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Abstract. We will be investigating a game similar to poker, modeled after

a simple game called La Relance. Our analysis will center around finding a

strategic equilibrium.
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1. Introduction

Consider the following simplified version of poker. Players I and II receive hands
x and y, respectively, drawn uniformly and independently from the interval [0, 1].
Each player contributes an ante of 1 into the pot. Player I acts first either by
folding and thus conceding the pot to Player II, or by betting a prescribed amount
β > 0, which he adds to the pot. If Player I bets, then Player II acts either by
folding and thus conceding the pot to Player I, or by calling and adding β to the
pot. If Player II calls the bet of Player I, the hands are compared and the player
with the higher hand wins the pot. That is, if x > y then Player I wins the pot; if
x < y then Player II wins the pot. We do not have to consider the case x = y since
this occurs with probability 0.

The betting tree is shown below.
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In the betting tree above, the ± indicates that Player I’s return is β + 1 if his
hand is higher than Player II’s hand and −(β + 1) otherwise.

We now define strategy for games similar to the game described above. Assume
that regardless of the hand he receives, each player i has a finite set of options
Oi = {Oi,1, . . . , Oi,ki}. For example in the game above, Player I has 2 options:
folding or betting.

Definition 1.1. A strategy for player i is a set of ki functions si1, s
i
2, . . . , s

i
ki

:
[0, 1] → [0, 1] such that

∑ki

j=1 s
i
j(x) = 1 for each x ∈ [0, 1]. The value sij(x) gives

the probability that player i chooses option Oi,j given that he has hand x.

In our analysis, we will use a convenient form of this game.

Definition 1.2. The strategic form of a game is given by three objects:
(1) the set N = {1, 2, . . . , n} of players,
(2) the sequence O1, . . . , On of option sets of the players, and
(3) the sequence f1, . . . , fn :

(∏n
j=1Oj

)
× [0, 1]n → R of real-valued payoff

functions for the players. The inputs are the options chosen by the players
and the values of their hands.

This paper will predominately study a certain type of equilibria of the game La
Relance, described below. For the sake of notation, let ai denote the strategy of
player i, i.e. ai = {si1, si2, . . . , sik}. And let Ai denote the set of all possible strategies
for player i. Then we can define a function g which gives a player’s expected payoff.

gi(a1, . . . , an) :=
∫ 1

0

∫ 1

0

. . .

∫ 1

0

fi(a1, . . . , an, x1, . . . , xn)dx1 . . . dxn.

Definition 1.3. Given the strategic form of a game with strategy sets A1, . . . , An
and payoff functions f1, . . . , fn, a vector of strategy choices (a1, a2, . . . , an) with
ai ∈ Ai for i = 1, . . . , n is said to be a strategic equilibrium of the game if for all
i = 1, 2, . . . , n, we have

gi(a1, . . . , an) ≥ gi(a1, . . . , ai−1, a, ai+1, . . . , an)

for all a ∈ Ai.

The above equation says that if the players other than player i use their indicated
strategies, then player i optimizes his return by playing strategy ai. In other words,
a particular selection of strategy choices of the players forms a strategic equilibrium
if each player is using a best response to the strategy choices of the other players.
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In [1], a strategic equilibrium for the game we introduced is outlined as follows.
The optimal strategy for Player II is to fold if y < b and to call if y > b, for some
b ∈ [0, 1]. Player II chooses b to make Player I indifferent between betting and
folding when Player I has some hand x < b. Player I’s optimal strategy is not
unique, but are of the form: if x > b, bet; if x < b, do anything provided the total
probability of folding is b2. Some insight into the reason why this is a strategic
equilibrium is provided in [2], but this is not proved. Thus in section 2 we will
explore the reasons that these strategies form a strategic equilibrium.

In section 3, we will explore an extended version of this game. Assume that
instead of only being given the option to call or fold, Player II is given the additional
option of raising by putting a total of 2β into the pot. Player I is in turn given the
option to either call the raise by putting an additional β into the pot or to fold,
thus conceding the pot to Player II. The betting tree is produced below.

