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Abstract. In this paper, we will investigate the family of triangle free graphs,
some of whose members have arbitrarily high chromatic numbers. Such a fam-
ily of graphs will be constructed iteratively and proven to have the above
mentioned properties. These graphs will also be shown to be universal to all
triangle free graphs, allowing us to use it to deduce bounds on the chromatic
number and independence number of any triangle free graph.
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1. Introduction

The family of graphs F , studied in this paper was first constructed in response
to an exercise posted by Professor Lazio Babai during one of his discrete math
lectures. He asked if one could show that for every k ∈ N, there exists a triangle
free graph G with chromatic number χ(G) = k. Indeed, F does exhibit the above
mentioned property.

However, after further studying this family of graphs, I realized that every trian-
gle free graph is an induced subgraph of some member of F . The bulk of this paper
is spent proving this discovery, and some possible applications of this property to
bound the chromatic number and the independence number of a given triangle free
graph are mentioned towards the end.

I also discovered and proved some other properties of the members in F , which
I included in Section 4. Although the relevance of some of these properties is
not immediate in this paper, I suspect that they would come in useful in further
strengthening the result proved in Section 6.

Date: 11th August 2008.
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2. Definitions and Construction of F

Here, F will be constructed. Since I am assuming that the reader has no knowl-
edge of graph theory, we will thus start with several basic definitions that will be
used often throughout this paper.

Definition 2.1. A graph G, is an ordered pair (V (G), E(G)) consisting of a finite
set of vertices V (G), and a set E(G), of unordered pairs of distinct vertices in
V (G). A member of E(G) is known as an edge. The edge ei,j = (vi, vj) is said
to be associated with the vertices vi and vj . Two vertices are adjacent if there is
an edge that is associated to both of them, and these two vertices are also called
neighbors.

In this definition, graphs have finitely many vertices, no vertex is adjacent to
itself, and every two distinct vertices have at most one edge associated to them.
Elsewhere, such graphs might be called finite simple graphs. In this paper, we use
this narrower definition, because the only graphs we are considering are of this kind.

Definition 2.2. A k-coloring, c, of a graph, G, is a function c : V (G) → {1, 2, . . . , k}.
One can also see this as an assignment of k colors to its vertices. Such a coloring
is said to be proper if no two adjacent vertices have the same color, and a graph is
k-colorable if it has a proper k-coloring.

Definition 2.3. The chromatic number of a graph, χ(G), is the smallest k ∈ N
such that G has a proper k-coloring.

Definition 2.4. A graph is said to be triangle free if no two adjacent vertices are
adjacent to a common vertex.

Definition 2.5. A set of vertices {v1, . . . , vn} is independent if vi is not adjacent
to vj for all i, j ∈ [n].

Construction 2.6. We will now construct the members of F iteratively. First, let
T1 be the simple graph with one vertex. Now, given any graph, Tk, of this family,
construct Tk+1 by the following steps:

(1) Choose any independent set {v1, . . . , vk−1} of k − 1 vertices.
(2) For this set of vertices, create a new vertex, u, and create an edge, ei,

between vi and u for all i ∈ [k − 1]. Do this for every independent set of
k − 1 vertices.

(3) Create a new vertex c and create an edge between c and each vertex u
created in (2).

For this construction to make sense, there needs to exist some independent set of
vertices of size k − 1 in the graph Tk. We will show that this is true later.
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Definition 2.7. The vertex, u, created in step (2) of Construction 2.6 is known as
the ascendent of {v1 , . . . , vk−1}.

Definition 2.8. The critical vertex of the graph Tk+1 is the vertex, c, created in
step (3) of Construction 2.6.

Example 2.9. For clarity, I will demonstrate constructing T2 from T1, T3 from T2

and T4 from T3.

In Figure 1, we start off first with T1, the single vertex. Next, we choose a set
of 0 vertices, or the empty set, and create an ascendent for it. Note that no vertices
are adjacent to this ascendent because it is the ascendent of the empty set. Finally,
we create a critical vertex and an edge between the ascendent and the critical ver-
tex.

