
DIFFERENTIAL FORMS ON NONCOMMUTATIVE SPACES

DYLAN G.L. ALLEGRETTI

Abstract. This paper is intended as an introduction to noncommutative ge-
ometry for readers with some knowledge of abstract algebra and differential

geometry. We show how to extend the theory of differential forms to the

“noncommutative spaces” studied in noncommutative geometry. We formu-
late and prove the Hochschild-Kostant-Rosenberg theorem and an extension

of this result involving the Connes differential.
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1. Introduction

Noncommutative geometry is a subject in which constructions from noncommu-
tative algebra are interpreted spatially. Very often in mathematics we consider the
collection of continuous functions from a space to the real or complex numbers.
This collection of functions forms a commutative algebra under pointwise addition,
multiplication, and scaling, and it is often convenient to study a space by studying
its algebra of functions rather than the space itself. In noncommutative geometry,
instead of starting with a space, we start with a noncommutative algebra and think
of its elements as if they were functions on some “noncommutative space” even
though an actual underlying space does not exist.

In this way, noncommutative geometry is a natural generalization of differential
geometry, where one studies a space by studying the smooth functions defined on
the space, and algebraic geometry, where one studies a space by studying algebraic
functions from that space to the complex numbers. Noncommutative geometry also
has applications in mathematical physics. The possible states of a physical system
are represented in classical physics by points on a manifold, and observables are
represented by smooth functions on this manifold of states. When we model a
quantum mechanical system, we replace the commutative algebra of observables by
a noncommutative algebra of operators on a Hilbert space.
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It turns out that many structures defined for spaces also make sense for noncom-
mutative spaces. In this paper we show how to extend the theory differential forms
to noncommutative geometry. We start with an associative but not necessarily
commutative algebra A and use this algebra to define differential forms and exte-
rior derivatives for the noncommutative space having A as its algebra of functions.
The Hochschild-Kostant-Rosenberg (HKR) theorem says that this noncommutative
theory reduces to the familiar theory of differential forms under certain conditions.
For a more advanced discussion of these results and noncommutative geometry in
general, see [1].

To appreciate the results of this paper, the reader should have some knowledge
of abstract algebra (especially the theory of rings and modules) and of differential
geometry (especially differential forms and de Rham cohomology). We do not
assume any familiarity with homological algebra, and we introduce the necessary
terminology from homological algebra as we need it. For more complete treatments
of homological algebra, see [2] and [3].

The rest of this paper is organized as follows. In section 2, we introduce ho-
mological algebra and work up to the definition of the Tor and Ext functors. In
section 3, we use Tor and Ext to define Hochschild homology and cohomology. To
gain some intuition for these constructions, we perform some computations and
make an analogy with differential geometry. In section 4, we prove some technical
results from homological algebra. In section 5, we introduce Koszul complexes and
use them to compute Tor. Finally, in section 6, we prove the HKR theorem and
discuss the Connes differential.

2. Homological Algebra

Homological algebra is an abstract branch of mathematics that generalizes ideas
from topology and differential geometry. One of the most important ideas in dif-
ferential geometry is that the boundary of a boundary is zero and the exterior
derivative of an exterior derivative is zero. More precisely, if dn is the linear map
that takes chains of n-simplices to their boundaries, then we have dn ◦ dn+1 = 0,
and if dn is the linear map that takes n-forms to their exterior derivatives, then we
have dn ◦ dn−1 = 0. The notions of chain and cochain complexes generalize these
ideas.

Definition 2.1. Let R be a ring. A chain complex C∗ is a sequence of R-linear
maps

. . . // Cn+1
dn+1

// Cn
dn // . . . // C1

d1 // C0
d0 // 0

of R-modules such that dn◦dn+1 = 0 for all n. That is, im dn+1 ⊆ ker dn. Elements
of ker dn are called cycles, and the elements of im dn+1 are called boundaries. The
quotient Hn(C∗) = ker dn/ im dn+1 is called the homology module of C∗ of degree n.

A cochain complex C∗ is a sequence of R-linear maps

0 // C0 d0 // C1 d1 // . . . // Cn−1
dn−1

// Cn
dn // . . .

of R-modules such that dn◦dn−1 = 0 for all n. Elements of ker dn are called cocycles,
and the elements of im dn−1 are called coboundaries. The quotient Hn(C∗) =
ker dn/ im dn−1 is called the cohomology module of C∗ of degree n.
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In differential geometry, cochain complexes are a tool for measuring the failure of
closed differential forms to be exact. In this case the cohomology module Hn(C∗)
is the de Rham cohomology, and we have Hn(C∗) = 0 if and only if every closed
n-form is exact. In general, we say that a sequence of maps

. . . // Cn+1
dn+1

// Cn
dn // Cn−1 // . . .

is exact at Cn if ker dn = im dn+1. We say the sequence is exact if it is exact at Cn
for every n.

Now that we have defined chain and cochain complexes, we can define maps
between them. A morphism f : C∗ → C ′∗ of chain complexes is a set of R-linear
maps fn : Cn → C ′n such that the diagram

. . . // Cn+1
dn+1

//

fn+1

��

Cn //

fn

��

. . .

. . . // C ′n+1
d′n+1

// C ′n // . . .

commutes. This means that any two composites from one fixed module to another
are equal. A morphism between cochain complexes is defined similarly. The follow-
ing definition is useful whenever we want to study a class of mathematical objects
and the maps between them.

Definition 2.2. A category C consists of the following.

(1) A collection Ob(C), whose elements are called the objects of the category.
(2) For every pair X, Y of objects, a set HomC(X,Y ), whose elements are

called the morphisms from X to Y in C.
(3) For every triple X, Y , Z of objects, a binary operation

HomC(X,Y )×HomC(Y, Z)→ HomC(X,Z)

called composition, sending morphisms f and g to their composite g ◦ f .
(4) For every object X, a morphism 1X ∈ HomC(X,X) called the identity

morphism on X.

These data must satisfy the following axioms.

(1) Composition of morphisms is associative:

h ◦ (g ◦ f) = (h ◦ g) ◦ f

whenever either side is defined.
(2) An identity morphism is a two-sided unit for composition:

f ◦ 1X = f = 1Y ◦ f

for f ∈ HomC(X,Y ).