Using our conclusions and technology from section 2, we will find a strategic equi-
librium for this new game in section 3 and prove that it is an equilibrium.

2. The Simple Game

Before we begin, let us first define two terms which we will use very often over
the course of this paper: expected value and optimal strategy. These terms are
adapted from poker and game theory and defined in a way that works with our
definition of strategic equilibrium.

Definition 2.1. Assuming the opponent’s strategy is chosen and known, a player’s
expected value or expectation for a strategy, given his hand x, is defined as the
expected value of the player’s payoff given this information. In the two-player
poker-based game we are concerned with, the expected value of Player I’s strategy
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a ∈ A1, given a strategy a′ ∈ A2 employed by player II, is given by

EV =
∫ 1

0

f1(a, a′, x, y)D(y) dy

where D(y) is the probability density function of the value of the opponent’s hand
in this situation and f1 is the payoff for Player I given each player’s strategies and
hands.

Definition 2.2. Assuming the strategy of the opponent is chosen and known, a
player’s optimal strategy is a strategy where for each hand that he receives, expected
value can not be increased by choosing a different strategy.

We will approach The Simple Game by first determining the form of Player II’s
optimal strategy in 2.0.1. Given the form of Player II’s optimal strategy, we will
solve for Player I’s optimal strategy in 2.0.2.

2.0.1. Player II’s Optimal Strategy. First we want to show that Player II’s optimal
strategy must involve calling for all y > y0 and folding the rest, for some y0 ∈ [0, 1].
To do this we will prove a more general case.

Proposition 2.3. If a player is last to act, with only the options of calling or
folding, an optimal strategy is to call for all values above some y0 ∈ [0, 1], and fold
everything else.

Proof. Without loss of generality, assume Player II is last to act. Player I is betting
or raising with some distribution of his hands. Let D(x) be the probability density
distribution of the value of Player I’s hand given his previous action of betting
(since otherwise he folded and Player II has no choice to make). For all x ∈ [0, 1],
we know that D(x) ≥ 0. This means that the area under D(x),

∫ t
0
D(x) dx is the

probability that Player I’s value is below t, and is also monotone increasing over
[0, 1].

Assume that after Player I acts, there is an amount P in the pot. Player II’s
expected value from folding is always zero, independent of his hand. Player II must
contribute β if he calls. Then the expected value of calling for Player II if he has a
hand t is

EV (t) := (P + β)
∫ t

0

D(x) dx− β

Player II will call if his expected value of calling is greater than his expected value
of folding. Thus he will call when the integral above is greater than or equal to 0.1

Since EV (t) is a monotone increasing continuous function of t ∈ [0, 1], he calls for
t > t0 for some t0. EV (t) = 0 for t ∈ [t1, t0] and EV (t) < 0 for t < t1. Thus he
is indifferent to folding or calling for hands t ∈ [t1, t0] and he folds hands t < t1.
Hence an optimal strategy is to call for all values above some t0 ∈ [0, 1] and fold
everything else. �

1Money in the pot is always considered as money to be won. It is irrelevant that part of the
money in the pot was once contributed by player I.
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2.0.2. Player I’s Optimal Strategy. Given the form of Player II’s strategy, we will
find the optimal strategy for Player I. We will approach the analysis of Player I’s
optimal strategy by using expected value graphs.

Definition 2.4. An expected value graph plots the expected value of an action as
a function of the value of the player’s hand.

By using expected value graphs, composing the graphs will give us Player I’s
optimal strategy. The optimal strategy will be to take the action with the highest
expected value for each hand. The expected value of folding is always zero. Let us
consider Player I’s expected value graph of betting. For all values x < y0, he must
add β to the pot when betting, but will pick up the pot of β + 2 when not called.
Player II will call (1− y0) of the time, and fold y0 of the time. Hence the expected
value of betting x < y0 is

EV = (β + 2)y0 − (β)
Player I’s expected value of betting x > y0 is slightly more complex. The player

still puts in β every time he bets, but now has two ways of winning - Player II can
fold, or Player II can call with a weaker hand. When Player II calls with a weaker
hand, which occurs (1− y0)(x−y01−y0 ) of the time, Player I wins a pot of 2β + 2. Thus
the expected value of betting x > y0 is given by

