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Abstract

This paper will give a brief introduction to homological algebra. Starting
with various exact sequences, we will define tensor product and projective
modules, which will lead to the object of interest: homology groups, a more
computable alternative to homotopy groups in higher dimensions. Given a
chain complex of free abelian groups Cn, is it possible to compute the homology
groups Hn(C; G) of the associated chain complex of tensor product with G just
in terms of G and Hn(C)? The Universal Coefficient Theorem for Homology
provides an algebraic formula that answers this question.

1 Introduction

In algebraic topology, we can distinguish various topological spaces using singular
homology. Nonetheless we may want to calculate homology of arbitrary coefficients,
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so we need a theorem which will establish the relationship between homology of
arbitrary coefficients and homology with Z coefficients.

In Section 2, we will give the necessary algebra background. In Section 3 we will
define Tor and prove the Universal Coefficient Theorem for Homology. In the last
section, we will compute two examples.

2 Background in Algebra

2.1 Exact Sequences

Definition 2.1. A pair of homomorphisms A
f→ B

g→ C is exact at B if im (f) =
ker(g). A sequence · · · → Ai−1 → Ai → Ai+1 → · · · is exact if it is exact at every Ai
that is between two homomorphisms.

Proposition 2.2. A sequence 0→ A
f→ B is exact if and only if f is injective. On

the other hand, a sequence B
g→ C → 0 is exact if and only if g is surjective.

Proof. Exactness at A implies that ker f is equal to the image of the homomorphism
0 → A, which is zero. This is equivalent to the injectivity of homomorphism f .
Similarly, the kernel of zero homomorphism C → 0 is C, and g(B) = C if and only
if g is surjective.

Corollary 2.3. A sequence 0 → A
f→ B

g→ C → 0 is exact if and only if f is
injective, g is surjective, and im f = ker g. We say B is an extension of C by A.
This exact sequence is called a short exact sequence.

Example 2.4. Given two Z-modules A = Z and C = Z/nZ, we can construct two

different short exact sequences. First, 0 → Z f→ Z ⊕ Z/nZ g→ Z/nZ → 0 where
f(a) = (a, 0) and g(a, c) = c.

The Z-module Z is also an extension of Z/nZ by Z. Consider 0 → Z n→ Z p→
Z/nZ → 0, where n maps z to nz, while p is the projection map. Note that even
though A and C are the same modules in the example,
Z ⊕ Z/nZ is not isomorphic to Z, making the two exact sequences not equivalent.

The significance of short exact sequence shows up when we try to break down
a long exact sequence into short exact sequences. Consider the exact sequence of
R-modules · · · → An+2 → An+1 → An → An−1 → An−2 → · · · . Let

Cn ∼= ker (An → An−1) ∼= im (An+1 → An).
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As the algebraic structure underlying R-module is abelian group, the cokernel of
each homomorphism exists such that Cn ∼= coker(An+2 → An+1). Then we obtain
the following commutative diagram, in which all the diagonal sequences are short
exact:

0
%%KK

KKK 0 0
##HH

HH 0

Cn+1

99sssss

%%KK
K

Cn−1

99sssss

%%KK
K

· · · // An+2

99sss
// An+1

##HH
H

// An

;;vvv
// An−1

%%KK
K

// · · ·

Cn+2

99sss
Cn

=={{{

!!C
CC

Cn−2

##HH
HH

0

;;vvvv
0

;;vvvv
0 0

(2.5)

Conversely, given any short exact sequences overlapped in this way, their middle
terms form an exact sequence.

Definition 2.6. Let 0 → A → B → C → 0 and 0 → A′ → B′ → C ′ → 0 be
two short exact sequences of modules. A homomorphism of short exact sequences is
a triple f, g, h of module homomorphisms such that the following diagram commutes:

0 // A //

f
��

B //

g

��

C //

h
��

0

0 // A′ // B′ // C ′ // 0.

(2.7)

If f, g, h are all isomorphisms, then this is an isomorphism of short exact sequences,
where B and B′ are isomorphic extensions. The two exact sequences are equivalent
if

0 // A // B //

≈
��

C // 0

0 // A′ // B′ // C ′ // 0.

(2.8)

Definition 2.9. Let 0→ A
f→ B

g→ C → 0 be a short exact sequence of R-modules.
The sequence is split if B = A ⊕ C up to isomorphism. A map s : C → B is
called a section of g if g ◦ s =id. If s is also a homomorphism, then it is a splitting
homomorphism.