For a fixed ring R, the collection of all R-modules is a category whose morphisms
are R-linear maps. Composition of morphisms in this category is just composition of
functions, and the identity on an R-module M is the identity map 1M : M → M ,
m 7→ m. The collection of all chain complexes forms another category with the
morphisms defined above. We define the composite of two morphisms f and g in
the category of chain complexes by (g ◦ f)n = gn ◦ fn. The identity morphism on a
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chain complex C∗ is given by (1C∗)n = 1Cn . Similarly, the collection of all cochain
complexes forms a category.

Suppose that f : C∗ → C ′∗ is a morphism of chain complexes and that z1 and
z2 are representatives for the same coset in Hn(C∗). Then z1 − z2 ∈ im dn+1 so
there exists x such that z1 − z2 = dn+1x. Since the diagram above commutes, we
have fn(z1) − fn(z2) = fn(z1 − z2) = fn(dn+1x) = d′n+1(fn+1(x)) ∈ im d′n+1. It
follows that fn(z1) + im d′n+1 = fn(z2) + im d′n+1. This proves that z + im dn+1 7→
f(z) + im dn+1 is a well defined linear map Hn(C∗)→ Hn(C ′∗). Thus we can assign
to every chain complex C∗ the nth homology module Hn(C∗), and whenever we
have a morphism C∗ → C ′∗, we get a morphism Hn(C∗)→ Hn(C ′∗) of modules. In
other words, we have a mapping between two categories.

For another example of a mapping between two categories, let N be any R-
module. Then the operation HomR(−, N) which sends each R-module M to the
module HomR(M,N) of all morphisms M → N and sends each R-linear map
f : M → M ′ to the map HomR(M ′, N) → HomR(M,N), g 7→ g ◦ f is a mapping
from the category of R-modules to itself.

Definition 2.3. A covariant functor F : C → C′ from a category C to a category
C′ consists of the following.

(1) A map sending each object X of C to an object F (X) of C′.
(2) A map sending each morphism f : X → Y in C to a morphism F (f) :

F (X)→ F (Y ) in C′.

These data must satisfy the following axioms.

(1) F preserves composition:

F (g ◦ f) = F (g) ◦ F (f)

whenever the composite morphism g ◦ f is defined.
(2) F preserves identities:

F (1X) = 1F (X)

for every object X of C.

A contravariant functor F : C → C′ is defined in the same way, except that F
sends each morphism f : X → Y in C to a morphism F (f) : F (Y ) → F (X) in C′,
satisfying F (g ◦ f) = F (f) ◦ F (g).

Thus homology is a covariant functor from the category of chain complexes to the
category of R-modules, and one can similarly show that cohomology is a covariant
functor from the category of cochain complexes to the category of R-modules. The
operation HomR(−, N) described above is an example of a contravariant functor.

For the remainder of this section, we discuss Tor and Ext, two of the most impor-
tant functors in homological algebra. These functors are useful for studying chain
and cochain complexes, and they will be used to define the Hochschild homology
and cohomology. Before defining Tor and Ext, we state some general definitions
involving R-modules. An R-module P is said to be projective if for any surjective
morphism f : A → B and any morphism β : P → B there exists a morphism
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α : P → A such that

P
α

��

β

��

A
f

// B

commutes. It is easy to show for example that if a module is free then it is projective.
A projective resolution P∗ →M of M is a chain complex P∗ of projective modules
together with a map P0 →M so that

. . . // P1
// P0

// M // 0

is an exact sequence.
The operation N⊗R− which sends each module M to the tensor product N⊗RM

and sends each linear map f : M → M ′ to the linear map N ⊗R M → N ⊗R M ′
defined by n ⊗R m 7→ n ⊗R f(m) is a functor from R-modules to abelian groups.
Given a projective resolution P∗ → M , we can apply this functor to P∗ to get the
induced sequence

. . . // N ⊗R P2
// N ⊗R P1

// N ⊗R P0
// 0

which is in fact a chain complex. We have seen that HomR(−, N) is a contravariant
functor from the category of R-modules to itself. If we apply this functor to the
projective resolution above, we get the induced sequence

0 // HomR(P0, N) // HomR(P1, N) // HomR(P2, N) // . . .

which is in fact a cochain complex.

Definition 2.4. Let M and N be R-modules. For any projective resolution of M ,
we define TorRn (N,M) to be the nth homology module of the chain complex induced
by N⊗R−. We define ExtnR(M,N) to be the nth cohomology module of the cochain
complex induced by HomR(−, N).

Of course we must prove that these definitions do not depend on the choice of
projective resolutions. In proving this result, it will be useful to have a criterion
to tell when two different morphisms of chain complexes induce the same map on
homology or cohomology modules. Thus, given morphisms {fn} and {gn} from
a chain complex C∗ to a chain complex C ′∗, we define a chain homotopy to be a
collection of maps sn : Cn → C ′n+1 with the property that fn − gn = d′n+1 ◦ sn +
sn−1 ◦ dn.

Cn+1
dn+1

// Cn
dn //

fn−gn
��

sn

||

Cn−1

sn−1
||

C ′n+1
d′n+1

// C ′n
d′n

// C ′n−1

If such a collection exists, we say that {fn} and {gn} are chain homotopic. In this
case, if z is any cycle in Cn then (fn − gn)(z) = d′n+1(sn(z)) is a boundary, so
fn − gn is the zero map on homology and hence fn = gn on homology. Similarly,
we can define cochain homotopies and prove that cochain homotopic maps induce
equivalent maps on cohomology.
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Lemma 2.5. Let f : M → M ′ be a morphism of modules, and take projective
resolutions P∗ → M and P ′∗ → M ′. Then for each n ≥ 0 there exists a morphism
fn : Pn → P ′n such that the following diagram commutes.

. . . d2 // P1

f1

��

d1 // P0

f0

��

d0 // M

f

��

// 0

. . .
d′2

// P ′1
d′1

// P ′0
d′0

// M ′ // 0

These morphisms fn are said to lift the morphism f . If gn : Pn → P ′n are any
other morphisms lifting f then {fn} and {gn} are chain homotopic.