EV = (2β + 2)(
x− y0
1− y0

)(1− y0) + (β + 2)(y0)− β

The expected value graph of betting is shown above, evb(x). Note that without
knowing values for y0 in terms of β, it is impossible to tell where the expected value
of folding graph, evf (x) = 0, intersects this graph (if anywhere). Thus we can not
yet solve for the optimal strategy of Player I. However evb(1) = β(1− y0) + 2 > 0,
so evb(x) lies entirely above evf (x) or the two graphs intesect. It can also be seen
that the expected value function, evb(x), is non-decreasing over [0, 1]. Therefore if
Player I has a non-negative expectation when betting with some x ∈ [0, 1], he has
a non-negative expectation by betting everything in the interval [x, 1]. We will call
such a number x0, and state an optimal strategy of Player I in the following form:

Player I will bet with all x > x0
2, for some x0 ∈ [0, 1] such that evb(x) ≥ 0

∀x > x0.

2We do not consider x = x0, since the probability of having this hand is zero.
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2.0.3. A Slight Detour. Knowing the form of Player I’s strategy let us take a slight
detour, and use Player II’s expected value graphs to show that y0 > x0.

Player II’s expected value of folding is zero, so let us consider his expected value
graph of calling. He must add β the the pot when calling, and will never win with
y < x0, but will win the pot of 2β+2 when his hand is higher than Player I’s hand.
Thus for y < x0 the expected value of calling is −β, and for y > x0, the expected
value of calling is given by

EV = (2β + 2)(
y − x0

1− x0
)− β

Note that this function is also strictly non-decreasing, so once again, we are
interested in where Player II starts gaining a greater expectation by calling than
folding, i.e, where evf (y) and evc(y) intersect. Since the expected value of calling
with any y < x0 is −β, we can reason that y0 > x0. Let us take this fact to return
to solve for Player I’s optimal strategy.

2.0.4. Returning to Route. When we were trying to find Player I’s optimal strategy,
one of our major obstacles for solving evb(x) = evf (x) = 0, was not knowing which
part of the piecewise function to equate to zero. Now we know that x0 < y0, and
hence either there is no intersection point or the intersection we are looking for
occurs in the constant portion of the piecewise function evb(x). In the first case,
evb(x) > evf (x) = 0 for all x so x0 = 0 and Player I will bet all hands x > 0.
Looking at evc(x), we see that Player II calls for y > β

2β+2 ; hence y0 = β
2β+2 . But

then evb(0) = − β2

2β+2 < 0 = evf (0). This contradicts our assumption that Player I
bets all hands x > 0. Thus we can conclude that evb(x) and evf (x) do intersect and
that the intersection we are looking for occurs in the constant portion of evb(x).
This yields two pieces of information about our strategic equilibrium. The first is
the value of y0. Since the constant portion of the piecewise equals the expected
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value of folding, we can equate it to zero and solve for y0.

0 = (β + 2)y0 − (β)

y0 =
β

β + 2

The second piece of information we gain, is that Player I is actually indifferent
between choosing any value in [0, y0] to be x0. By indifferent, we mean that given
a chosen y0 by Player II, Player I’s choice of x0 does not affect his total expected
value The choices are all equally optimal. This does not, however, mean that any
x0 ∈ [0, y0] is a solution to the strategic equilibrium.

Definition 2.5. The total expected value of a strategy, EVT , is the definite integral
over [0, 1] of the composite expected value graph3

2.0.5. The real x0. We must find the value of x0 for which Player II can not adjust
to gain a greater total expected value by changing his value of y0 to something other
than β

β+2 . In other words, we must find a x0 such that ∂EVT

∂y0
= 0 when y0 = β

β+2

Let us first find Player II’s Total Expected Value as a function of y0.

EVT =
∫ 1

y0

(2β + 2)(
y − x0

1− x0
)− β

=
(−1 + y0)(1 + y0(1 + β)− x0(2 + β))

−1 + x0

Then we solve for the partial of EVT with respect to y0.

