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Abstract. The concept of growth rates in group theory has proven to be a
potent tool for studying groups. For example, in 1981, Mikhail Gromov proved
the set of finitely-generated virtually nilpotent groups are precisely the groups
of polynomial growth. In this paper, we give an introduction to growth rate in
group theory and provide many tools and examples to illustrate some of the
methods used. We also construct the First Grigorchuk group and prove that
it has intermediate growth.
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Introduction

Consider a group G and a generating set S = {s1, s2, . . . , sk}. We define the word
length lS(g) of an element g ∈ G to be the length of the shortest decomposition
g = s±1

i1
· · · s±1

in
. The growth function of G with respect to the generating set S,

denoted by γS
G, associates to each integer n ≥ 0 the number of elements g ∈ G such

that lS(g) ≤ n. The growth rate of a group G is the asymptotic behavior of γS
G.

It has been known since the 1960s that all finitely-generated groups have either
polynomial, exponential or intermediate growth, but it was only in 1980 that Ros-
tilav Grigorchuk constructed the first group proven to have intermediate growth.
Also, while it has been known for many decades that all finitely-generated virtually
nilpotent have polynomial growth, it was only in 1981 that the converse was proven
by Mikhail Gromov. In this paper, we will introduce some of the concepts of growth
and state some key results. We will also construct the First Grigorchuk group. The
reader is assumed to be familiar with basic algebraic concepts.
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The first half of this paper is designed to be more of an overview of some of
the important concepts behind growth rates. The very first section focuses on
introducing the concepts of growth, such as the properties of the word length (the
shortest string of elements in the generating set needed to express an element) and
the growth rate (the rate at which the number of elements increase with respect to
an increase in the maximum word length allowed). We show that there are three
classes of growth, namely polynomial, exponential and intermediate growth and
lead up to the result that the growth rates of a finitely-generated group and any
subgroup of finite index have to be equivalent.

The next two sections tackle some of the tools behind understanding polynomial
and exponential growth. We provide an analogue of the “Ping-Pong Lemma” for
free semi-groups and also show that the group of upper-triangular matrices with
1’s along the diagonals and integers elsewhere has polynomial growth.

In contrast, the second half of this paper is focused on answering an important
question in geometric group theory; in 1968, John Milnor asked if groups of inter-
mediate growth exist and Rostilav Grigorchuk constructed the first such group in
1980. This part of the paper focuses on the construction of the First Grigorchuk
group and introduces only essential tools and definitions to prove that it has in-
termediate growth. Along the way we prove that the First Grigorchuk group is
infinite, multilateral, and also a 2-group. The last fact is of particular interest
as it provides a negative answer to the General Burnside Problem, which asks if
finitely-generated torsion groups are necessarily finite.

1. Word Length and Growth Rate

All groups in this paper are assumed to be finitely-generated unless explicitly
stated otherwise.

Remark. There is a difference between the word length of an element g and the
length of word w (denoted by |w|) representing g. The word w need not be the
shortest decomposition of g, hence |w| ≥ l(g).

Exercise 1.1. Basic properties of word lengths and growth functions:
(1) For any group G with generating set S such that |S| = k, we have

γS
G(n) ≤

n∑

i=0

(2k)i.

(2) For any infinite group G, the growth function is strictly increasing:

γS
G(n + 1) > γS

G(n)

(3) Word length lS is subadditive and growth rate γ is submultiplicative. i.e.
for all g1, g2 ∈ G, we have

lS(g1g2) ≤ lS(g1) + lS(g2)

and for m,n ≥ 1 :

γS
G(m + n) ≤ γS

G(m)γS
G(n).

We now introduce terms and definitions that enable us to classify groups accord-
ing to their growth rates.
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Definition 1.2. Let f and g be functions from N to R+. We say f dominates g,
denoted by g . f , if there exists constants α, C > 0 such that

g(n) ≤ C · f(αn)

for all n ≥ 1. Furthermore, we say that f and g are equivalent (written as f ∼ g)
if f . g and g . f .

One can check that this notion of equivalence of growth is an equivalence relation.

Proposition 1.3. Given S and S′, generating sets of G, their respective growth
functions γS

G and γS′
G are equivalent.

Proof. Suppose S = {s1, s2, . . . sk}, S′ = {s′1, s′2, . . . , s′l}. Since S is a generat-
ing set of G, we can express each element (and its inverse) in S’ as words in
s1, . . . sk, s−1

1 , . . . , s−1
k . Let α denote the length of the longest such word. It follows

that
lS′(g) ≤ n ⇒ lS(g) ≤ αn,

so we have γS′
G (n) . γS

G(αn). By the same argument we have γS
G(n) . γS′

G (αn),
proving our claim. ¤

Since Proposition 1.3 shows that considering different generating sets does not
significantly alter the growth, for the rest of the paper, we will occasionally omit
the superscript S from γS

G. We will also omit the subscript G if the choice of G is
unambiguous.

Definition 1.4. A growth function γ : N→ R+ is said to be polynomial if γ(n) .
nα for some α > 0. Similarly, a growth function γ is exponential if γ(n) & en.

If a growth function γ is neither polynomial or exponential, then we say that γ
has intermediate growth.