Proof. We first define the maps fn inductively. Since the bottom row of the above
diagram is an exact sequence, we know that im d′0 = M ′. Thus d′0 is surjective and,
by definition of the projective module P0, there exists f0 : P0 → P ′0 such that

P0

f0

~~

f◦d0
��

P ′0
d′0

// M ′

commutes. Now suppose that we have defined maps fi for i ≤ n so that

. . . // Pn+1
dn+1

// Pn
dn //

fn

��

Pn−1 //

fn−1

��

. . . // M //

f

��

0

. . . // P ′n+1
d′n+1

// P ′n
d′n

// P ′n−1 // . . . // M ′ // 0

commutes. If z ∈ Pn+1 then by commutativity of the diagram we have

d′n(fn(dn+1z)) = fn−1(dn(dn+1z)) = fn−1(0) = 0

and hence im fn ◦ dn+1 ⊆ ker d′n. The solid horizontal arrow in the diagram

Pn+1

fn◦dn+1

��

fn+1

{{

P ′n+1
d′n+1

// ker d′n

is surjective by exactness of the projective resolution of M ′, so there is a morphism
fn+1 : Pn+1 → P ′n+1 making the diagram commute. Continuing inductively, we
obtain a morphism fn for every n.

Next we use induction to define the morphisms sn. Put s−1 = 0, f−1 = g−1 = f ,
and hn = fn− gn. Since h−1 = f − f = 0 we have d′0 ◦h0 = h−1 ◦ d0 = 0 and hence
imh0 ⊆ ker d′0 = im d′1. Since P0 is projective, there exists a morphism s0 : P0 → P ′1
such that

P0

s0

~~

h0

��

P ′1
d′1

// P ′0
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commutes, and this morphism s0 satisfies h0 = d′1◦s0 = d′1◦s0+s−1◦d0, as desired.
To apply induction, suppose we have defined si for i ≤ n satisfying d′i+1 ◦ si =
hi − si−1 ◦ di. Since

d′n+1 ◦ (hn+1 − sn ◦ dn+1) = d′n+1 ◦ hn+1 − d′n+1 ◦ sn ◦ dn+1

= d′n+1 ◦ hn+1 − (hn − sn−1 ◦ dn) ◦ dn+1

= d′n+1 ◦ hn+1 − hn ◦ dn+1 + sn−1 ◦ dn ◦ dn+1

= 0

we see that im(hn+1 − sn ◦ dn+1) ⊆ ker d′n+1 = im d′n+2. Since Pn+1 is projective,
there exists a morphism sn+1 such that

Pn+1

sn+1

zz

hn+1−sn◦dn+1

��

P ′n+2
d′n+2

// im d′n+2

commutes. This completes the proof by induction. �

Theorem 2.6. The groups TorRn (N,M) and ExtnR(M,N) depend only on M , N , n
and not on the choice of projective resolution P∗ →M .

Proof. Suppose P∗ →M and P ′∗ →M are two projective resolutions of M . By the
lemma, there is a collection of morphisms fn : Pn → P ′n lifting 1M and a collection
of morphisms gn : P ′n → Pn lifting 1M . Since N ⊗R − is a functor, we get a
commutative diagram

. . . // N ⊗R P1

ϕ1

��

// N ⊗R P0

ϕ0

��

// N ⊗RM

1N⊗RM

��

// 0

. . . // N ⊗R P ′1
ψ1

��

// N ⊗R P ′0
ψ0

��

// N ⊗RM

1N⊗RM

��

// 0

. . . // N ⊗R P1
// N ⊗R P0

// N ⊗RM // 0

where ϕn is the map induced by fn and ψn is the map induced by gn. Thus the
maps ψn ◦ϕn are a lift of 1N⊗RM . But the collection of identity maps N ⊗R Pn →
N ⊗R Pn is another lift of 1N⊗RM , so we see that {1N⊗RPn} is chain homotopic

to {ψn ◦ ϕn}. Hence ψn ◦ ϕn is the identity map on TorRn (N,M). Reversing the
roles of P∗ → M and P ′∗ → M in this argument, we see also that ϕn ◦ ψn is the

identity on TorRn (N,M). Hence ϕn and ψn are isomorphisms between the modules

TorRn (N,M) obtained from P∗ →M and P ′∗ →M .
The proof for ExtnR(M,N) is similar, with the arrows in the diagram reversed

since HomR(−, N) is a contravariant functor. �

If f : M → M ′ is a morphism of R-modules, then the morphism N ⊗R M →
N ⊗RM ′ induced by f induces another morphism TorRn (N,M)→ TorRn (N,M ′) of

abelian groups so that TorRn (N,−) is a covariant functor. Similarly, ExtnR(−, N) is
a contravariant functor.
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3. Hochschild Homology and Cohomology

Now that we have introduced some terminology from homological algebra, we
can see how to define 1-forms in noncommutative geometry. Given any smooth
manifold M , we write Ω0(M) for the algebra of smooth functions on M and Ω1(M)
for the module of 1-forms. We would like to have a completely algebraic analogue
of Ω1(M). Thus, for any commutative algebra A over a field k, we define the
module Ω1

A|k of Kähler differentials to be the A-module generated by the symbols

da with a ∈ A satisfying

d(a+ b) = da+ db

d(λa) = λda

d(ab) = a(db) + b(da)

for all a, b ∈ A and λ ∈ k. If we view A as an algebraic analogue of Ω0(M), then
this module of Ω1

A|k of Kähler differentials is an algebraic analogue of Ω1(M). Our

goal in this section is to define an analogue of the module of Kähler differentials
when A is not commutative.

Recall that the opposite of an algebra A is the algebra denoted Aop with the same
underlying vector space as A and multiplication defined by a·op b = b·a for a, b ∈ A.
The enveloping algebra of A is the algebra Ae = A ⊗ Aop where ⊗ denotes tensor
product over the field k. An A-bimodule is an abelian group M which is both a
left and right A-module and satisfies a(mb) = (am)b for all a, b ∈ A. Note that
any A-bimodule is canonically an Ae-module where the action of Ae on M is given
by (a⊗ b)m = amb. The multiplication ·op is needed here to ensure that this is an
action. Conversely, if M is an Ae-module, then M is an A-bimodule with left and
right actions defined by am = (a⊗ 1)m and ma = (1⊗ a)m, respectively.

Definition 3.1. If M is a bimodule, the Hochschild homology of M is the k-vector
space Hn(M,A) = TorA

e

n (M,A).