∂EVT
∂y0

=
(−1 + y0)(1 + β)
−1 + x0

+
1 + y0(1 + β)− x0(2 + β)

−1 + x0

We then let ∂EVT

∂y0
= 0 and y0 = β

β+2 , to solve for x0.

0 = (−1 +
β

β + 2
)(1 + β) + 1 +

β

β + 2
(1 + β)− x0(2 + β)

0 =
β2 − x(2 + β)2

2 + β

x0 = (
β

β + 2
)2

3. The Extended Game

We will begin by assuming Player I’s optimal strategy and solving for Player II’s
optimal strategy. Then assuming the optimal strategy we find for Player II, we will
prove that the strategy we assumed for Player I is optimal - thus proving we have
a strategic equilibrium.

3A composite expected value graph plots the maximum of a player’s expected value over all
his possible actions, as a function of the player’s hand.
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3.1. Player II’s Optimal Strategy. Assume that Player I’s strategy at a strate-
gic equilibrium is to bet all x > b and call with all x > d, where b, d ∈ [0, 1] and
b < d. Let us construct Player II’s expected value function for calling.

Knowing that Player I is only betting with x > b, calling with any y < b gives
Player II a zero percent chance of winning the pot. Thus he loses the amount β he
puts in to call every time he does so. The expectation of calling with any y ∈ [b, 1],
however, is given by the function

evc(y) = (2β + 2)
y − b
1− b

− β.(3.1)

Player II must put β into the pot every time he calls, and has a y−b
1−b chance of

winning a (2β + 2) dollar pot.
Next, let us construct Player II’s expected value function for raising, evr(y).



OPTIMAL BLUFFING FREQUENCIES 9

The expected value of raising any y < d is essentially a “bluff,” and when called,
Player II has a zero percent chance of winning the pot. Thus for all y ∈ [0, d],

evr(y) = (3β + 2)
d− b
1− b

− 2β.

Player II must put in the pot 2β every time he raises, and the only way he makes
money is by Player I folding and giving up the pot, which happens d−b

1−b of the time.
For all y ∈ [d, 1],

evr(y) =
(

1− d
1− b

)(
y − d
1− d

)
(4β + 2) + (3β + 2)

(
d− b
1− b

)
− 2β.

When Player I calls, which happens 1−d
1−b of the time, there is a y−d

1−d chance that
Player I is calling with x < y. There is also a d−b

1−b chance of Player I folding, which
allows Player II to pick up a smaller pot.

The motivation for creating expectation functions is that for each y ∈ [0, 1],
Player II’s optimal strategy is to pick the option with the highest expectation.
Thus when the expectation functions are combined into one graph, the intercepts
will be the values of y with which Player II is indifferent between two actions, and
thus are the constants which serve as boundaries between one option and another.

We will show in proposition 3.2, that Player II’s optimal strategy involves raising
with hands in an interval [r, 1], where r ∈ [0, 1] is defined as the value where ∀y > r,
the expectation of raising is greater than the expectation of either folding or calling.
i.e evr(y) > evc(y) and evr(y) > evf (y) = 0 ∀y > r.

Proposition 3.2. There exist an r > d where ∀y ∈ [r, 1], Player II gains the
greatest expected value by raising.

Proof. Let us compare evc(1) and evr(1):
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evr(1) =
(

1− d
1− b

)(
1− d
1− d

)
(4β + 2) + (3β + 2)

(
d− b
1− b

)
− 2β

=
(

1− d
1− b

)
(β) + (3β + 2)− 2β

=
(

1− d
1− b

)
(β) + (β + 2),

while

evc(1) = (2β + 2)
(

1− b
1− b

)
− β

= (β + 2).

Thus we know that evr(1) > evc(1). Let us now compare evr(d) and evc(d):

evr(d) = (3β + 2)
(
d− b
1− b

)
− 2β,

while

evc(d) = (2β + 2)
(
d− b
1− b

)
− β

We know that d−b
1−b < 1 and hence evr(d) − evc(d) = β

(
d−b
1−b − 1

)
< 0. Thus we

know that evr(d) < evc(d). Below is a diagram showing what we know about how
the composited expected value graph looks.

