8–3–11, 8–4–12, 8–5–13, 8–6–14, 8–7–15,

etc.

All other three-pile Nim-games with x ≤ 8 are winning games.

10. Binary Numbers

I wrote the games in binary numbers, and discovered that losing games and
winning games were distinctive when written in binary numbers as well.

Take an arbitrary losing game, 4–8–12. Written in binary numbers, it is 00100–
01000–01100. Stacking the numbers on top of each other becomes

0 0 1 0 0
0 1 0 0 0
0 1 1 0 0
0 2 2 0 0

Then take a winning game, 1–3–4. Written in binary numbers, it becomes

0 0 0 0 1
0 0 0 1 1
0 0 1 0 0
0 0 1 1 2

Here is another losing game, this time with more than three piles: 1–1–1–1.

0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 4

As it turns out, when adding the columns without carrying, all losing games had
only even column sums, and all winning games had at least one odd column sum.

Let us introduce the idea of a nim-sum.
Consider two natural numbers a and b. Written in binary, a = a0 + a1 · 2 + a2 ·

22 + · · ·+ am · 2m, and b = b0 + b1 · 2 + b2 · 22 + · · ·+ bm · 2m. We choose m large
enough so that every higher power of 2 is larger than both a and b.

Let ci = ai + bi (mod 2), so ci = 0 or 1.

Definition 10.1. The nim-sum of natural numbers a and b,

a⊕ b = c0 + c1 · 2 + · · ·+ cm · 2m
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Notice that a⊕ b = 0 if and only if a and b have the same binary representation,
i.e. a = b. Also the nim-sum operation follows the associative and commutative
laws of addition.

Let us apply this concept to a game, which may be represented as (x1, · · · , xn),
where xk is the number of beans in the k-th pile. Let x = x1 ⊕ · · · ⊕ xn.

The claim is that (x1, · · · , xn) is a losing game if and only if x = 0. On the other
hand, (x1, · · · , xn) is a winning game if and only if x 6= 0.

Consider the game (y1, · · · , yn) that results after the first player takes away some
number of beans from pile k. Since xi = yi for all i 6= k, the new nim-sum

y = 0⊕ y = x⊕ x⊕ y = x⊕ (x1 ⊕ y1)⊕ · · · ⊕ (xn ⊕ yn) = x⊕ (xk ⊕ yk)

Theorem 10.2. (x1, · · · , xn) is a losing game if and only if x = 0.

Proof. Suppose x = 0. We must show that (x1, · · · , xn) is a losing game, i.e. any
move results in a game with a nim-sum y 6= 0. By the above calculation, y = xk⊕yk.
Since xk 6= yk, we have y 6= 0, so (y1, · · · , yn) is a winning game, implying that
(x1, · · · , xn) is a losing game. �

Theorem 10.3. (x1, · · · , xn) is a winning game if and only if x 6= 0.

Proof. Suppose x 6= 0. We must show that there exists a move to a losing game
(y1, · · · , yn), i.e. a game such that y = y1 ⊕ · · · ⊕ yn = 0. Let d be the largest
non-zero digit in the binary representation of x. Find a pile xk such that the binary
representation of xk also has a 1 in the d-th digit. Such a xk must exist, or else the
d-th digit of x would be 0. Define yk = x⊕ xk. The move we want is to take away
(xk − yk) beans from pile k, but we must first show that xk > yk. Notice that yk

has a 0 in the d-th binary digit, as x and xk both have 1. The remaining changes
can only amount to adding 2k−1, so we have xk− yk > (2k− 2k−1) > 0. Finally, by
the earlier calculation, y = x⊕ (xk ⊕ yk) = yk ⊕ yk = 0, so (y1, · · · , yn) is a losing
game. �

11. Conclusion, or How to Win a Game of Nim

Suppose a player is playing a game of Nim. First, he must figure out if the game
is a winning game or a losing game. He may convert the piles into binary numbers
for such a purpose, or perhaps he has already memorized an extensive list of losing
games.

If it is a losing game, he is out of luck. His best bet would be to graciously
allow his opponent to start first, or make a move which results in as complicated a
winning game as possible, hoping that his opponent does not know Nim strategy,
and will therefore play blindly.

If it is a winning game, he can simply make a move that results in a losing game
for his opponent. One way to do this would be to write out the game in binary
numbers, and make a move that will cause all of the column sums to be even.
Another way would be by following the patterns of losing games. Whichever way
the player finds a losing game, he can act assuredly knowing that he will win.
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