To show how this relates to differential forms, we perform a simple computation.
By the results of the previous section, we can compute Hochschild homology by
choosing any projective resolution of A and computing the homology of the complex
induced by M ⊗Ae −. It is convenient to use the bar resolution B∗(A) → A given
by

. . . // A⊗4
b′2 // A⊗3

b′1 // A⊗2 // A // 0

where Bn(A) = A⊗n+2 is the tensor product of n+2 copies of A, the map A⊗2 → A
is multiplication, and b′n is given by

b′n(a0 ⊗ · · · ⊗ an+1) =

n∑
i=0

(−1)ia0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1.

It is tedious but straightforward to check that this is a chain complex. We claim
that the bar resolution is a projective resolution of A. Indeed, if we define sn :
A⊗n+2 → A⊗n+3 by the formula

sn(a0 ⊗ · · · ⊗ an+1) = 1⊗ a0 ⊗ · · · ⊗ an+1,
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we see that

b′n+1(sn(a0 ⊗ · · · ⊗ an+1)) + sn−1(b′n(a0 ⊗ · · · ⊗ an+1))

= b′n+1(1⊗ a0 ⊗ · · · ⊗ an+1) + sn−1

( n∑
i=0

(−1)ia0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1

)

= 1a0 ⊗ · · · ⊗ an+1 +

n∑
i=0

(−1)i+11⊗ a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1

+

n∑
i=0

(−1)i1⊗ a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1

= a0 ⊗ · · · ⊗ an+1.

Hence b′n+1 ◦ sn+ sn−1 ◦ b′n = 1Bn(A) and the identity on the bar resolution is chain
homotopic to the zero map. It follows that the homology modules of B∗(A) are all
trivial and B∗(A) is an exact chain complex.

Next we must show that the each term in the complex is a projective Ae-module
where the Ae-module structure is given by (a⊗b)a0⊗· · ·⊗an+1 = aa0⊗· · ·⊗an+1b.
There is an isomorphism A⊗n+2 ∼= Ae ⊗A⊗n of Ae-modules, and since k is a field,
the tensor power A⊗n is free as a k-module. Therefore

A⊗n+2 ∼= Ae ⊗
⊕
i∈I

k ∼=
⊕
i∈I

Ae ⊗ k ∼=
⊕
i∈I

Ae

for some indexing set I. This proves that A⊗n+2 is free and hence projective as an
Ae-module.

We now see that the bar resolution is a projective resolution of A. It remains to
compute Hochschild homology. Any bimodule M is canonically a right Ae-module
where the action of Ae on the right is given by m(a ⊗ b) = bma. Tensoring the
chain complex B∗(A) with M , we obtain

. . . // M ⊗Ae A⊗4 // M ⊗Ae A⊗3 // M ⊗Ae A⊗2 // 0.

Define linear maps ϕ : M⊗A⊗n →M⊗AeA⊗n+2 and ψ : M⊗AeA⊗n+2 →M⊗A⊗n
by the formulas

ϕ(m⊗ (a1 ⊗ · · · ⊗ an)) = m⊗ (1⊗ a1 ⊗ · · · ⊗ an ⊗ 1)

and

ψ(m⊗ (a0 ⊗ a1 ⊗ · · · ⊗ an ⊗ an+1)) = an+1ma0 ⊗ (a1 ⊗ · · · ⊗ an)

where we have omitted all subscripts in the symbol for tensor product. It is imme-
diate that ψ ◦ ϕ = 1M⊗A⊗n . We also have

ϕ(ψ(m⊗ (a0 ⊗ a1 ⊗ · · · ⊗ an ⊗ an+1))) = ϕ(an+1ma0 ⊗ (a1 ⊗ · · · ⊗ an))

= an+1ma0 ⊗ (1⊗ a1 ⊗ · · · ⊗ an ⊗ 1)

= m(a0 ⊗ an+1)⊗ (1⊗ a1 ⊗ · · · ⊗ an ⊗ 1)

= m⊗ (a0 ⊗ a1 ⊗ · · · ⊗ an ⊗ an+1),

so ϕ ◦ ψ = 1M⊗AeA⊗n+2 . This shows that ϕ is an isomorphism M ⊗A⊗n ∼= M ⊗Ae

A⊗n+2, and the complex whose homology we want to compute becomes

. . . // M ⊗A⊗2
b2 // M ⊗A

b1 // M // 0.
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The maps b′n in the bar resolution satisfy

(1M ⊗ b′n)(m⊗ a0 ⊗ · · · ⊗ an+1)

=

n∑
i=0

(−1)im⊗ a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1

= (an+1ma0a1)⊗ 1⊗ a2 ⊗ · · · ⊗ an ⊗ 1

+

n−1∑
i=1

(−1)i(an+1ma0)⊗ 1⊗ a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an ⊗ 1

+(−1)n(anan+1ma0)⊗ 1⊗ a1 ⊗ · · · ⊗ an−1 ⊗ 1,

so the maps bn = ψ ◦ (1M ⊗ b′n) ◦ ϕ : M ⊗A⊗n →M ⊗A⊗n−1 are given by

bn(m⊗ a1 ⊗ · · · ⊗ an) = ma1 ⊗ a2 ⊗ · · · ⊗ an

+

n−1∑
i=1

(−1)im⊗ a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an

+ (−1)nanm⊗ a1 ⊗ · · · ⊗ an−1.

Computing the first Hochschild homology is now easy. The kernel of b1 is generated
by m ⊗ a ∈ M ⊗ A such that ma − am = 0, and the image of b2 is generated by
expressions of the form ma⊗ b−m⊗ ab+ bm⊗ a with m ∈M and a, b ∈ A. The
homology H1(M,A) is the quotient ker b1/ im b2.

In the special case where M = A is commutative, the kernel of b1 is all of A⊗A,
so the Hochschild homology H1(A,A) is the quotient of A⊗A by the relation

ab⊗ c− a⊗ bc+ ca⊗ b = 0.