Figure 1. Constructing T2 from T1

Again, as shown in Figure 2, we perform the same operation. We begin with T1

created in Figure 1, and for each set of one vertex, we create an ascendent and
an edge between the vertex and its ascendent. After all that is done, we create a
critical vertex and add an edge between each ascendent and the critical vertex.

Figure 2. Constructing T3 from T2

Observe that the graph that we start with in Figure 3 is the same as the graph
obtained at the end of the previous iterative step, i.e. the final graph in Figure 2.
As before, we perform the same operation. First, choose an independent set of 2
vertices, and create an ascendent for this set. For both of these vertices, we then
add an edge between each of these vertices and the ascendent created. Do this for
every independent set of two vertices. Now, create a critical vertex, and an edge
between each ascendent and the critical vertex. This gives us the final graph in
Figure 3.
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Figure 3. Constructing T4 from T3

3. Triangle Free and Chromatic Properties of F

With these definitions, we are now suitably prepared to begin proving some in-
teresting properties of F . For a start, we will show that the family of graphs,
F = {Tk : k ∈ N} has only triangle free members, and that the chromatic numbers
of the graphs in F is unbounded. In order to proceed further, we need to introduce
yet another important concept in graph theory.

Definition 3.1. A graph H is an induced subgraph of another graph G if H can
be obtained from G by removing a set of vertices, A, and all edges associated to A
in G from G. For any vertex v ∈ V (H), H − v is the induced subgraph formed by
removing v and all edges associated to v from H.

It is easy to see that for all i ≤ j, Ti is an induced subgraph of Tj .

Lemma 3.2. For all k ∈ N, Tk is triangle free.

Proof. This will be shown by induction. For our base case, it is clear that T1 is
triangle free. Suppose now that there exists k ∈ N such that Tk is triangle free.
To construct Tk+1, we first create one ascendent for every independent set of k− 1
vertices in Tk. Observe that no two neighbors of any of the ascendents are adjacent,
so none of the ascendents created in this step are vertices of a triangle. Since Tk

is triangle free, this means that the graph created up to this stage of the iteration
process, i.e. Tk+1 − v, where v is the critical vertex of Tk+1, is still triangle free.
By construction, none of the ascendents of Tk are adjacent, and v is adjacent only
to ascendents, so v is not a vertex of a triangle. Hence, Tk+1 is also triangle free.

�

Lemma 3.3. For all k ∈ N, χ(Tk) = k.

Proof. Again, we will prove this by induction. First, observe that χ(T1) = 1 because
it has only one vertex. This gives us our base case. Now, suppose that χ(Tk) = k.
If we can use this to prove that χ(Tk+1) = k + 1, then we will be done.
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Consider a graph G with chromatic number χ(G) = k. Choose any proper k-
coloring, c, of G. Pick any color, a, in this coloring. Now, note that there exists at
least one a colored vertex, v, such that for each of the k− 1 remaining colors, v has
a neighbour of that color. If this were not true, then we can change all the vertices
that are colored a to some other color, which means that G is {k − 1}-colorable,
and this contradicts the condition that χ(G) = k.

Since χ(Tk) = k, it is clear that χ(Tk+1) ≥ k. We can prove that χ(Tk+1) > k
by contradiction. Assume that χ(Tk+1) = k. This means that we can color Tk+1

by a proper k-coloring, c. But for this to be true, c also has to be a proper coloring
of Tk. By the discussion in the previous paragraph, we know that for any color a
of c, there exists an a colored vertex v ∈ V (Tk) with neighbors that are colored in
k − 1 different colors. Choose a set, A, of k − 1 differently colored neighbors of v,
and observe that A is an independent set because if v1, v2 ∈ A are adjacent, then v
is their common neighbor. This violates the fact that Tk is triangle free.

By construction, A has an ascendent, ua, and ua has to be colored a because A
already has k − 1 colors, and every vertex in A is a neighbor of ua. This can be
repeated for any of the other k − 1 colors, and so we end up having k differently
colored ascendents. As a result, the critical vertex of Tk+1 cannot be colored by
the first k colors, so χ(Tk+1) > k.

If we choose a proper k-coloring for Tk, by the same argument as before, it is
patent that Tk+1 can be colored in k + 1 colors, so χ(Tk+1) ≤ k + 1. We thus have
χ(Tk+1) ≤ k + 1 and χ(Tk+1) > k, so χ(Tk+1) = k + 1.