We have labeled the intersect of evr(y) and evc(y) to be q. For all y ∈ [q, 1], we
know that evr(y) > evc(y), but do not yet know whether or not evr(y) > evf (y).
What we do know, is that Player II’s optimal strategy cannot be to fold every single
hand. Therefore evf (y) must intersect evr(y) at some point before 1. Player II’s
raising cutoff, r, will be the greater of the two intersections. Since we already know
that q > d, regardless of where evf (y) intersects evr(y), we know that r > d. �
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We now know that evr(y) and evc(y) intersect once over the interval [d, 1]. It
is not immediately apparent whether or not evr(y) and evc(y) intersect again over
the interval [0, d]. Both cases shown in the figure below are possible, depending on
the values of β, b and d.

Finding whether or not an intersection in [0, d] is possible is important to our
analysis because it determines the form of Player II’s optimal strategy. The figure
below shows the two possible optimal strategies, they are ranges within the interval
[0,1] where Player II takes a certain action depending on the range his value y is
in.

The interval on the left will always be the strategy if there is no second intersec-
tion. The lack of a second intersection means that evc(y) > evr(y),∀y < d. Thus
Player II gains the greatest expectation by either calling or folding all y < r. This
is shown in the figure above in the graph on the left.

The figure and interval on the right assume there is a second intersection. Thus
for an interval [0, c] Player II will never call. We will show that the interval and
graph on the right depict Player II’s optimal strategy. In fact, we will show that for
hands y ∈ [0, c] Player II will raise a nonempty set of hands, and fold a nonempty
set of hands.

Proposition 3.3. Player II’s optimal strategy must involve raising a non-empty
set of hands y ∈ [0, c]

Proof by contradiction. Assume for the sake of contradiction that the alternative is
true, that Player II’s strategy involves not raising any y ∈ [0, c].

Let us construct Player I’s expected value graph for calling, evd(x).
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Since Player II is only raising with y > r, Player I can expect to lose every time
he calls with x < r. As we assumed in the beginning of this section 4, Player I’s
optimal strategy for calling is to call with x > d for some d ∈ [0, 1] and to fold with
x < d. By inspection, we see that d is the cutoff where evd(x) > 0 for all x > d.

Since evd(x) < 0 for all x < r, we know that d > r. This contradicts the fact
that r > d. �

Thus we know that Player II must raise some set of hands in [0, c].

Proposition 3.4. Player II’s optimal strategy must involve folding a non-empty
set of hands y ∈ [0, c].

Proof by contradiction. Assume for the sake of contradiction that the alternative is
true, that Player II’s strategy involves not folding any y ∈ [0, c].

Let us construct Player I’s expected value graph for betting, evb(x).

4And shown by Proposition 2.0.1
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Player I will bet with x > b only when the expectation from betting is greater
than the expectation of folding. 5 Since Player II is never folding, Player I can only
expect to win the pot when Player II calls with a hand less than that of Player
I. So Player I will only begin betting with hands greater than c. In other words,
evb(x) intersects evf (x) at a point b, where b > c.

However, it can never be optimal for Player II to call with hands less than b, for
he will always lose. Therefore c > b. �

Thus Player II’s optimal strategy is to either raise or fold y ∈ [0, c]. We do not
yet know the amounts with which it is optimal for Player II to raise or fold, but for
convenience, we can define a value s ∈ [0, c] where Player II folds all y ∈ [0, s] and
raises with all y ∈ [s, c]. 6

The expected value graphs and action interval are shown below.

5To be more exact, Player I will bet when either the expectation of bet/folding or the expec-

tation of bet/calling is greater than the expectation of folding. But because b < d < r, Player I

will always lose more when calling here.
6Before this point, we did not know where evf (y) is.
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Because we now know that it is optimal for Player II to either raise or fold
y ∈ [0, c], we know that evr(y) = evf (y) = 0 for all y ∈ [0, c].