Define a k-linear map ϕ : H1(A,A) → Ω1
A|k taking the coset of a ⊗ b to the ele-

ment adb. By the relations defining Ω1
A|k, we have

ϕ(ab⊗ c− a⊗ bc+ ca⊗ b) = ab(dc)− ad(bc) + ca(db)

= ab(dc)− ab(dc)− ac(db) + ca(db)

= 0,

so this map ϕ is well defined. The k-linear map ψ : Ω1
A|k → H1(A,A) given by

ψ(adb) = a ⊗ b satisfies b1(ψ(adb)) = b1(a ⊗ b) = ab − ba = 0 by commutativity
of A, and

ψ(a(db) + b(da)− d(ab)) = 1a⊗ b+ b1⊗ a− 1⊗ ab ∈ im b2,

so ψ is a well defined map into H1(A,A) = ker b1/ im b2. It is clearly an inverse
of ϕ. This proves that, in the special case where M = A is commutative, H1(A,A)
is isomorphic to the module Ω1

A|k of Kähler differentials.

We shall see later that the Hochschild homology provides a good notion of dif-
ferential forms when the algebra A is not commutative. In the meantime, let us
define Hochschild cohomology H∗(A,M) and compute H1(A,M).

Definition 3.2. The Hochschild cohomology of M is the vector space Hn(A,M) =
ExtnAe(A,M).
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As in the previous computation, we look at the sequence induced by the bar reso-
lution. Applying the functor HomAe(−,M) to the bar resolution, we obtain

0 // HomAe(A⊗2,M) // HomAe(A⊗3,M) // . . . .

Since A⊗2 is free of rank one as an Ae-module, we see there is an isomorphism
HomAe(A⊗2,M) ∼= M , namely the map that evaluates morphisms on 1⊗ 1. More-
over, there is an isomorphism HomAe(A⊗n+2,M) ∼= Homk(A⊗n,M) which assigns
to each morphism φ : A⊗n+2 → M the morphism defined by a1 ⊗ · · · ⊗ an 7→
φ(1⊗ a1⊗ · · · ⊗ an⊗ 1). Thus the complex whose cohomology we need to compute
reduces to

0 // M
b0 // Homk(A,M)

b1 // Homk(A⊗2,M)
b2 // . . . .

If φ : A⊗n+2 →M is any morphism of Ae-modules, then

φ ◦ b′n+1(1⊗ a1 ⊗ · · · ⊗ an+1 ⊗ 1) = φ(a1 ⊗ · · · ⊗ an+1 ⊗ 1)

+

n∑
i=1

(−1)iφ(1⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ 1)

+ (−1)n+1φ(1⊗ a1 ⊗ · · · ⊗ an+1).

If f : A⊗n → M is an k-linear map, then by surjectivity of the isomorphism
described above there exists an Ae-linear map φ : A⊗n+2 → M with the property
that φ(1 ⊗ a1 ⊗ · · · ⊗ an ⊗ 1) = f(a1 ⊗ · · · ⊗ an). Under this isomorphism the
differential bn : Homk(A⊗n,M)→ Homk(A⊗n+1,M) is therefore given by

bnf(a1 ⊗ · · · ⊗ an+1) = φ ◦ b′n+1(1⊗ a1 ⊗ · · · ⊗ an+1 ⊗ 1)

= a1f(a2 ⊗ · · · ⊗ an+1)

+

n∑
i=1

(−1)if(a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1)

+ (−1)n+1f(a1 ⊗ · · · ⊗ an)an+1.

Using this formula for bn we can easily compute the Hochschild cohomology. The
kernel of b1 consists of all maps f such that af(b)− f(ab) + f(a)b = 0, or f(ab) =
af(b) +f(a)b, so being a cocycle is the same as being a derivation. The image of b0

consists of maps f for which there exists some m such that f(a) = am−ma. These
maps f are called inner derivations, and the quotient H1(M,A) = ker b1/ im b0 is
called the module of outer derivations.

In the special case where M = A is commutative, the image of b0 is trivial and
the Hochschild cohomology H1(A,M) is simply the vector space of derivations. In
fact, if A is not commutative, we can view the cohomology H1(A,A) as the space
of vector fields on a noncommutative space.

4. Long Exact Sequences

In the last section, we showed that if A is a commutative algebra over a field k
then the Hochschild homology H1(A,A) is isomorphic to the module Ω1

A|k of Kähler

differentials. We can therefore view H1(A,A) as the module of 1-forms on a non-
commutative space. In section 6, we shall prove the HKR theorem which implies
that we can view Hn(A,A) as the module of n-forms on a noncommutative space.
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To prove this result, we need we need to develop further techniques from homolog-
ical algebra.

Lemma 4.1. Consider a commutative diagram

A
f

//

α

��

B
g

//

β

��

C //

γ

��

0

0 // A′
f ′

// B′
g′

// C ′

in the category of R-modules. If the rows of this diagram are exact, then there is
an exact sequence of maps

kerα // kerβ // ker γ
δ // cokerα // cokerβ // coker γ.

Proof. Since this result plays a technical role in our discussion, we sketch the proof
and leave the details to the reader. Recall that the cokernel of a map h : X → Y
is the quotient cokerh = Y/ imh. We get the maps between kernels by restricting
the horizontal maps in the given diagram, and we get the maps between cokernels
by the universal property of a quotient. Given an element z of ker γ there exists
y ∈ B such that g(y) = z by surjectivity of g. By commutativity of the diagram,
we have g′(β(y)) = γ(g(y)) = γ(z) = 0, so β(y) is contained in the kernel of g′ and
hence in the image of f ′. Therefore we can find x ∈ A′ such that f ′(x) = β(y). The
map δ : ker γ → cokerα, z 7→ x+ imα is well defined and the resulting sequence is
exact by inspection. �

By a short exact sequence of chain complexes we mean an exact sequence

0 // A∗
f

// B∗
g

// C∗ // 0

of morphisms of chain complexes.

Theorem 4.2. If 0 // A∗
f

// B∗
g

// C∗ // 0 is a short exact sequence

of chain complexes then there are maps ∂n : Hn(C∗)→ Hn−1(A∗) so that

. . .
∂n+1

// Hn(A∗) // Hn(B∗) // Hn(C∗) EDBC
GF

∂n

@A
// Hn−1(A∗) // Hn−1(B∗) // Hn−1(C∗)

∂n−1
// . . .

is an exact sequence called the long exact sequence in homology.