�

Theorem 3.4. Every member of F is triangle free and for any k ∈ N, χ(Tk) = k.

Proof. This follows directly from Lemma 3.2 and Lemma 3.3.
�

4. Ascendents and the Critical Vertex

In this section, we will take a closer look at the classes of vertices created in our
construction, namely the set of ascendents of Tk, which we call Ak, and the critical
vertex of Tk+1, which we denote as ck+1. These properties will be useful as an aid
to obtain an estimate of the rate at which Tk grows as k increases.

Lemma 4.1. Let Ak be the set of all ascendents created when constructing Tk+1

from Tk. For all k ∈ N \ {1}, |Ak| ≥ k + 1.

Proof. When k = 2, |A2| = 3 ≥ 2 + 1 and when k = 3, |A3| = 14 > 3 + 1, so it is
clear that the lemma holds for these two cases. Using k = 3 as our base case, we
will now prove by induction that |Ak| > k + 1.for all k ≥ 3. Suppose that for some
k ≥ 3, |Ak| > k + 1. Since Ak is an independent set, any combination of k vertices
in Ak yields an ascendent in Ak+1. Hence, |Ak+1| ≥

(|Ak|
k

)
>

(
k+1

k

)
= k + 1. This

implies that |Ak+1| ≥ k + 2, so the lemma holds for all k ∈ N \ {1}.
�

It is clear that Lemma 4.1 is not true for the case where k = 1. However, if we
instead require only that |Ak| ≥ k, then this will be true for all k ∈ N. This has
in fact been proven implicitly in Lemma 3.3. We proved that for any color a, used
in any coloring of Tk, some independent subset A ∈ V (Tk) of size k − 1 has an
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ascendent that is colored a. This is true for each of the k colors that is needed to
color Tk, so |Ak| ≥ k.

Now that we have Lemma 4.1, several interesting corollaries are within reach.

Corollary 4.2. For all k ∈ N, |Ak| ≥ |V (Tk)|.
Proof. We will prove this by induction. Observe that |A1| = 1 ≥ |V (T1)|, |A2| =
3 ≥ |V (T2)| and |A3| = 14 ≥ 7 = |V (T3)|, so this corollary is true for the first three
cases. Now, using k = 3 again as our base case, we will show by induction that this
is true for all k ≥ 3.

Suppose that for some k ≥ 3, |Ak| ≥ |V (Tk)|. This means that |V (Tk+1)| =
|V (Tk)|+ |Ak|+ 1 ≤ 2|Ak|+ 1. Also,

|Ak+1| ≥
(|Ak|

k−1

)
= (|Ak|)(|Ak|−1)...(|Ak|−k+2)

(k−1)!

≥ (|Ak|)(|Ak|−1)
(2)(1)

= 1
2 (|Ak|2 − |Ak|)

The first inequality holds because Ak is an independent set of vertices with
|Ak| ≥ k + 1, as shown in Lemma 4.1. In particular, |Ak| ≥ k − 1, so every subset
of A − k of size k − 1 yields an ascendent in Ak+1. The second inequality is true
because by Lemma 4.1 again, |Ak|−2 ≥ k−1, |Ak|−3 ≥ k−2, . . . , |Ak|−k+2 ≥ 3.

To prove the corollary, all we need is that 1
2 (|Ak|2− |Ak|) ≥ 2|Ak|+1. However,

this can be shown easily by finding the roots of the quadratic equation x2−5x−2 =
0. The only positive root of this equation is 5+

√
33

2 ≤ 13 = |A3|, so 1
2 (|Ak|2−|Ak|) ≥

2|Ak|+ 1 for all k ≥ 3 since the last line of Lemma 4.1 implies that |Ak+1| ≥ |Ak|.
�

Corollary 4.3. For all k ∈ N, |V (Tk)| ≥ 2k−1.