0 = (3β + 2)
(
d− b
1− b

)
− 2β

d =
(

2b+ 2β + bβ

2 + 3β

)
.(3.5)

Recall that we defined r as the greater of the intersections evc(y) with evr(y)
and evf (y) and evr(y). We now know that the former is the greater of the two
intersections. So let us solve for r.

Recall evc(y) and evr(y), defined for y ∈ [d, 1], found in Section 3.1,

evr(y) =
(

1− d
1− b

)(
y − d
1− d

)
(4β + 2) + (3β + 2)

(
d− b
1− b

)
− 2β

and

evc(y) = (2β + 2)
(
y − b
1− b

)
− β.

To find r, we find y such that evr(y) = evc(y):

(
1− d
1− b

)(
y − d
1− d

)
(4β + 2) + (3β + 2)

d− b
1− b

− 2β = (2β + 2)
y − b
1− b

− β

(y − d)(4β + 2)− (y − b)(2β + 2) = −(d− b)(3β + 2) + (1− b)β
2βy = β + βd

r =
1 + d

2
.(3.6)

Interestingly, this gives us r as an average of d and 1.
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We know that Player II is calling with an interval [c, r], where c is the value of
y when evc(y) = 0. From equation 3.1, evc(y) for all y > b is given by

evc(y) = (2β + 2)
y − b
1− b

− β.

Equating evc(y) to zero, we find that

b =
2c− β + 2cβ

2 + β
(3.7)

3.2. Player I’s Optimal Strategy. Assume Player II’s optimal strategy is to fold
with all y ∈ [0, s], raise with all y ∈ [s, c]∪ [r, 1], and to call with all y ∈ [c, r], where
s, c, r ∈ [0, 1] and s < c < r.

3.2.1. Solving for d. Let us consider Player I’s expected value function of calling,
evd(x), when he has already bet and Player II has raised.

The expected value of calling with x ∈ [c, r] is constant, since calling with these
values is essentially trying to “catch a bluff.” Player I wins the pot if Player II
raised with y ∈ [s, c], and loses if II raised with y ∈ [r, 1]. The expected value for
calling with x ∈ [c, r] is given by,

evd(x) =
c− s

1− r + c− s
(4β + 2)− β

We know from Proposition 3.2 that d ∈ [c, r]. 7 From the fact that Player I’s
optimal strategy is to call with all x > d, d must also be where evd(x) = 0. Thus
we can equate the above equation to zero and solve for c as a function of r and s.

0 =
c− s

1− r + c− s
(4β + 2)− β

c =
2s+ β − rβ + 3sβ

2 + 3β
(3.8)

7The proposition showed that d < r. We know that d > c because otherwise, we would have
two lines intersecting at two points. An impossibility.
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From the fact that Player II is calling with y ∈ [c, r], we know that there must
exist some b < c, where Player I is betting all x > b. We also know that d ∈ [c, r],
so there must be some interval [b, d] where Player I cannot find an option with a
greater expectation than to bet/fold.

Player I’s expected value of bet/fold does not change in [0, c]. But we know
that he does not bet the whole interval and he does not fold the whole interval.
Betting the whole interval would mean he is never folding, which we have shown is
impossible in Section 2.0.4. Folding the whole interval, on the other hand, would
give Player II no reason to call at c. Hence Player I is calling with some amount in
[0, c] and folding with some amount in [0, c]. This also means that within [0, c], the
options bet/fold and fold have the same expectation.

Player I’s expectation for bet/fold in [0, c] is given by

evbf (x) = (β + 2)s− β
We equate evbf (x) to zero to solve for s.

s =
β

β + 2
(3.9)

4. Putting it all together

We now have four unknowns and four equations. Recall from equations 3.5, 3.6,
3.7, 3.8, and 3.9 that

d =
2b+ 2β + bβ

2 + 3β

r =
1 + d

2

b =
2c− β + 2cβ

2 + β

c =
2s+ β − rβ + 3sβ

2 + 3β

s =
β

β + 2
Some example solutions.

When β = 1,

s =
1
3
d =

41
81

r =
61
81
b =

43
243

c =
31
81

When β = 3,

s =
3
5
d =

489
665

r =
577
665

b =
1389
3325

c =
423
665
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