Splitting is equivalent to either of the following statements:
(a) There is a homomorphism p : B → A such that p ◦ f = 1 : A→ A.
(b) There is a homomorphism s : C → B such that g ◦ s = 1 : C → C.
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Example 2.10. The short exact sequence 0 → Z → Z ⊕ Z/nZ → Z/nZ → 0 is
split, by definition. In contrast, the sequence 0 → Z → Z → Z/nZ → 0 is not split
because there is not a nontrivial homomorphism from Z/nZ→ Z.

2.2 Tensor Product of Modules

Definition 2.11. For a ring R, let M be a right module, and N be a left module.
The tensor product M ⊗N over R is the abelian group M ×N quotiented by

(m1 +m2, n) ∼ (m1, n) + (m2, n)

(m,n1 + n2) ∼ (m,n1) + (m,n2)

(mr, n) ∼ (m, rn)

for m,m1,m2 ∈M,n, n1, n2 ∈ N and r ∈ R.

Theorem 2.12. Let L,M,N be right modules, and D be a left module. If

0→ L
ψ→M

ϕ→ N → 0

is exact, then the associated sequence of abelian groups

L⊗R D
ψ⊗1−→M ⊗R D

ϕ⊗1−→ N ⊗R D → 0

is exact.

Proof. To show the surjectivity of ϕ ⊗ 1, we know ϕ is surjective. Then for some
m ∈ M,n = ϕ(m). But n⊗ d = ϕ(m)⊗ d = ϕ(m⊗ d) ⊗ 1. This implies (ϕ ⊗ 1) is
a surjective homomorphism from M ⊗D to N ⊗D, which are abelian groups. For
exactness at M ⊗R D, it is sufficient to show that π : M ⊗D/im(ψ ⊗ 1) → N ⊗D
is an isomorphism. To construct the inverse of π, define a map

p : N ×D →M ⊗D/im(ψ ⊗ 1)

by p(n, d) = m⊗ d where ϕ(m) = n. If ϕ(m) = ϕ(m′) = n, then m−m′ = ψ(l) for
some l ∈ L by the exactness at M . This implies m⊗ d−m′ ⊗ d = (m−m′)⊗ d =
ψ(l) ⊗ d ∈ im(ψ ⊗ 1), so p is well-defined. Since p is constant on each equivalence
class, p induces p̃ : N ⊗D → M ⊗D/im(ψ ⊗ 1), which is a homomorphism and an
inverse to π.
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Definition 2.13. A left R-module D is called flat if it satisfies one of the two
following equivalent conditions:

(1) For any right modules L,M,N , if 0 → L
ψ→ M

ϕ→ N → 0 is exact, then

0→ L⊗D ψ⊗1−→M ⊗D ϕ⊗1−→ N ⊗D → 0 is also exact.
(2) For any right module L,M , if ψ is injective, then ψ ⊗ 1 is injective.

Corollary 2.14. Free modules are flat; projective modules are flat.

In conclusion, for a left R-module D, the functor − ⊗ D from the category of
right R-module to the category of abelian group is right exact; it is exact if and only
if D is a flat module. Here are some convenient facts to know:

Corollary 2.15. (1) For any left R-module D,

Z⊗Z D = D. (2.16)

(2) For m,n ∈ Z,
Z/mZ⊗Z Z/nZ ∼= Z/dZ, (2.17)

where d is the g.c.d. of m and n.
(3) Let M,M ′ be right R-modules and let N,N ′ be left R-modules. Then there are
unique group isomorphisms

(M ⊕M ′)⊗R N ∼= (M ⊗R N)⊕ (M ′ ⊗R N) (2.18)

such that (m,m′)⊗ n 7→ (m⊗ n,m′ ⊗ n). The isomorphism is defined similarly for
M ⊗R (N ⊕N ′) ∼= (M ⊗R N)⊕ (M ⊗R N ′).

2.3 Projective Modules

Let R be a ring with unity, and let 0→ L
ψ→M

ϕ→ N → 0 be a short exact sequence
of R-modules. We would like to find out whether the properties of L and N imply
the related properties of M . First we will consider whether a homomorphism from
an R-module D to L or N implies the existence of a homomorphism from D to M .