Proof. Let us denote the set of cycles in Cn by Zn(C∗). For each n we have a
commutative diagram

0 // An
fn //

dn

��

Bn
gn //

dn

��

Cn //

dn

��

0

0 // An−1
fn−1

// Bn−1 gn−1

// Cn−1 // 0
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with exact rows, so the lemma implies that there is an exact sequence of maps

0 // Zn(A∗) // Zn(B∗) // Zn(C∗)
δ // An−1

dnAn
// Bn−1

dnBn
// Cn−1

dnCn
// 0

for every n. It follows that the rows of

An/dn+1An+1
//

��

Bn/dn+1Bn+1
//

��

Cn/dn+1Cn+1
//

��

0

0 // Zn−1(A∗) // Zn−1(B∗) // Zn−1(C∗)

are exact. Applying the lemma a second time yields an exact sequence

Hn(A∗) // Hn(B∗) // Hn(C∗) EDBC
GF

∂n

@A
// Hn−1(A∗) // Hn−1(B∗) // Hn−1(C∗),

and the desired long exact sequence is obtained by piecing these ones together. �

Explicitly, the map ∂n can be described as follows. Given a coset z + im dn+1

in Hn(C∗), let y be a cycle in Bn such that gn(y) = z. Then dny ∈ Bn−1 actually
belongs to Zn−1(A∗) and represents ∂nz ∈ Hn−1(A∗).

We conclude this section by defining a construction on chain complexes. Just
as we can take the tensor product of two modules, there is a notion of tensor
product (C ⊗R C ′)∗ of chain complexes C∗ and C ′∗. The module in degree n is
(C⊗RC ′)n =

⊕
p+q=n Cp⊗RCq and the differential map is defined by the formula

dn(x⊗ y) = dx⊗ y + (−1)|x|x⊗ dy
where |x| denotes the degree of x.

5. Koszul Complexes

Let R be a commutative ring. Given an m-tuple x = (x1, . . . , xm) of elements
of R, we define the Koszul complex K∗(x) to be the chain complex

0 // ΛmRm
dm // Λm−1Rm

dm−1
// . . . // Rm

d1 // R
d0 // 0

with the exterior power ΛnRm in degree n. The map d1 takes v ∈ Rm to the inner
product x · v, and the other maps are given by

dn+1(v0 ∧ · · · ∧ vn) =

n∑
i=0

(−1)id1(vi)v0 ∧ · · · ∧ v̂i ∧ · · · ∧ vn

where the ̂ on top of vi means that this vector is omitted from the product. It
is straightforward to check that K∗(x) is indeed a chain complex. Note that the
modules Kn(x) in this chain complex are trivial for n > m by anticommutativity
of the wedge product.

Let R be a commutative algebra over k. We call the m-tuple (x1, . . . , xm) a
regular sequence if multiplication by xi in R/(x1R + · · · + xi−1R) is injective for
each i.

Lemma 5.1. If I is an ideal of R which is generated by a regular sequence, then
K∗(x)→ R/I is a projective resolution of R/I.
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Proof. Choose a basis {e1, . . . , em} for Rm. Then the elements ei1 ∧ · · · ∧ ein form

a basis for ΛnRm and hence ΛnRm ∼= R⊕(mn). This proves that every module in
the Koszul complex is free and hence projective. To finish the proof, we argue by
induction on m that

0 // ΛmRm
dm // Λm−1Rm

dm−1
// . . . // Rm

d1 // R // R/I // 0

is an exact sequence. For m = 1 the ideal I is generated by a single element x1 ∈ R,
and this sequence is

0 // R
d1 // R // R/I // 0.

The projection R → R/I is surjective, so the kernel of the map R/I → 0 equals
the image of R → R/I. The map d1 is multiplication by x1, and this element x1
generates I, so the kernel of R→ R/I equals the image of d1. Since multiplication
by x1 is assumed to be injective, the kernel of d1 equals the image of 0→ R. This
proves exactness in the case m = 1.

Suppose now that the sequence is exact for m = k− 1 and let us prove that it is
exact for m = k. If x = (x1, . . . , xk) is the regular sequence generating I then we
have a commutative diagram

0

��

0

��

0

��

0 // 0 //

��

R
1R //

d1

��

R //

��

0

0 // R
1R

//

��

R //

��

0 //

��

0

0 0 0

where the map d1 is multiplication by the ring element xk. It follows by inspection
that this is a short exact sequence

0 // K0
// K(xk) // K1

// 0

of chain complexes where K0 is the sequence whose only nonzero term is R in de-
gree 0, and K1 is the sequence whose only nonzero term is R in degree 1. Tensoring
each term of this short exact sequence by the Koszul complex L = K(x1, . . . , xk−1)
induces another short exact sequence whose middle term is L ⊗R K(xk) = K(x),
as the reader can check using our definition of the tensor product. The associated
long exact sequence in homology turns out to be

. . . // K0 ⊗R Hn+1(L) // Hn+1(K(x)) // K1 ⊗R Hn(L) EDBC
GF

∂n

@A
// K0 ⊗R Hn(L) // Hn(K(x)) // K1 ⊗R Hn−1(L) // . . .

where K0 = K1 = R. Using our description of the connecting morphism, one can
show that ∂n is multiplication by xk. Therefore we have an exact sequence

0 // coker(Hn(L)
xk→ Hn(L)) // Hn(K(x)) // ker(Hn−1(L)

xk→ Hn−1(L)) // 0
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for every n. Our inductive hypothesis says that the complex L has homology
Hn(L) = 0 for indices n > 0 and H0(L) = R/(x1R + · · · + xk−1R). It follows
that Hn(K(x)) = 0 for n > 1. For n = 1 the module H1(K(x)) is the kernel of
multiplication by xk in R/(x1R+· · ·+xk−1R). Since this multiplication is injective,
we get H1(K(x)) = 0. Finally, for n = 0 the module H0(K(x)) is the cokernel of
multiplication by xk, and this cokernel equals R/I. This completes the proof by
induction. �

A graded ring R is a ring with a direct sum decomposition R =
⊕∞

i=0Ri into
additive subgroups Ri so that if r ∈ Ri and s ∈ Rj then rs ∈ Ri+j . An algebra A
over a ring R is called a graded algebra if it is graded as a ring. For example, the
collection Ω(M) of differential forms on a manifold M is an algebra over the ring
of smooth functions. We think of Ω(M) as a direct sum

Ω(M) =

∞⊕
n=0

Ωn(M)

where Ωn(M) is the vector space of n-forms on M . Note that this sum has only
finitely many nonzero terms since there are no nonzero forms of degree greater
than the dimension of the manifold. The wedge product operation makes Ω(M)
into a graded algebra. Similarly, if we put ΩnA|k = ΛnΩ1

A|k then Ω∗A|k is a graded

algebra over A. The HKR theorem states that for certain nice algebras A there is
an isomorphism H∗(A,A) ∼= Ω∗A|k of graded algebras.