Definition 1.5. A growth function γ : N → R+ is said to be superpolynomial if
limn→∞

ln γ(n)
ln n = ∞. A growth function γ is subexponential if limn→∞

ln γ(n)
n = 0.

Exercise 1.6. If a function is superpolynomial then it is not polynomial. Likewise,
if a function is subexponential then it is not exponential.

Not all functions from N to R+ can be neatly categorized under the three main
categories. For example, while ne is polynomial, 2n is exponential and e

√
n is

of intermediate growth, we have en sin(πn) which fluctuates between being 0 and
exponential and hence is neither.

However, we are able to neatly categorize finitely generated groups into three
types depending on whether they have polynomial, exponential or intermediate
growth. Proposition 1.3 shows us that all growth functions of a group G are equiv-
alent, and Theorem 1.8 shows us that all growth functions have exponential or
subexponential growth.

Lemma 1.7. (Fekete Lemma). Let αn be a subadditive sequence of non-negative
numbers. Then sequence

(
α(n)

n

)
converges and

lim
n→∞

α(n)
n

= inf
α(n)

n
.
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Proof. For any positive integer a we can express each n ∈ N as n = qa + r with
q ≥ 0 and 0 ≤ r < a. Note that

α(n)
n

=
α(qa + r)

qa + r
≤ qα(a) + α(r)

qa + r
≤ qα(a) + α(r)

qa
.

Since limn→∞
α(r)
qa = 0, it follows that lim supn→∞

α(n)
n ≤ α(a)

a . Also, we know

that inf α(a)
a ≤ α(n)

n for all a ≥ 1, n ∈ N. The lemma follows. ¤

Theorem 1.8. Given a group G and a generating set S, the limit

lim
n→∞

ln γ(n)
n

always exists.

Proof. Since γ is a submultiplicative function, for all m,n ≥ 1 we have

ln γ(m + n) ≤ ln(γ(m)γ(n)) = ln γ(m) + ln γ(n).

So ln γ is a subadditive function. We can then directly apply Lemma 1.7 to obain
the result. ¤

We will state a few more properties about growth rates.

Exercise 1.9. If G is an infinite group with polynomial growth, then the direct
product Gm also has polynomial growth, but γG � γGm for any m > 1. If G has
exponential growth, then the direct product Gm also has exponential growth, and
γG ∼ γGm for any m ≥ 1.

Proposition 1.10. Subgroups of finitely generated groups need not be finitely gen-
erated.

In order to prove the above proposition, we will exhibit a class of groups with
subgroups that are not finitely-generated.

Definition 1.11. The Baumslag-Solitar groups are groups of the form

B(m,n) = 〈s, t|stms−1 = tn〉
for any integers m, n.

Note that the group B(1, 1) is precisely the free abelian group on 2 generators.

Proposition 1.12. Let B be the Baumslag-Solitar groups B = B(m, n) where
1 ≤ m < n and m, n are coprime. Then, B has a subgroup that is infinitely-
generated.

Proof. We denote by Gn/m the subgroup of GL(2,R) generated by
(

n
m 0
0 1

)
and

(
1 1
0 1

)
.

One can show that this is a quotient of B.
We will now construct an infinitely-generated subgroup. Let A be the set of

matrices of the form {(
1 a
0 1

)∣∣∣∣ a ∈ Z
[

1
m

]}
.
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A a subgroup of GL(2,R) as
(

1 a
0 1

) (
1 −b
0 1

)
=

(
1 a− b
0 1

)
, where a−b ∈

Z
[

1
m

]
.

We want to show that this is also a subgroup of Gn/m. Since m and n are
coprime, by the Euclidean algorithm, for every k > 1 we can find xk, yk ∈ Z
such that xkmk + yknk = 1. This allows us to generate any matrix of the form(

1 m−k

0 1

)
in Gn/m:

(
1 1
0 1

)xk
(

n
m 0
0 1

)n (
1 1
0 1

)yk
(

n
m 0
0 1

)−n

=
(

1 m−k

0 1

)

Hence, any element in A can be generated in Gn/m, thus A ⊂ Gn/m.
Finally, note that A ∼= Z. It suffices to show that Z

[
1
m

]
is not finitely generated

as an additive group. Suppose Z
[

1
m

]
is finitely generated by a1, . . . , al. Select the

greatest denominator mk that appears in the generating set {ai}. Then it is clear
that 1

mk+1 cannot be written as a sum in {ai}, which is a contradiction. ¤

Theorem 1.13. Let H be a subgroup of G of finite index. Then, H is finitely
generated and γH ∼ γG.

The last theorem can be solved directly by applying the Fundamental Obser-
vation of Geometric Group Theory. One can find an excellent treatment in [2]
(Theorem IV.23).

Exercise 1.14. Let H be a quotient of a group G. Then γH . γG.

2. Exponential Growth

Notation 2.1. We denote by M2 the free semi-group on two generators a, b. This
is the semi-group generated by a, b such that every word in a, b corresponds to
a unique element in M2 and the product (·) is defined by w1 · w2 = w1w2, the
concatenation of the two elements.