Proof. This will again be shown by induction. It is clear that |V (T1)| = 1 ≥ 20, so
the base case holds. Now suppose that for some k ∈ N, |V (Tk)| ≥ 2k−1. This gives
us

|V (Tk+1)| = |V (Tk)|+ |Ak|+ 1
≥ 2|V (Tk)|
= 2(2k−1)
= 2k

The first inequality follows from Corollary 4.2, and the second equality from the
inductive hypothesis.

�

This gives us a lower bound on how fast |V (Tk)| grows with k.

Corollary 4.4. |Ak| ≥ 2k−1.

Proof. This follows directly from Corollary 4.2 and Corollary 4.3.
�

We now have an improvement in the result in Lemma 4.1, as Corollary 4.4 gives
us bigger lower bound on the size of Ak for k ≥ 3.
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Lemma 4.5. For all k ∈ N \ {1} and for all vertices v ∈ V (Tk), there exists an
independent set Bk

v ⊂ V (Tk) s.t. |Bk
v | = k and v ∈ Bk

v .

Proof. First, observe that for k ≥ 2, we can decompose V (Tk) into three compo-
nents, V (Tk−1), Ak−1, which is the set of ascendents of Tk−1, and {ck}, the critical
vertex of Tk. We thus need to show that for all vertices v in each of these three
components, Bk

v as defined in the statement of this lemma exists.
Now, let us consider Ak−1. As mentioned before, this is an independent set, and

we showed in Lemma 4.1 that |Ak−1| ≥ k. Hence, for all vertices v ∈ Ak−1, we can
simply choose Bk

v to be a subset of Ak−1 that is of size k and contains v.
Next, we consider ck. By our construction, ck is not adjacent to any of the

vertices in V (Tk−1), and in particular, is not adjacent to the vertices in Ak−2. We
know that Ak−2 is an independent set, and again by Lemma 4.1, |Ak−2| ≥ k − 1.
We thus choose Bk

ck
= Ak−2 ∪ {ck}, and observe that Bk

ck
is an independent set of

size k that includes ck.
Finally, we need to prove the same for the vertices in Tk−1. This can be done

inductively. For the base case, i.e. k = 2, this is true because T1 contains only a
single vertex which has degree 0 in T2, so we can choose B2

V (T1)
to be the duple

made of the vertex in T1 and any other vertex in T2. To prove the inductive step,
suppose that for some k ∈ N, k ≥ 2 and for all vertices v ∈ V (Tk−1), Bk

v exists.
From what was discussed in the previous two paragraphs, this also means that for
all vertices w ∈ V (Tk), Bk

w also exists. Moreover, in Tk+1, ck+1 is not adjacent to
w, so we can choose Bk+1

w = Bk
w ∪ {ck+1} for all w ∈ Tk.

�

Proposition 4.6. For all k ≥ 2, Ak is a largest independent set of vertices in
Tk+1.

Proof. We will prove this by contradiction. Let P be a largest independent set
of vertices in Tk+1, and suppose that |P | > |Ak|. Observe that for all k ≥ 2,
V (Tk)∪{ck+1} is not an independent set , and by Corollary 4.2, any proper subset
of V (Tk)∪{ck+1} is at most as large as Ak. This means that P cannot be a subset
of V (Tk) ∪ {ck+1}, so P contains some vertices in Ak.

It is obvious that P is not a proper subset of Ak, so P contains vertices in both
Ak and V (Tk). (P does not contain ck+1 because ck+1 is adjacent to every vertex
in Ak.) Let R = Ak ∩ P , let Q = V (Tk) ∩ P and let Q′ be the set of vertices in Ak

that are adjacent to some vertex in Q. If |Q| ≥ k, then every subset of Q of size
k − 1 gives us an ascendent, so |Q′| ≥

( |Q|
k−1

)
≥ |Q|. If |Q| ≤ k − 1, then pick any

vertex v ∈ Q. By Lemma 4.5, there exists an independent subset of V (Tk) that
is of size k and contains v, so v is adjacent to at least

(
k−1
k−2

)
ascendents. Hence,

|Q′| ≥
(
k−1
k−2

)
= k − 1 ≥ |Q|.

In both cases, |Q′| ≥ |Q|. Moreover, Q′ ∪ R ⊂ Ak is an independent set and
|Q′ ∪R| ≥ |P | because Q′ ∩R = ∅, so |P | = |Q|+ |R| ≤ |Q′|+ |R| = |Q′ ∪R|. This
contradicts the assumption that |P | > |Ak|.