Let f : D → L and ψ : L → M . Then the composition of f and ψ defines a
homomorphism f ′ : D → M such that f ′ = ψ ◦ f . It is equivalent to the following
diagram commutes:

D

f

��

f ′

L
ψ //M,
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or ψ induces a homomorphism between abelian groups:

ψ′ : HomR(D,L) −→ HomR(D,M)

f 7−→ f ′ = ψ ◦ f. (2.19)

Proposition 2.20. Let D,L,M be R-modules. Let ψ : L → M induces ψ′ :
HomR(D,L) → HomR(D,M). If ψ : L → M is injective, then ψ′ is also injec-

tive, i.e. if 0 → L
ψ→ M is exact, then 0 → HomR(D,L)

ψ′→ HomR(D,M) is also
exact.

Proof. Let f, g be two distinct homomorphisms in HomR(D,L). Consider the com-
posites ψ ◦ f, ψ ◦ g : D →M . Since ψ is injective, ψ ◦ f is distinct from ψ ◦ g for any
distinct f, g ∈ HomR(D,L). Thus the induced homomorphism ψ′ is injective.

It should be noted that exactness at N does not guarantee that HomR(D,M)
φ→

HomR(D,N)→ 0 is exact. An obvious example is the exact sequence 0→ Z n→ Z p→
Z/nZ → 0. Let D = Z/nZ, and let f ∈ HomR(D,N) be the identity map. Since Z
contains no element of finite order except zero, there is only the zero homomorphism
F : D →M . Thus p ◦ F = 0 6= f . However, we have the following theorem.

Theorem 2.21. Let D,L,M,N be R-modules. If a sequence

0→ L
ψ→M

ϕ→ N → 0

is exact, then its associated sequence

0→ HomR(D,L)
ψ′→ HomR(D,M)

ϕ′→ HomR(D,N)

is also exact.

Proof. It remains to prove that ker (ψ′) = im (ϕ′). To show ker (ϕ′) ⊂ im (ψ′),
choose F ∈ HomR(D,M) such that ϕ ◦ F = 0.

D
G

~~
F
��

ϕ◦F=0

  B
BB

BB
BB

B

L
� � ψ //M

ϕ // // N

For any element d ∈ D,ϕ(F (d)) = 0, which means F (d) is in the kernel of ϕ. Since
ker (ϕ) = im (ψ), ψ(l) = F (d) for some l ∈ L. Furthermore the injectivity of ψ
guarantees the uniqueness of l, which gives a well-defined map G : D → L where

6



G(d) = l. Check that G respects the R-module structures of D and L. Since the
left triangle commutes, F = ψ′(G) for some G ∈ HomR(D,L), making F ∈ im (ψ′).
Hence ker (ϕ′) ⊂ im (ψ′).

Conversely, if F is in the image of ψ′, then F = ψ′(G) for some G ∈ HomR(D,L),
so ϕ(F (d)) = ϕ(ψ(G(d))) for all d ∈ D. By exactness however, ϕ ◦ ψ = 0, which
implies ϕ(F (d)) = 0 ∀ d ∈ D, i.e. F is in the kernel of ϕ′, proving im ψ′ ⊂ ker ϕ′.

Definition 2.22. An R-module P is projective if it satisfies any of the following
equivalent conditions:

(1) If 0 → L
ψ→ M

ϕ→ N → 0 is exact, then 0 → HomR(P,L)
ψ′→ HomR(P,M)

ϕ′→
HomR(P,N)→ 0 is exact.

(2) Let M
ϕ→ N → 0 be an exact sequence of modules. Every f : P → N lifts to

F ∈ HomR(P,M) such that the following diagram commutes:

P
F

~~
f
��

M
ψ // N // 0

(3) If P is a quotient of the R-module M , then any short exact sequence 0 → L →
M → P → 0 splits.
(4) P is a direct summand of a free R-module.

Note that free modules are projective. A finitely generated module is projective if
and only if it is a direct summand of a finitely generated free module. Every module
is a quotient of a projective module.

We have defined projective modules for the purpose of defining the homology
groups TorRn (D,B) using projective resolution.

Definition 2.23. Let B be any R-module. A projective resolution of B is an exact
sequence

· · · → Pn
dn→ Pn−1 → · · ·

d1→ P0
ε→ B → 0

such that each Pi is a projective R-module.