The following lemma is an essential ingredient in the proof of the HKR theorem.

Lemma 5.2. Let R be a commutative ring and I an ideal of R which is generated
by a regular sequence in R. Then there is an isomorphism TorR∗ (R/I,R/I) ∼=
Λ∗R/I(I/I

2) of graded algebras.

Proof. Let x be a regular sequence generating I. Since the Koszul complex K∗(x) is

a projective resolution ofR/I, we may use it to compute TorR∗ (R/I,R/I). Tensoring
this complex with R/I gives a complex

0 // (R/I)⊗R ΛmRm
1⊗Rdm// . . . // (R/I)⊗R Rm

1⊗Rd1// (R/I)⊗R R // 0.

Our assumption that x generates I implies in particular that every element of x is
contained in I. It then follows from the definition of the maps dn that 1⊗ dn = 0.
Therefore the nth homology group of this sequence is

TorRn (R/I,R/I) ∼= (R/I)⊗R ΛnR(Rm)

∼= (R/I)⊗R R⊕(mn)

∼= ((R/I)⊗R R)⊕(mn)

∼= (R/I)⊕(mn)

∼= ΛnR(R/I)m.

The sequence

0 // I // R // R/I // 0

is exact, and we obtain a short exact sequence of chain complexes by choosing a
projective resolution for each term in this sequence. By examining the associated
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long exact sequence in homology, one finds that TorR1 (R/I,R/I) is the kernel of
R/I ⊗ I → R/I ⊗R. Now

0

��

0

��

0

��

0 // I2 //

��

I //

��

R/I ⊗ I //

��

0

0 // I //

��

R //

��

R/I ⊗R //

��

0

0 0 0

is a short exact sequence of chain complexes. Denote the columns from left to right
by A∗, B∗, and C∗. By Theorem 4.2 we have an exact sequence

H1(B∗) // H1(C∗) // H0(A∗) // H0(B∗).

Now H1(B∗) ∼= 0, H1(C∗) ∼= TorR1 (R/I,R/I), H0(A∗) ∼= I/I2, and H0(B∗) ∼= R/I.

The map I/I2 → R/I is the zero map, so we have TorR1 (R/I,R/I) ∼= I/I2

by exactness. It follows that TorRn (R/I,R/I) is an exterior power of I/I2 ∼=
TorR1 (R/I,R/I) ∼= (R/I)m.

It remains to check that the canonical product on Tor is identified under the
isomorphism with the exterior algebra product. This follows from the fact that the
wedge product K(x)⊗RK(x)→ K(x) is a morphism of complexes lifting 1R/I . �

6. Noncommutative Differential Forms

In this section we formulate and prove the HKR theorem. This theorem suggests
that we can view Hochschild homology classes as differential forms on a noncom-
mutative space. The proof of the HKR theorem involves “localizing” rings at a
maximal ideal. This powerful technique comes from commutative algebra and is
analogous to the familiar idea of localizing at a point when studying the behavior
of a function on the real line.

The construction of the localization of a commutative ring R is similar to the
construction of the rational numbers from the integers. Let S be a subset of R which
contains 1 and is closed under multiplication. There is an equivalence relation ∼ on
the set R×S where (r1, s1) ∼ (r2, s2) if there exists s ∈ S such that ss2r1 = ss1r2.
Let RS be the set of equivalence classes and denote the equivalence class of the pair
(r, s) by the formal fraction r/s. We can define addition and multiplication on RS
by

r1
s1

+
r2
s2

=
s2r1 + s1r2

s1s2
and

r1
s1

r2
s2

=
r1r2
s1s2

.

These operations are well defined, and they make RS into a ring which we call the
localization of R at S.

Similarly, if M is an R-module there is an equivalence relation on M × S, also
denoted∼, where (m1, s1) ∼ (m2, s2) if there exists s ∈ S such that ss2m1 = ss1m2.
Let MS be the set of equivalence classes and denote the class of (m, s) by m/s. The
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operations of addition and scalar multiplication defined by

m1

s1
+
m2

s2
=
s2m1 + s1m2

s1s2
and

r

s1

m

s2
=

rm

s1s2

are well defined and make MS into an RS-module called the localization of M at S.
An important example for our purposes is where M is an R-module and m is a
maximal ideal of M . Since m is a prime ideal, it follows that we can localize R
at R − m. By a common abuse of language, we call this the localization at m and
denote it by Rm.

If f : M →M ′ is a morphism of R-modules then the assignment m/s 7→ f(m)/s
is a well defined RS-linear map MS → M ′S which we denote by fS . Localization
at S is therefore a functor from the category of R-modules to the category of RS-
modules. It is straightforward to show that localization commutes with direct sums,
quotients, kernels, and projectives. The following result is an algebraic analogue
of the fact from differential geometry that a morphism of vector bundles over a
manifold is an isomorphism if it restricts to an isomorphism on every fiber.

Theorem 6.1. A morphism f : M → M ′ of R-modules is an isomorphism if
fm : Mm →M ′m is an isomorphism for every maximal ideal m of R.

Proof. Suppose that fm : Mm → M ′m is an isomorphism for every maximal ideal
m ⊆ R. Let x ∈ ker f and suppose x 6= 0. We can choose a maximal ideal
m ⊆ R containing the annihilator Annx of x in R. If x represents the zero class
in (ker f)m = ker fm, then there exists s 6∈ m such that sx = 0. Then we have
s ∈ Annx, a contradiction. Therefore we must have x 6= 0 in ker fm. But this
contradicts the fact that fm is injective. This proves that f is itself injective.

A similar argument with ker f replaced by coker f shows that f is surjective. �

To state the HKR theorem, we need to impose a condition on the algebra A
which we are thinking of as an algebra of functions. The following notion comes
from algebraic geometry where it is related to smooth manifolds.

Definition 6.2. Let A be an algebra over a field k with multiplication map µ :
A ⊗ A → A. We say that A is smooth if it is commutative and the kernel of the
localized map µm : (A ⊗ A)µ−1(m) → Am is generated by a regular sequence for
every maximal ideal m of A.