�

Corollary 4.7. For any k ∈ N, the critical vertex ck+1 of the graph Tk+1 is a
vertex with maximal degree.

Proof. It is easy to see that this is true when k = 1. For the rest of the proof, we
will only consider the case where k ≥ 2. Since Tk+1 is triangle free, for any vertex
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v ∈ V (Tk+1), the neighbors of v have to be an independent set. By Proposition 4.6,
Ak is a largest independent set of vertices in Tk+1, and ck+1 is adjacent to every
vertex in Ak, so this corollary has to be true.

�

5. Universality of F

Here, we will prove that F is a universal family of triangle free graphs, in the
sense that every triangle free graph is an induced subgraph of some member of F .
But before we do that, let us introduce another definition.

Definition 5.1. The degree of a vertex , v, in a graph, G, is the number of edges in
G associated to v, and is denoted by dG(v). Also, we write ∆(G) = maxv∈V (G) dG(v),
and call this the maximum degree of the graph G.

Lemma 5.2. For any graph G of maximal degree ∆(G) = k, let F = {v1, . . . , vn}
be a maximal independent set of vertices of G such that for all i ∈ [n], dG(vi) = k.
Let G∗ be the induced subgraph of G formed by removing F from V (G). Then
∆(G∗) < k and for all i ∈ [n], the neighbors of vi in G are in V (G∗).

Proof. Since F is independent, for all i ∈ [n], the neighbors of vi are not in F .
Hence, they are not removed from V (G) in the construction of G∗, so the neighbors
of vi are in V (G∗). This proves the second half of the lemma.

By construction, G∗ is an induced subgraph of G, so it is obvious that ∆(G∗) ≤
∆(G) = k. Now, suppose that ∆(G∗) = k. This means that there exists a vertex
w ∈ V (G∗) with dG∗(w) = k, which implies that dG(w) = k also because ∆(G) = k.
Since w ∈ V (G∗), w /∈ F , so some neighbor of w in G, call it w′, is in F . If this
were not so, then F ∪{w} is an independent set, which contradicts the maximality
of F . Hence, w′ /∈ V (G∗), so dG∗(w) ≤ dG(w) − 1 = k − 1. This contradicts the
statement that dG∗(w) = k.

�

For the purposes of this paper, we shall introduce the following two definitions.

Definition 5.3. For any set of vertices A ⊂ V (G), where G is a graph, a common
of A in G is a vertex that is adjacent to every vertex in A and not adjacent to any
vertex in V (G) \ A. The common number of A in G is the number of commons of
A in G, and can be written as cG(A).

Definition 5.4. A foil of a graph G is defined as a set F in Lemma 5.2. Let Nvi

be the set of neighbors of vi that are in G. The multiplicity of the foil F is the
number MF = maxvi∈F cG(Nvi

).

Theorem 5.5. Every triangle free graph G is isomorphic to an induced subgraph
in some Tk ∈ F .

Proof. We will prove this by induction on ∆(G). If ∆(G) = 0, then we simply
choose the graph Tk ∈ F such that |Ak| ≥ |V (G)|. We proved in Lemma 4.1 that
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this is always possible. Observe that in Construction 2.6, in no instance is any edge
created between the vertices in Ak, so Ak is an independent set. As such, the graph
(Ak, ∅) is an induced subgraph of Tk, and G is also an induced subgraph of (Ak, ∅),
so G is an induced subgraph of Tk. This is our base case, and we now need only to
prove the inductive step.

Suppose that the proposition holds for any triangle free graph with degree less
than or equal to p, and let G be a triangle free graph with ∆(G) = p + 1. By
Lemma 5.2, we have that ∆(G∗) < p + 1, so by the inductive hypothesis, G∗ is an
induced subgraph of some Tk ∈ F . Let F be the foil removed to create G∗ from G,
and assume for now that MF = 1.