Note that we can analogously define word length and growth for semi-groups:

Definition 2.2. Let M be a semi-group and let S be a generating set of M . We
define the word length lS(m) of an element m ∈ M to be the length of the shortest
decomposition g = si1 · · · sin . The growth function, denoted by γS

M , is a map from
N to N with respect to the generating set S that sends each positive integer n to
the number of elements m ∈ M such that lS(m) ≤ n.

Theorem 2.3. Any finitely-generated group which contains a free semi-group on
two generators has exponential growth.

Proof. Let M2 be the free semi-group on two generators which we denote m1,m2 .
The growth function γM2 based on the two generators satisfies

γ(n) = 20 + 21 + 22 + . . . + 2n = 2n+1 − 1

since the number of elements of length n is precisely the number of ways to form a
n-letter word from a, b. Hence, γ(n) ∼ 2n.

Let G be a group that contains M2. By Exercise 1.3, we only need to consider
any one particular generating set. Pick a generating set S of G containing m1,m2.
It follows that γS

G(n) & 2n, thus G has exponential growth. ¤
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We now prove an analogue of the celebrated “Ping-Pong Lemma” (see Chapter
II.B from [2]) for free semi-groups.

Theorem 2.4. Let G be a group acting on a set X. Suppose we have g1, g2 ∈ G
and subsets X1, X2 ⊂ X such that

X1 ∩X2 = ∅, g1(X1 ∪X2) ⊂ X1, g2(X1 ∪X2) ⊂ X2.

Then, g1, g2 generate a free semi-group and G has exponential growth.

Proof. We will prove this by exhibiting an injective map from the free semi-group
M2 generated by m1, m2 to G. Let ϕ : M2 → G be the map that sends m1,m2 to
g1, g2 respectively. Consider two elements w, w′ ∈ M2 such that ϕ(w) = ϕ(w′). We
need to show that w = w′, which we will prove by induction on the length of w.

Suppose w is the empty word. For the sake of a contradiction, without loss of
generality we assume w′ begins with m1. Then, it also follows that ϕ(w′)X2 ⊂ X1.
But we have ϕ(w′)X2 = ϕ(w)X2 = X2 so X1 ∩X2 6= ∅, which is a contradiction.

We now consider the inductive step. Suppose our statement holds for all w where
|w| < n. For w of length n, note that we can rewrite w, w′ as

w = av, w′ = a′v′

where a, a′ ∈ {m1, m2}.
By the same reasoning as before, it follows that a = a′. So, we have

ϕ(w) = ϕ(a)ϕ(v) and ϕ(w′) = ϕ(a)ϕ(v′).

The equation implies ϕ(v) = ϕ(v′), and by our inductive hypothesis we have v = v′.
It follows from Theorem 2.4 that G has exponential growth. ¤

Example 2.5. The subgroup G of GL(2,R) generated by

s =
(

2 0
0 1

)
and t =

(
1 1
0 1

)

has exponential growth.

Proof. Note that
(

a b
0 1

)
s =

(
2a b
0 1

) (
a b
0 1

)
s−1 =

(
1
2a b
0 1

)

(
a b
0 1

)
t =

(
a a + b
0 1

) (
a b
0 1

)
t−1 =

(
a a− b
0 1

)
.

Hence,

G =
{(

a b
0 1

)∣∣∣∣ a = 2k where k ∈ Z, b ∈ Z
[
1
2

]}
.

We define a group action of G on R by
(

a b
0 1

)
x = ax + b.

Note that each element of this group has a unique fixed point given by b
1−a if and

only if a 6= 1. We now pick elements s1, s2 with different fixed points such that

si =
(

ai bi

0 1

)
, where ai < 1.
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Pick two disjoint open intervals I1, I2 containing the fixed points of s1 and s2

respectively, and pick an interval I that contains both intervals. Let f : R→ R be
the function f(x) = s1x. For any point x ∈ R we have

lim
n→∞

fn(x) =
b1

1− a1
.

This means that for some k ∈ N, we have sk
1(I). By the same argument, we can

find some k′ ∈ N where sk′
2 (I2) ⊂ I2.

We can now apply Theorem 2.4 to obtain our result. ¤

Recall from Definition 1.11 the Baumslag-Solitar groups B(m,n). We will now
prove that a certain class of them have exponential growth.

Proposition 2.6. The Baumslag-Solitar Groups B(m,n) = 〈s, t|stms−1 = tn〉
where 1 ≤ m < n have exponential growth.

Proof. We first consider the case by considering the case where m, n are coprime.
As in the proof of Proposition 1.12, we denote by Gn/m the subgroup of GL(2,R)
generated by

(
n
m 0
0 1

)
and

(
1 1
0 1

)
.

Using the method outlined in Example 2.5, one can show that

Gn/m =
{(

a b
0 1

)∣∣∣∣ a =
( n

m

)k

where k ∈ Z, b ∈ Z
[

1
m

]}

and also that Gn/m contains a free semi-group on two generators.
It remains to show that Gn/m is a quotient of B(m,n). Note that

(
n
m 0
0 1

)(
1 1
0 1

)m (
n
m 0
0 1

)−1

=
(

n
m 0
0 1

)(
1 m
0 1

)(
m
n 0
0 1

)

=
(

n
m 0
0 1

)(
m
n m
0 1

)

=
(

1 1
0 1

)n

.