Every R-module has a projective resolution. Let P0 be a free R-module on a
set of generators of B. Then B is a direct summand of P0. Let ε : P0 → B be
the projection map. Since ε is surjective, ε(P0) = B =ker(0), making the sequence
P0

ε→ B → 0 exact. For the following homomorphism d1, define d1(P1) = ker(ε), and
let P1 be a free R-module mapping onto ker(ε) ⊂ P0. This gives the exactness at P0.
By repeating these steps, we get a resolution of B that is free (thus projective) at
every Pi, which we call a free resolution.
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3 Universal Coefficient Theorem

3.1 TorR
n (B,D)

Let B be a right R-module. Take a projective resolution of B

· · · → Pn
dn→ Pn−1 → · · ·

d1→ P0
ε→ B → 0. (3.1)

Then tensor with D to obtain

· · · → Pn ⊗D
dn⊗1−→ Pn−1 ⊗D → · · ·

d1⊗1−→ P0 ⊗D
ε⊗1−→ B ⊗D → 0. (3.2)

Since im (dn+1⊗ 1) < ker(dn⊗ 1), (dn⊗ 1) ◦ (dn+1⊗ 1) = (dn⊗ 1)(im(dn+1⊗ 1)) = 0
for all n, making (3.2) a chain complex, so we may construct its homology groups.

Definition 3.3. Let D be a left R-module, and let B be a right R-module. For any
projective resolution of B by right R-module as above, take tensor product with D,
and define dn ⊗ 1 : Pn ⊗D → Pn−1 ⊗D for all n ≥ 1. Then

TorRn (B,D) = ker(dn ⊗ 1)/im(dn+1 ⊗ 1), (3.4)

which we call the nth homology group derived from the functor −⊗D. When R = Z
the group TorZ

n(B,D) is also denoted by simply Torn(B,D). TorR0 (B,D) is the 0th

homology of P1 ⊗D
d1⊗1−→ P0 ⊗D

x→ 0.

Thus TorRn (B,D) is the nth homology group of the chain complex obtained from
(3.2) by removing the term B⊗D. The next proposition is special for 0th homology
group.

Proposition 3.5. For any right R-module B, TorR0 (B,D) ∼= B ⊗D.

Proof. Let · · · → P0
ε→ B → 0 be any projective resolution of B.

TorR0 (B,D) = ker(x)/im(d1 ⊗ 1) by Equation (3.4)

= P0 ⊗D/im(d1 ⊗ 1) P0 ⊗D is annihilated by x

= P0 ⊗D/ker(ε⊗ 1) exactness atP0 ⊗D in(3.2)

By right exactness of tensor product, the sequence P1⊗D
d1⊗1−→ P0⊗D

ε⊗1−→ B⊗D → 0
is exact, so B⊗D = im(ε⊗1). However, ker(ε⊗1) = im (d1⊗1) = (P0⊗D)/(B⊗D).
Thus P0 ⊗D/ ker (ε⊗ 1) ∼= B ⊗D.
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The following two propositions are important, as they together guarantee the ho-
mology group TorRn (B,D) of any R-module B is well-defined. For proof, see Hatcher
Section 3.A.

Proposition 3.6. The homology groups TorRn (B,D) are independent of the choice
of projective resolution of B.

Proposition 3.7. Let f : B → B′ be an R-module homomorphism, and take pro-
jective resolution of B and B′, respectively. Then for each n ≥ 0 there is an induced
map ηn : TorRn (B,D) → TorRn (B′, D) on the homology groups obtained from these
resolutions, depending only on f .

Let 0 → L.
ψ→ M.

ϕ→ N. → 0 be a short exact sequence of chain complexes, i.e.

a sequence of homomorphism of complexes such that 0 → Li
ψ→ Mi

ϕ→ Ni → 0 is
short exact for every i, or equivalently, the following diagram commutes:

0

��

0

��

0

��
· · · // Li+1

di+1 //

ψi+1

��

Li
di //

ψi

��

Li−1
//

ψi−1

��

· · ·

· · · //Mi+1
di+1 //

ϕi+1

��

Mi
di //

ϕi

��

Mi−1
//

ϕi−1

��

· · ·

· · · // Ni+1
di+1 //

��

Ni
di //

��

Ni−1
//

��

· · ·

0 0 0

(3.8)

It can be stretched out into a long exact sequence of homology groups:

· · · → Hi+1(N)→ Hi(L)→ Hi(M)→ Hi(N)→ Hi−1(L)→ · · · .