We now have two cases. In the first case, we have that p + 2 ≥ k. Since Tk is an
induced subgraph of Tp+2, G∗ is also an induced subgraph of Tp+2. In constructing
Tp+3 from Tp+2, we create an ascendent for every independent set of p+1 vertices.
By Lemma 5.2, we know that for each vertex vi ∈ F , Nvi ⊂ V (G∗), so Nvi yields
an ascendent in Ap+3, which we will call v′i. Let G′ be the induced subgraph of
Tp+3 with V (G′) = V (G∗) ∪ {v′1, . . . , v′n}, and observe that G is isomorphic to G′.

Now, let us consider the second case, when p + 2 < k. In particular, p < k.
Since G∗ is an induced subgraph of Tk, it is also and induced subgraph of Tk+1,
but Ak+1 ∩ V (G∗) = ∅. Moreover, by Lemma 4.1, we know that |Ak+1| ≥ k + 2,
and Ak+1 is an independent set of vertices, so in constructing Tk+2 from Tk+1,
every subset of Ak+1 which is of size k yields an ascendent. Let the set of all such
ascendents be L, and by what was mentioned above, |L| ≥

(
k+2

k

)
≥ k + 2.

This means that in Tk+2, there is an independent set of k+2 vertices (the set L),
each of which is not adjacent to any of the vertices in V (G∗). Hence, when creating
Tk+3 from Tk+2, every independent set of p+1 vertices in V (Tk+1) can be combined
with k − p vertices from L to form an independent set of k + 1 vertices, which has
an ascendent in Ak+2. In particular, we can do this for Nvi

for any vi ∈ F , and
the ascendent created this way, call it v′i, is a common of Nvi in G∗. Now, define
G′ in the same way as the first case, and we have that G′ is an induced subgraph
of Tk+3 and that G is isomorphic to G′.

In both cases, G might not be isomorphic to G′ we do not assume that MF = 1,
because we have only added one vertex to G∗ for each Nvi to create G′. However,
this can be easily remedied. Let p + 3 = m in the first case and k + 3 = m in the
second case, i.e. G′ is an induced subgraph of Tm in both cases. Moreover, observe
that p+2 < m, so by replacing G∗ with G′ and F with F ′ = {v ∈ F : cG(Nv) > 1}
in the argument in previous paragraph, we can add one more common in G∗ for
each Nv with v ∈ F ′. Do this MF times, and we obtain an isomorphism of G that
is in some graph in F .

�

As proven in Lemma 3.2, every graph in F is triangle free, so there is no way
that a non-triangle free graph can be an induced subgraph of a member of F . The
triangle free restriction in Theorem 5.5 is thus necessary.

6. Chromatic number of triangle free graphs

Definition 6.1. The independence number of a graph G is the size of a largest
independent set of vertices of G. This can be written as α(G).
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In this section, I will highlight a possible approach to use F to obtain a relation-
ship between some properties of triangle free graphs, their chromatic number and
their independence number. A critical ingredient for this though, is is a formula
for the exact size of Ak, which I have not found.

Proposition 6.2. Every triangle free graph G of independence number α(G) ≥ m
is not an induced subgraph of Tk for all k ∈ N with |Ak| < m.

Proof. By Proposition 4.6, Ak is the largest independent set of vertices in V (Tk).
Hence, since α(G) ≥ m > |Ak|, the largest independent of vertices in G is greater
than that of Tk, which means that G is not an induced subgraph of Tk.

�

Proposition 6.2 gives us the reason we need to know the exact size of each Ak.
With this information we can obtain the smallest k such that a particular triangle
free graph G is an induced subgraph of Tk. Moreover, this can also give us the
exact number of vertices of Tk; it is evident that |Tk| =

∑k−1
n=1 |Ak|+ k.

Proposition 6.3. Every triangle free graph G of chromatic number χ(G) ≥ m is
not an induced subgraph of Tk for all k < m.

Proof. If G is an induced subgraph of Tk, then χ(G) ≤ χ(Tk) = k < m. This
contradicts the condition that χ(G) ≥ m.

�

It seems possible to use Proposition 6.2 and Proposition 6.3 to deduce some
properties of triangle free graphs with a known chromatic number and a known
independence number. Conversely, given these properties, we should be able to
find an upper bound on the chromatic number and the independence number of a
particular triangle free graph.