Let ϕ : B(m,n) → Gn/m be the map such that

ϕ(s) =
(

n
m 0
0 1

)
ϕ(t) =

(
1 1
0 1

)
.

One can check that ϕ is well-defined. By Exercise 1.14, we know the growth rate
of B(m,n) is exponential.

We finally need to consider the case where m = rm′ < n = rn′ for some r > 1
and p′, q′ are coprime. From the first case, we know that B(m′, n′) has exponential
growth. One can show that B(m′, n′) is a quotient of B(m,n), and by Exercise
1.14 this proves our claim. ¤
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3. Polynomial Growth

Proposition 3.1. The additive groups Zk are of polynomial growth.

Proof. For any Zk, consider the standard generating set S = {e1, e2, . . . , ek}, the
standard orthogonal basis for Rk. The set of words of length less than n are precisely
the words of the form ei1

1 ei2
2 . . . eik

k where
∑

j ij ≤ n. It is clear that γ(n) ≤ nk. So,
γ is polynomial. ¤

We see that for any finite abelian group G that is generated by k many elements,
the growth rate of G is slower than that of Zk. Hence, this proves the following
corollary:

Corollary 3.2. Every finitely-generated abelian group is of polynomial growth.

Definition 3.3. The Heisenberg group is the group

〈x, y, z | [x, z] = 1, [y, z] = 1, [x, y] = u〉,

which is equivalent to the group of matrices







1 b c
0 1 a
0 0 1




∣∣∣∣∣∣
a, b, c ∈ Z





generated by the elements

x =




1 0 0
0 1 1
0 0 1


 y =




1 1 0
0 1 0
0 0 1


 z =




1 0 1
0 1 0
0 0 1


 .

The equivalence of these two definitions is left as an exercise to the reader.

Note that each element g in this group can be uniquely expressed in the form
g = xaybzc, where

g =




1 b c
0 1 a
0 0 1


 .

Exercise 3.4. Check that

(xaybzc)x = xa+1ybzc+b (xaybzc)x−1 = xa−1ybzc−b

(xaybzc)y = xayb+1zc (xaybzc)y−1 = xayb−1zc

(xaybzc)z = xaybzc+1 (xaybzc)z−1 = xaybzc−1.

Lemma 3.5. Let |g| be the word length for an element g in the Heisenberg group.
Then we have the following inequalities:

(1) |xaybzc| ≤ |a|+ |b|+ 6
√
|c|.

(2) |xaybzc| ≤ n ⇒
{

|a|+ |b| ≤ n

|c| ≤ n2
.
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Proof. To prove the first claim, note that

xay−bx−ayb = ((xay−b)x−a)yb

= ((xa−1y−b)x−a+1zb)yb

...

= y−bzabyb

= zab.

For any natural number c, consider the integer portion i of
√

c and the difference
j = c − i2, where j ≤ 2

√
c. Since xiy−ix−iyizj = zc, it follows that |zc| ≤ 2

√
m .

The proof is similar for c < 0.
For the second claim, the first inequality follows immediately. The second in-

equality can be shown by induction, since n2 + n ≤ (n + 1)2. ¤

Proposition 3.6. The Heisenberg Group has polynomial growth. More precisely,
we have

γ(n) ∼ n4.

Proof. To show γ(n) & n4, consider |a| ≤ n
8 , |b| ≤ n

8 and |c| ≤ (
n
8

)2. By the
first claim of Lemma 3.5, we have |xaybzc| ≤ n. So, γ(n) ≥ (n

8 )(n
8 )(n

8 )2. To show
γ(n) . n4, the second claim of Lemma 3.5 tells us that γ(n) ≤ (n+1)2(2n2+1). ¤

Proposition 3.7. For any n ∈ N, the group of upper triangular n× n matrices of
the form 







1 a12 a13 . . . a1n

0 1 a23 . . . a2n

...
. . . . . .

...
1 a(n−1)n

0 0 . . . 0 1




∣∣∣∣∣∣∣∣∣∣∣

aij ∈ Z





has polynomial growth.

Proof. (Outline). The method of this proof is similar to the proof of Proposition
3.6.

We denote our group of matrices by G. Let S be the set of generators

S = {Xij |Xij = In + eij}
where In is the n× n identity matrix and eij is the matrix with zeroes everywhere
except for a 1 in the ij-th coordinate.

With the set of generators S, as in the Heisenberg group, we have a simple way
of representing each element of the group uniquely. It is left as an exercise for the
reader to check that

X
a(n−1)n

(n−1)n X
a(n−2)(n−1)

(n−2)(n−1)X
a(n−2)n

(n−2)n . . . Xa1n
1n =




1 a12 a13 . . . a1n

0 1 a23 . . . a2n

...
. . . . . .

...
1 a(n−1)n

0 0 . . . 0 1




.
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One can extend the proof of the Proposition 3.6 to show that

|Xa(n−1)n

(n−1)n . . . Xa1n
1n | ≤ n ⇒ aij ≤ n2(j−i)−1

.

Since the bound on each aij is polynomial, the product of these is also polynomial.
Hence, we can find a sufficiently large c such that γ(n) ≤ nc. ¤

Using the above examples, one can prove that every finitely-generated virtually
nilpotent group is of polynomial growth by showing that one can embed a nilpotent
group into one of these matrix groups. A discussion of the details of these proofs
would require some knowledge of Lie Algebra and Topology and hence is beyond
the scope of this paper.