Let us now define a map appearing in the statement of the HKR theorem. Let
εn : M ⊗ ΛnA→M ⊗A⊗n be given by

εn(a0 ⊗ a1 ∧ · · · ∧ an) =
∑
σ∈Sn

(sgnσ)a0 ⊗ aσ−1(1) ⊗ · · · ⊗ aσ−1(n)

where the sum is taken over all permutations of {1, . . . , n} and sgnσ denotes the
sign of a permutation σ. Define δn : M ⊗ ΛnA→M ⊗ Λn−1A by the formula

δn(a0 ⊗ a1 ∧ · · · ∧ an) =

n∑
i=1

(−1)i[a0, ai]⊗ a1 ∧ · · · ∧ âi ∧ · · · ∧ an

+
∑

1≤i<j≤n

(−1)i+j−1a0 ⊗ [ai, aj ] ∧ a1 ∧ · · · ∧ âi ∧ · · · ∧ âj ∧ · · · ∧ an.



18 DYLAN G.L. ALLEGRETTI

An argument by induction (see [2]) shows that the diagram

M ⊗ ΛnA
εn //

δn

��

M ⊗A⊗n

bn

��

M ⊗ Λn−1A εn−1

// M ⊗A⊗n−1

commutes for every n. In particular, if A is commutative then the commutators
[ai, aj ] all vanish, so δn = 0 and we have bn ◦ εn = 0. Therefore we can take
homology and get a well defined map M ⊗ΛnA→ Hn(M,A) which we also denote
by εn. There is a natural map M ⊗ΛnA→M ⊗ΩnA|k given by m⊗ a1 ∧ · · · ∧ an 7→
m⊗ da1 ∧ · · · ∧ dan. The kernel of this map is is generated by elements of the form

ma1 ⊗ a2 ∧ a3 ∧ · · · ∧ an+1 +ma2 ⊗ a1 ∧ a3 ∧ · · · ∧ an+1

−m⊗ a1a2 ∧ a3 ∧ · · · ∧ an+1.

To show that the domain of the map εn is actually M ⊗ Ω∗A|k we must therefore

show that

εn(ma1 ⊗ a2 ∧ a3 ∧ · · · ∧ an+1) + εn(ma2 ⊗ a1 ∧ a3 ∧ · · · ∧ an+1)

− εn(m⊗ a1a2 ∧ a3 ∧ · · · ∧ an+1)

is a boundary. This is true because this element equals

b

(∑
σ

(sgnσ)m⊗ aσ−1(1) ⊗ · · · ⊗ aσ−1(n)

)
where the sum runs over all σ ∈ Sn+1 with σ(1) < σ(2). Taking M = A we get a
map ΩnA|k → Hn(A,A) which we call the antisymmetrization map and denote again

by εn.

Theorem 6.3 (Hochschild-Kostant-Rosenberg). For any smooth algebra A over k,
the antisymmetrization map is an isomorphism

Ω∗A|k
∼= H∗(A,A)

of graded algebras.

Proof. Since A is commutative we have A ⊗ Aop ∼= A ⊗ A and hence Hn(A,A) ∼=
TorA⊗An (A,A). By the previous theorem, it suffices to show that the map

(ΩnA|k)m → (TorA⊗An (A,A))m

obtained by localizing εn is an isomorphism of Am-modules for every maximal ideal
m ⊆ A. One can show that there are isomorphisms

(TorA⊗An (A,A))m ∼= Tor
(A⊗A)µ−1(m)
n (Am, Am).

and (ΩnA|k)m ∼= ΩnAm|k of Am-modules for every n. It therefore suffices to show that

the map

ΩnAm|k → Tor
(A⊗A)µ−1(m)
n (Am, Am)

is an isomorphism of Am-modules. Let I be the kernel of the localized map µm.
Define R = (A ⊗ A)µ−1(m). Then there are isomorphisms Am

∼= R/I and I/I2 ∼=
Ω1
Am|k, so we need to prove that the map

ΛnR/I(I/I
2)→ TorRn (R/I,R/I)
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is an isomorphism. Indeed, this is just the isomorphism from Lemma 5.2. �

This result implies that Hochschild homology is a generalization of the usual
graded algebra of differential forms. Given a noncommutative algebra A, we can
think of Hn(A,A) as the module of n-forms on the noncommutative space described
by A. We now extend this result to get a chain complex of noncommutative differ-
ential forms.

There is a natural linear action of the cyclic group Z/(n+ 1)Z on A⊗n+1 defined
by

tn(a0 ⊗ · · · ⊗ an) = (−1)nan ⊗ a0 ⊗ · · · ⊗ an−1
where tn = t is the generator of Z/(n+1)Z. We define two more operators N and s
by N = 1 + t+ t2 + · · ·+ tn and s(a0 ⊗ · · · ⊗ an) = 1⊗ a0 ⊗ · · · ⊗ an.

Definition 6.4. The Connes differential is the map B = (1− t)sN .

One can check (see [2] for details) that (1−t)b′ = b(1−t) and b′N = Nb where b′

is the boundary map in the bar resolution and we have omitted all subscripts for
clarity. Then

bB +Bb = b(1− t)sN + (1− t)sNb
= (1− t)(b′s+ sb′)N

= (1− t)N
= 0

by an earlier computation, so B is a morphism from the complex C∗(A) with A⊗n+1

in degree n to the complex C∗(A)[1] with A⊗n+2 in degree n. It is a convention to
multiply the differential by −1 when shifting a complex in this manner. It follows
that the Connes differential induces a well defined map on Hochschild homology.

Theorem 6.5. The diagram

ΩnA|k
εn //

d

��

Hn(A,A)

B

��

Ωn+1
A|k εn

// Hn+1(A,A)

commutes.

Proof. A straightforward computation shows that

B(εn(a0da1 ∧ · · · ∧ dan)) = εn+1(1⊗ a0 ∧ · · · ∧ an)

= εn+1(d(a0da1 ∧ · · · ∧ dan)).

The result follows by taking homology. �

We have thus specified a cochain complex which reduces to the de Rham complex
when A is a smooth algebra. This result illustrates how structures defined on spaces
can be defined for noncommutative spaces.
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