Now for simplicity, we will vary the original setup a little. For a short exact

sequence of right R-modules 0 → L
ψ→ M

ϕ→ N → 0, find a free resolution for each
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of the modules L,M, and N :

0

��

0

��

0

��
· · · // P ′′1 //

��

P ′′0
ε′′ //

��

L //

ψ

��

0

· · · // P ′1 //

��

P ′0
ε′ //

��

M //

ϕ

��

0

· · · // P1
//

��

P0
ε //

��

N //

��

0

0 0 0

(3.9)

such that 0→ P ′′i → P ′i → Pi → 0 is split short exact for every i. (Their existences
are guaranteed by Horseshoe Lemma. See Weibel Section 2.2.) When we tensor with
a left R-module D and remove the end terms, we get

0

��

0

��

0

��
· · · // P ′′2 ⊗D //

��

P ′′1 ⊗D //

��

P ′′0 ⊗D //

ψ

��

0

· · · // P ′2 ⊗D //

��

P ′1 ⊗D //

��

P ′0 ⊗D //

ϕ

��

0

· · · // P2 ⊗D //

��

P1 ⊗D //

��

P0 ⊗D //

��

0

0 0 0

(3.10)

where each short exact sequence is split because the original ones were. Then the
long exact sequence of homology of this short exact sequence of chain complexes is
as we desired:

· · · → TorR2 (N,D)
δ1−→ TorR1 (L,D)

ψ∗−→ TorR1 (M,D)
ϕ∗−→ (3.11)

TorR1 (N,D)
δ0−→ L⊗D ψ∗−→M ⊗D ϕ∗−→ N ⊗D → 0.

The maps δi are called connecting homomorphisms.

10



To define the connecting homomorphism δi : Tori(N,D)→ Tori−1(L,D), suppose
n ∈ ker di. Since ϕi is surjective, there exists some m ∈ Mi such that ϕi(m) = n.
Based on the following calculation

ϕi−1(di(m)) = di(ϕi(m)) diagram(3.8)commutes

= di(n) = 0 n is in the kernel of di

we know that di(m) ∈ ker ϕi−1 = im ψi−1. Thus there exists a unique l ∈ Li−1 such
that ψi−1(l) = di(m). Note that

ψi−1 ◦ di(l) = di ◦ ψi−1(l) diagram(3.8)commutes

= di ◦ di(m) ψi−1 is injective

= 0 di(m) = 0

Now define δi : Tori(N,D) → Tori−1(L,D) by δi[n] = [l]. We will leave to the
readers to prove the map is well-defined and a homomorphism and that the sequence
is exact.

3.2 Proof of Universal Coefficient Theorem

Next we will give a variation of the construction above, which will be used in the

Universal Coefficient Theorem for Homology. Let · · · → Cn
δn→ Cn−1 → · · · be a

chain complex of free abelian groups. Let Bn = im(δn) ⊂ Zn = ker(δn) ⊂ Cn. Since
δn|Zn = 0 and δn|Bn = 0, we can regard B and C as subcomplexes of Z with trivial
boundary maps. This gives rise to a short exact sequence of chain complexes

...

��

...

��

...

��
0 // Zn

δn=0
��

// Cn

δn
��

δn // Bn−1

δn=0
��

// 0

0 // Zn−1
//

��

Cn−1
δn−1 //

��

Bn−2
//

��

0

...
...

....

(3.12)

The subgroups of a free abelian group are free abelian, so Cn ∼= Zn ⊕ Bn−1. Be
careful that the chain complex C is not direct sum of chain complexes Z and B, for
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the boundary maps in C are not necessarily trivial, unlike the trivial ones in B and
N . Next take the tensor product with G to get

...

��

...

��

...

��
0 // Zn ⊗G

δn⊗1
��

// Cn ⊗G
δn⊗1
��

δn⊗1 // Bn−1 ⊗G
δn⊗1
��

// 0

0 // Zn−1 ⊗G //

��

Cn−1 ⊗G
δn−1⊗1//

��

Bn−2 ⊗G //

��

0

...
...

...