The First Grigorchuk Group: A Group of Intermediate Growth

The First Grigorchuk Group, which we will denote by G, is the first example of
a group that has intermediate growth. This group is generated by elements of the
automorphism group of the rooted binary tree. We will begin by describing the
rooted binary trees, then constructing the First Grigorchuk group.

4. Rooted Binary Trees

A rooted binary tree is an (undirected) tree T with an initial vertex (the root)
where every vertex has a left and right child. More formally, the rooted binary tree
is a a tree T = (V, E) such that the set V of vertices is in bijection with the set of
finite 0-1 strings v = x1x2 . . . xk where xi ∈ {0, 1}, k ∈ N. For this paper, we will
denote each vertex by its corresponding word.

We call the empty string the root. There is an edge between two vertices v, v′ if
v′ = w0, v′ = v1 or vice versa.

Figure 1. The zeroth to third levels of the Rooted Binary Tree

Notation 4.1. Tv is the subtree of T where we take v as the root. i.e. the set of
all words with initial vertex v and their associated edges.

Notation 4.2. The level of a vertex is its length. The n-th level of the tree is the
set of vertices with word length n.
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Definition 4.3. The tree T (k) is the finite subtree of T spanned by the vertices of
level at most k. Alternatively, it is the set of all 0-1 strings of k or less length and
their associated edges.

Consider the automorphism group of the tree Aut(T ). This is the group of
bijections ϕ from V to V such that (v, v′) ∈ E ⇔ (ϕ(v), ϕ(v′)) ∈ E. This means
that every automorphism preserves the child-parent relations between vertices and
hence, preserves the level of all vertices.

Notation 4.4. A swap is an automorphism ϕ of T where there exists a 0-1 word
w such that

ϕ(v) =

{
wx1x2 . . . if v = wx1x2 . . . xi ∈ {0, 1}
v otherwise

where xi = 1− xi

This paper will frequently mention swaps in the context of exchanging the two
child subtrees of a vertex. One can check that every element ϕ of Aut(T ) is com-
posed of swaps.

Theorem 4.5. Aut(T ) is uncountable.

Proof. We want to form an injection from the uncountable set of all countably infi-
nite 0-1 strings to Aut(T ). Order all the vertices in ascending length and label them
{v1, v2, . . .}. We map an infinite string x1x2 . . . , xi ∈ {0, 1} to the automorphism
ϕ that swaps the two subtrees associated with the children of the i-th vertex if and
only if xi = 1, and the swap is only performed only after all the swaps corresponding
to xj , j < i have occurred. Each string corresponds to a unique element in Aut(T ),
and since the number of these strings is uncountable, the claim follows. ¤

We now introduce the concept of wreath products of groups to allow us to obtain
an upper bound on the index of certain subgroups.

Definition 4.6. Let A, B be two groups and let X be a set that A acts on. Let
BX denote the group of functions from X to B with pointwise product. Then, A
acts on BX by

a · (f)(x) = f(a−1x) for all a ∈ A, f ∈ BX and x ∈ X

The wreath product of B by A according to action of A on X is the semi-direct
product

B oX A = BX oA

This means that we have

(f, a)(f ′, a′) = ((f)(a · f ′), aa′) for all f, f ′ ∈ BX and a, a′ ∈ A

where
((f)(a · f ′))(x) = f(x)f ′(a−1x)

For the purposes of this paper, we only need to consider the wreath product of
a group G by Sym(2) with Sym(2) acting on the set {0, 1}. Since G{0,1} ∼= G×G,
we can more clearly state this particular wreath product as follows.

Notation 4.7. Let G be a group. The wreath product GoSym(2) is the semi-direct
product (G×G)o Sym(2), with Sym(2) acting by swapping the two G.
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Definition 4.8. The subgroup StT (k) of Aut(T ) is the subgroup of all automor-
phisms that fix any vertex of length ≤ k.

We can see this as the group of all automorphisms that are composed only of
swaps on children of vertices of level k or higher. One can check that these subgroups
are normal in T .

Proposition 4.9. We have
(1) T/StT (1) ∼= Z2

(2) T/StT (k) ∼= (T/StT (k − 1)) o Z2

(3) |T/StT (k)| = 22m−1

Proof. The group T/StT (k) is isomorphic to the subgroup of all automorphisms
that are only composed of swaps on children of vertices with level < k:

T/StT (k) ∼= Aut(T (k))

For k = 1 the isomorphism is clear. For k > 1, one can verify that

Aut(T (k)) ∼= (Aut(T (k − 1))×Aut(T (k − 1)))o Sym(2).

since each automorphism in Aut(T (k)) is determined by how it permutes the ele-
ments within the subtrees T0, T1 and if it swaps the two subtrees.

As a direct consequence, we have |T/StT (k)| = 22m−1. ¤
Here we leave one last exercise for the reader.

Exercise 4.10. Aut(T ) ∼= Aut(T ) o Z2

Hint. Definition 7.1 provides an explicit way of constructing the isomorphism.