Take any arbitrary graph G with ∆G = k0. As shown in Lemma 5.2, we can
obtain G∗

1 with ∆(G∗
1) = k1 < k0 by taking the induced subgraph of G with vertices

V (G)\F0, where F0 is a foil of G. Let F1 be a foil of G∗
1, and let G∗

2 be the induced
subgraph of G∗

1 with vertices V (G∗
1) \ F1. We can perform this iteratively until we

obtain G∗
n with ∆(G∗

n) = 0.

Definition 6.4. We call the set B = {F0, F1, . . . , Fn−1, G
∗
n}, where Fi and G∗

n are
defined in the paragraph above, a decomposition of G. The decomposition number
of B is defined as
D(B,G) = max{∆(G) + 1 + MF0 ,max{∆(G∗

1) + 1 + MF1 , . . . ,max{∆(G∗
n−2)

+1 + MFn−2 ,max{∆(G∗
n−1) + 1 + MFn−1 , k + 1 + MFn−1}+ 1

+MFn−2} · · ·+ 1 + MF1}+ 1 + MF0}

k here is the number such that |Ak| ≥ |G∗
n| and |Ak−1| < |G∗

n|.

Alternatively, we can write the decomposition number more concisely as

D(B,G) = max{∆(G) + 1 + MF0 ,∆(G∗
1) + 2 + MF0 + MF1 , . . . ,∆(G∗

n−1) + n

+
∑n−1

i=0 MFi , k + n + 1 +
∑n

i=0 MFi}
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However, the version given in Definition 6.4 gives us a more intuitive understanding
of the decomposition number, as will be demonstrated later.

It is important to note that the decomposition number of a graph G depends
not only on the graph, but also the decomposition chosen. In other words, a graph,
if decomposed in different ways, might have different decomposition numbers.

Proposition 6.5. Let B be the decomposition of a triangle free graph G, then G
is an induced subgraph of TD(B,G).

Proof. Since |G∗
n| ≤ |Ak|, we know that G∗

n is an induced subgraph of Tk, so
by what we have mentioned in Theorem 5.5, the graph G∗

n−1 is an induced sub-
graph of T∆(G∗

n−1)+1+MFn−1
if ∆(G∗

n−1) + 1 ≥ k, or it is an induced subgraph of
Tk+2+MFn−1

if ∆(G∗
n−1) + 1 < k. Hence, G∗

n−1 is an induced subgraph of Tmn−1 ,
where mn−1 = max{∆(G∗

n−1) + 1 + MFn−1 , k + 1 + MFn−1}.

Again, by the reasoning in Theorem 5.5, we have that G∗
n−2 is an induced sub-

graph of Tmn−2 , where mn−2 = max{∆(G∗
n−2) + 1 + MFn−2 ,mn−1 + 1 + MFn−2}.

Perform this iteratively, and we get the desired result.
�

Corollary 6.6. Let B be a decomposition of a triangle free graph G. Then χ(G) ≤
D(B,G) and α(G) ≤ |AD(B,G)|. Conversely, if G is a graph such that χ(G)
and α(G) are known, then every decomposition B, of G is such that D(B,G) ≥
max{χ(G), k}, where k is such that |Ak−1| < α(G) ≤ |Ak|.

Proof. This follows immediately from Proposition 6.2, Proposition 6.3 and Propo-
sition 6.5.

�

Note that the upper bound of the chromatic number given in Proposition 6.6 is
trivial. In the rewrite of the decomposition number in the paragraph after Definition
6.4, it is easy to see that D(B,G) ≥ ∆(G) ≥ χ(G) by the same argument used in
Lemma 3.3.

7. Final Comments

There are still many problems with the result proven in Proposition 6.6. Firstly,
in order for the result to be used, a closed form expression of |Ak| needs to be found.
Moreover, the statement of the Proposition 6.6 in its current form is still too weak
to be useful. By the current definition of the decomposition number, the upper
bound of the independence number given in Proposition 6.6 is trivial in most cases,
because it grows too quickly. This is especially so in graphs with a large number
of foils. Furthermore, the upper bound for the chromatic number is trivial in all
cases, as discussed in a previous comment. A better definition of the decomposition
number might be able to tighten these two upper bounds.