(3.13)

Tensor product commutes with direct sums by 2.18, so the rows in the second diagram
are split exact. By the construction in 3.11, we can pass to a long exact sequence of
homology groups:

· · · → Hn(Z;G)→ Hn(C;G)→ Hn(B;G)→ Hn−1(Z;G)→ · · · . (3.14)

In the original sequence, the chain complex of Zn has only zero homomorphisms, so
Hn(Z;G) = Zn ⊗G/0 = Zn ⊗G for all n. Similarly Hn(B;G) = Bn ⊗G. The long
exact sequence 3.14 is isomorphic to

· · · → Bn ⊗G→ Zn ⊗G→ Hn(C;G)→ Bn−1 ⊗G→ Zn−1 ⊗G→ · · · . (3.15)

Take b⊗ g ∈ Bn−1 ⊗G. Since δn ⊗ 1 is surjective, we can find c⊗ g ∈ Cn ⊗G such
that δn⊗ 1(c⊗ g) = b⊗ g. Apply δn⊗ 1 to c⊗ g, we get back b⊗ g, now in Cn−1⊗G.
Since Bn−1⊗G ⊂ Zn−1⊗G, b⊗ g ∈ Bn−1⊗G =⇒ b⊗ g ∈ Zn−1⊗G. Thus we may
define the boundary map as in⊗ 1 : Bn⊗G→ Zn⊗G where in is the inclusion map
from Bn → Zn.

Referring to Diagram 2.5, we can view Hn(C;G) as An. It follows that Bn⊗G =
An+2, Zn ⊗ G = An+1, et cetera. Then we can construct an extension of Cn+1 by
Cn. We will define Cn and Cn+1 in terms of maps we know, i.e. in ⊗ 1 and in−1 ⊗ 1,
respectively.

Cn ∼= coker(An+2 → An+1) = coker(Bn ⊗G→ Zn ⊗G) = coker(in ⊗ 1), (3.16)

while Cn−1
∼= ker(An−1 → An−2) = ker(Bn−1 ⊗ G → Zn−1 ⊗ G) = ker(in−1 ⊗ 1).

Together they make a short exact sequence:

0→ coker(in ⊗ 1)→ Hn(C;G)→ ker(in−1 ⊗ 1)→ 0, (3.17)
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and coker(in⊗1) = Zn⊗G/im (in⊗1). Now our task is to find out what coker(in⊗1)
and ker(in−1 ⊗ 1) are.

In general, A
f→ B → cokerf → 0 is exact by the definition of coker f = B/f(A).

In the case of Bn
in→ Zn → coker(in)→ 0, we actually know that coker(in) = Hn(C).

Right exactness of tensor product says that

Bn ⊗G
in⊗1 // Zn ⊗G // coker(in ⊗ 1) //

≈
0

Bn ⊗G
in⊗1 // Zn ⊗G // Hn(C)⊗G // 0.

(3.18)

That is, coker(in ⊗ 1) ∼= Hn(C)⊗G, and it does not depend on choice of Bn or Zn.

Now to find ker(in−1⊗ 1), or equivalently ker(in⊗ 1), consider the free resolution
of Hn(C)

0 // Bn
in // Zn // Hn(C) // 0

P1 P0 H

(3.19)

Tensoring with G, we get

0→ P1 ⊗G
in⊗1−→ P0 ⊗G→ H ⊗G→ 0. (3.20)

Then calculate TorZ
1 of H ⊗G, which equals H1(P1 ⊗G) =ker (in ⊗ 1). Combining

the two results, we proved the first half of the Universal Coefficient Theorem:

Theorem 3.21. If C is a chain complex of free abelian groups, then there are natural
short exact sequences

0→ Hn(C)⊗G→ Hn(C;G)→ Tor1(Hn−1(C), G)→ 0 (3.22)

for all n and all G, and these sequences split, though not naturally.

To prove the splitting, we go back to the split short exact sequence 0 → Zn
f→

Cn
g→ Bn−1 → 0. Splitting implies that there is p : Cn → Zn such that p ◦ f = 1Zn .

Further p can be extended to p′, making the following diagram commutes:

Cn

p

��

p′

##G
G

G
G

G

Zn
q // Hn(C).