5. Construction of the First Grigorchuk Group and Basic Properties

Every automorphism in StT (1) can be represented by how it acts on the subtrees
T0, T1. We can denote ϕ ∈ StT (1) as (ϕ0, ϕ1) such that

ϕ(v) =

{
0ϕ0(w) if v = 0w

1ϕ1(w) if v = 1w

where w ∈ T .
We can formally define the above notions as follows:

Notation 5.1. Let ψ : StT (1) → Aut(T )× Aut(T ) be the map such that ψ(ϕ) =
(ϕ0, ϕ1) as in the definition above.

Figure 2. Each ϕ ∈ StT (1) can be represented as a pair of auto-
morphisms (ϕ0, ϕ1)
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Construction 5.2. The First Grigorchuk Group is the group G = 〈a, b, c, d〉, where
a, b, c, d are elements of Aut(T ) and

(1) The automorphism a swaps the subtrees T0 and T1. This means for a vertex
v = x1x2 . . . xk, we have a(v) = x1x2 . . . xk.

(2) The automorphisms b, c, d are recursively defined by

b → (a, c) c → (a, d) d → (I, b).

Figure 3 provides a graphical representation of these elements. The trian-
gles represent subtrees where we apply a.

Figure 3. The elements b, c, d ∈ G

Exercise 5.3. b, c, d have order 2.

Exercise 5.4. bc = cb = d, cd = dc = b and bd = db = c. Hence G is 3-generated.

Exercise 5.5. The subgroup generated by b, c, d ∈ StT (1) is isomorphic to Z2
2.

Exercise 5.6. (ad)4 = (ac)8 = (ab)16 = I.

Before we can begin to talk about the growth rate of G, we first need to verify
that G is an infinite group.

Notation 5.7. Let StG(k) denote the subgroup of G that contains all automor-
phisms that fix any vertex of length ≤ k: StG(k) = G ∩ StT (k).

Exercise 5.8. Check that every element g ∈ StG(k) can be expressed as a 2k-tuple
(g0...00, g0...01, . . . , g1...10, g1...11) where the subscripts correspond to the vertices of
length k, such that:

(1) the automorphism gv corresponds to how h acts on subtree Tv. i.e. for
w ∈ T,w = vw′ for some v ∈ T (k), we have

g(w) = vgv(w′).

(2) gv ∈ G.

Hint. Use ψ to recursively define how h acts on subtrees of higher levels.

Proposition 5.9. [G : StG(k)] ≤ [T : StT (k)] = 22k−1

Proof. One can check that StG(k) is normal in G. The group G/StG(k) is isomor-
phic to a subgroup of T/StT (k), and our claim follows. ¤
Notation 5.10. Let H = StG(1). This is called the fundamental subgroup of G.

Lemma 5.11. For the fundamental subgroup H, we have
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(1) [G : H] = 2,H /G
(2) H = 〈b, c, d, aba, aca, ada〉

Proof. The first claim is a direct consequence of Proposition 5.9 and the fact that
H is a proper subgroup of G.

Consider the set of words in {a, b, c, d}. It follows from the Exercise 5.4 that
every word composed of b, c, d only can be reduced to a single letter. So every word
w in G can be reduced to the form w = x ∗ a ∗ a ∗ . . . ∗ a ∗ y where each ∗ can
(independently) be any of {b, c, d} and x, y ∈ {I, a}. A word w is in H if and only
if the total number of a is even - this is true since the automorphisms swaps 0 and
1 if and only the number of a’s is odd.

Note that a word has an even number of a’s if and only if it can be expressed in
a combination of ∗ and a ∗ a, i.e. w = (a ∗ a) ∗ (a ∗ a) . . . (a ∗ a)∗. This proves the
second claim. ¤
Lemma 5.12. The image ψ(H) is a subgroup of G×G such that the projection of
ψ(H) onto G× 1 and 1×G are surjective.

Proof. Firstly, Lemma 5.11 implies that ψ(H) is indeed a subgroup of G×G. Then,
we have

b → (a, c) aba → (c, a)

c → (a, d) aca → (d, a)

d → (1, b) ada → (b, 1)

Since the projection of ψ(H) onto G× 1 contains all the generators (a, 1) to (d, 1),
it is surjective. The same argument holds for 1×G. ¤
Proposition 5.13. G is infinite.

Proof. This is a consequence of the previous lemmas. Since we have a surjective
map from a proper subgroup of G to G, the group must be infinite. ¤

6. Superpolynomial Growth

The purpose of this section is to prove that G has superpolynomial growth. In
order to do so, we want to show that all multilateral groups have superpolynomial
growth, then prove that G itself is multilateral.

Definition 6.1. Let G,H, be groups. We say that G and H are commeasurable,
denoted by G ≈ H. if they contain isomorphic subgroups of finite index:

G′ ⊂ G, H ′ ⊂ H such that G′ ∼= H ′ and [G : G′], [H : H ′] < ∞
One can check that commeasurability is an equivalence relation.

Example 6.2. Trivial examples of commeasurability include the set of all finite
groups are commeasurable (since the trivial group is always a subgroup of finite
order) and any group with a subgroup of finite index.

Exercise 6.3. Prove that Z and Z2 are not commeasurable.

Definition 6.4. A group G is multilateral if |G| = ∞ and G ≈ Gk for some k ≥ 2.

Lemma 6.5. (Lower Bound Lemma). Let f : N → R+ be a strictly increasing
function such that limn→∞ f(n) = ∞. If f & fm for some m > 1, then f(n) &
exp(nν) for some ν > 0.
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Since this lemma is analytic in nature, we will leave the proof of this to the end
of the paper.

Theorem 6.6. Let G be a group. If G is multilateral, then G has superpolynomial
growth.

Proof. Since G is multilateral, we have G′ ⊂ G, G̃ ⊂ Gk such that G′ ∼= G̃ and [G :
G′], [Gk : G̃] < ∞. By Theorem 1.11, we know that γG ∼ γG′ ∼ γ

G̃
∼ γGk . This

means that γG & γGk = (γG)k. We can then apply the Lower Bound Lemma. ¤

Now, all we have left to show is that G is multilateral. In order to do so, we
again make use of the fundamental subgroup H. We already know that H is of
finite index in G. We will be done once we show that the image ψ(H) is a finite
index subgroup of H×H.

Notation 6.7. We denote by B the normal closure of b in G:

B = 〈g−1bg|g ∈ G〉
Lemma 6.8. The index of the normal subgroup B divides 8.

Proof. Consider the quotient G/B. By Exercise 5.4, we know that G = 〈a, b, d〉.
Under the quotient map, we know that b → 1, and since in G we have bc = cb = d,
it follows that the image of c and d are the same. This means G/B is generated by
the images of a and d, so the order of G/B divides |〈a, d〉|, which was shown to be
8 in Exercise 5.6. ¤

Lemma 6.9. B× B ⊂ ψ(H) ⊂ H×H.

Proof. From Lemma 5.12, we know that ψ(H) contains the two generators (1, b)
and (b, 1). Pick h in H and let ψ(h) = (h0, h1). Then:

ψ(h−1dh) = ψ(h−1)ψ(d)ψ(h)

= (h−1
0 , h−1

1 ))(I, b)(h0, h1)

= (I, h−1
1 bh1)

Since the generators of H allow us to pick any h1 ∈ G, the image ψ(H) contains
all the generators of 1×B. By the same logic, it also contains all the generators of
B× 1. This proves our claim. ¤

Proposition 6.10. G ≈ G×G.

Proof. This is the result of a simple calculation. By Lemma 6.8 we have

[G×G : ψ(H)] ≤ [G×G : B× B] = [G : B]2 = 64

So we have [G × G : ψ(H)] < ∞, [G : H] < ∞ (Proposition 4.9) and H ∼= ψ(H),
which implies the claim. ¤

Since G is infinite, the key result of this section follows immediately.

Corollary 6.11. G has superpolynomial growth.
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7. Rewriting Rules

The key concept behind proving that G has subexponential growth is under-
standing how one can express elements of G in terms of words in a, b, c, d and
manipulate them. To do so we need to introduce the concept of rewriting rules.
We begin by extending the domain of our function ψ from StT (1) to Aut(T ).

Definition 7.1. Let ψ : Aut(T ) → Aut(T ) o Sym(2) where

ψ(ϕ) =

{
(ψ(ϕ); I) if ϕ ∈ StT (1)
(ψ(ϕa); σ) otherwise

Figure 4. Each automorphism of T can be viewed as an element
of Aut(T ) o Sym(2).

Note that the definition of ψ allows us to restrict it to G i.e. ψ : G→ G oSym(2).
At this point it would be a good exercise for the reader to check that this is

indeed an isomorphism by constructing the inverse map.
We now introduce a simple method of obtaining ψ for any g ∈ G. Recall from

the proof of lemma 5.10 that we can express every element in G as a word w =
x ∗ a ∗ a ∗ . . . ∗ a ∗ y, where each ∗ can be any of {b, c, d} and x, y ∈ {I, a}.
Construction 7.2. We introduce functions which we will term rewriting rules.

(1) Φ0(w) is the word formed by the following replacements:
(a) each a is replaced with I
(b) for each b, c, d preceded by an even number of a’s

b → a, c → a, d → I

(c) for each b, c, d preceded by an odd number of a’s

b → c, c → d, d → b

(2) Φ1(w) is the word formed by the following replacements:
(a) each a is replaced with I
(b) for each b, c, d preceded by an even number of a’s

b → c, c → d, d → b

(c) for each b, c, d preceded by an odd number of a’s

b → a, c → a, d → I

Example 7.3. We will demonstrate a few examples of the rewriting rules.
(1) w = aba:

Φ0(w) = c Φ1(w) = a
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(2) w = abacad:

Φ0(w) = cab Φ1(w) = ad

Exercise 7.4. Consider g ∈ G and let w be a word in a, b, c, d representing g. Then

ψ(g) =

{
((Φ0(w), Φ1(w)); I) g ∈ H
((Φ0(w), Φ1(w)); σ) otherwise

Hint. Show that we only need to consider g in H and prove by induction on the
length of g.

Notation 7.5. Consider the word w and a vertex v ∈ T . We recursively define wv

to be the reduced word obtained from
(1) Φ0(wv′), if v = v′0.
(2) Φ1(wv′), if v = v′1.