(3.23)
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To get a chain map F : C.→ H.(C), we make H. a chain complex by adding trivial
boundary maps between them. Tensor with G, which yields F ⊗ 1 : C. ⊗ G →
H.C ⊗ G. When we take the homology of C. ⊗ G, we get the usual Hn(C;G).
When we take the homology of H.C ⊗ G, however, it gives us Hn(C) ⊗ G, due to
the zero homomorphisms. Thus we have the induced homomorphism on homology
F∗ : Hn(C;G)→ Hn(C)⊗G, which proves the desired splitting.

4 Applications

We will demonstrate two calculations of homology with arbitrary coefficients. Recall

Hi(RP n) =


Z if i = 0 or i = n odd

Z/2Z if 0 < i < n and i is odd

0 otherwise

(4.1)

Example 4.2. Let C = RP n and G = Z/2Z. Calculate the homology Hi(C;G).

By the Universal Coefficient Theorem, Hi(C;G) ∼= Hi(C)⊗G⊕Tor1(Hi−1(C), G).
We will consider each case separately. For i = 0,

H0(RP n; Z/2Z) ∼= H0(RP n)⊗ Z/2Z⊕ Tor(H−1(RP n),Z/2Z) by 3.22

= Z⊗ Z/2Z⊕ Tor(0,Z/2Z) by 4.1

= Z/2Z⊕ Tor(0,Z/2Z) by 2.16

= Z/2Z trivial Tor

For i = 1,

H1(RP n; Z/2Z) ∼= H1(RP n)⊗ Z/2Z⊕ Tor(H0(RP n),Z/2Z) by 3.22

= Z/2Z⊗ Z/2Z⊕ Tor(Z,Z/2Z) by 4.1

= Z/2Z⊕ Tor(Z,Z/2Z) by 2.16

= Z/2Z see below

A free short exact sequence of Z/2Z is 0
d2→ Z d1→ Z⊕ Z/2Z ε→ Z/2Z→ 0. After we

take the tensor product, we get 0
d2⊗1→ Z⊗Z d1⊗1→ (Z⊕Z/2Z)⊗Z ε⊗1→ Z/2Z⊗Z→ 0,

which is equal to the original sequence. Thus Tor(Z,Z/2Z) = 0.
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For 1 < i < n such that i is an odd integer,

Hi(RP n; Z/2Z) ∼= Hi(RP n)⊗ Z/2Z⊕ Tor(Hi−1(RP n),Z/2Z) by 3.22

= Z/2Z⊗ Z/2Z⊕ Tor(0,Z/2Z) by 4.1

= Z/2Z⊕ Tor(0,Z/2Z) by 2.17

= Z/2Z as in i = 0

For 0 < i < n such that i is even,

Hi(RP n; Z/2Z) ∼= Hi(RP n)⊗ Z/2Z⊕ Tor(Hi−1(RP n),Z/2Z) by 3.22

= 0⊗ Z/2Z⊕ Tor(Z/2Z,Z/2Z) by 4.1

= 0⊕ Z/2Z = Z/2Z

For i = n even, we have Hi(RP n; Z/2Z) = 0⊗Z/2Z⊕Tor(Z/2Z,Z/2Z) ∼= Z/2Z.
If i is odd, it is Z ⊗ Z/2Z ⊕ Tor1(0,Z/2Z) ∼= Z/2Z instead. In summary, we have
the answer Hn(RP n; Z/2Z) ∼= Z/2Z, which is even simpler than the homology with
Z coefficients. The next example is also about RP n, but we will change G to Q.

Example 4.3. Let C = RP n and G = Q. Calculate the homology Hi(C;G)

For i = 0, Hi(C;G) = Z⊗Q⊕ 0 = Q.
For odd i between 0 and n,

Z/2Z⊗Q︸ ︷︷ ︸
=0

⊕Tor(0,Q) = 0.

Z/2Z is a torsion abelian group, while Q under addition is a divisible group.
Thus their tensor product is zero. For a ∈ Z/2Z and b ∈ Q, 0 = 0 ⊗ b = 2 ⊗ b =
(1 · 2)⊗ b = 1⊗ 2b. By similar argument, Tor(Z/2Z,Q) = 0, and Tor(0,Q) = 0.

For even i between 0 and n, 0⊗Q⊕ Tor(Z/2Z,Q) = 0.
For i = n even,

0⊗Q⊕ Tor(Z/2Z,Q) = 0.

If i is odd instead, then

Z⊗Q ⊕ Tor(0,Q) = Q.
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