Exercise 7.6. Let l(g) be the length of g ∈ H. Let ψ(g) = (g1, g2), where g0, g1 ∈
G. Then, we have l(gv) ≤ 1

2 (l(g) + 1). Similarly, for any word w representing an
element in H, we have |w0|+ |w1| ≤ 1

2 (|w|+ 1).

As an interesting aside, in 1902 William Burnside asked if a finitely generated
group where every element had finite order had to be finite. This problem remained
unresolved until 1964, when Golod and Shafarevich constructed a counterexample.
One can also show that the First Grigorchuk group is also a counterexample by
using the rewriting rules:

Exercise 7.7. Prove by induction on the length of elements that G is a 2-group:
for any g ∈ G, |g| = 2k for some k ∈ N.

Historical and mathematical curiosity out of the way, we now return to our main
endeavor.

8. Subexponential Growth

We will proceed to introduce another analytic lemma that would help us obtain
our upper bound. This proof is again left for the end of the paper.

Definition 8.1. Let f : N → R+ be a strictly increasing function. We define f?k

by:
f?k(n) =

∑

n1+...+nk≤n

f(n1) . . . f(nk)

where ni ∈ N.

Lemma 8.2. (Upper Bound Lemma). Let f : N → R+ be a strictly increasing
function such that limn→∞ f(n) = ∞. If f(n) ≤ Cf?k(αn) for some for some
k ≥ 2 and 0 < α < 1, then f(n) . exp(nβ) for some β < 1.

Consider an element g ∈ StG(3). Recall from Exercise 5.8, that the automor-
phism g can be expressed as (g000, g001, . . . , g111), where gv represents how g acts
on the subtree Tv and gv ∈ G.

Lemma 8.3. (Rewriting Lemma). Let g ∈ StG(3). Given the notion from Exercise
5.8, we have:

l(g000) + l(g001) + . . . + l(g111) <
5
6
l(g) + 8
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Proof. We begin by generalizing Exercise 7.6. Observe that for any v of length ≤ 2,

l(gv0) + l(gv1) ≤ l(gv) + 1.

This recursively gives us:

l(g00) + . . . + l(g11) ≤ l(g0) + l(g1) + 2

l(g000) + . . . + l(g111) ≤ l(g00) + . . . + l(g11) + 4.

Pick a shortest reduced word w representing g. Let |w| represent the length of w
and let |w|a, |w|b, |w|c represent the number of a’s, b’s and c’s respectively in the
word w. By the rewriting rules, since there are least |w|−1

2 many a’s in w and every
d in w is rewritten as I in either Φ0(w) or Φ1(w), we have

|w0|+ |w1| ≤ |w|+ 1− |w|d.(8.4)

Consider every c in w. Each c gets rewritten as d in Φ0(w) or Φ1(w). Each of these
d’s are either removed when we reduce Φi(w) to wi for i ∈ {0, 1}, or are rewritten
as I in one of Φ0(wi) or Φ1(wi). This means that

|w00|+ |w01|+ . . . + |w11| ≤ |w|+ 3− |w|c.(8.5)

By the same argument on b, it also follows that

|w000|+ |w001|+ . . . + |w111| ≤ |w|+ 7− |w|b.(8.6)

Applying the result of the second part of Exercise 7.6 to Equations 8.4 and 8.5, we
have

|w000|+ |w001|+ . . . + |w111| ≤ |w|+ 7− |w|d.(8.7)

|w000|+ |w001|+ . . . + |w111| ≤ |w|+ 7− |w|c.(8.8)

By combining Equations 8.6, 8.7 and 8.8, we get
∑

i,j,k∈{0,1}
|wijk| ≤ |w|+ 7− max

∗∈{b,c,d}
|w|∗.

Since |w|b + |w|c + |w|d ≥ |w|−1
2 , we finally conclude that

∑

i,j,k∈{0,1}
l(gijk) ≤

∑

i,j,k∈{0,1}
|wijk| ≤ |w|+ 7− max

∗∈{b,c,d}
|w|∗

≤ |w|+ 7− |w| − 1
6

<
5
6
|w|+ 8.

¤

Proposition 8.9. The First Grigorchuk group G has subexponential growth.

Proof. Every element g ∈ G can be written as g = u · h where h ∈ StG(3) and u is
a coset representative of G/StG(3). By Proposition 5.9, we have |G/StG(3)| ≤ 128,
so we have at most 128 such u. Let α be the maximum word length of the u’s. The
decomposition h = u−1g gives us the inequality

l(h) ≤ l(g) + α.(8.10)
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The Rewriting Lemma then gives us
∑

i,j,k∈{0,1}
l(hijk) <

5
6
l(h) + 8 ≤ 5

6
(l(g) + α) + 8 =

5
6
l(g) + β(8.11)

where β = 5
6α + 8. With Equation 8.11 in mind, we will now count the number of

ways we can obtain g of length ≤ n. For any such g, notice that by Equation 8.10
we are restricted to considering h ∈ StG(3) where h has word length n + α. Since
h is completely determined by h001, . . . , h111, we have:

γ(n) ≤ 128 ·
∑

(n1,...,n8)

γ(n1) . . . γ(n8)

such that (by Equation 8.11):

n1 + . . . n8 =
∑

l(hijk) <
5
6
n + β.

We want to use the upper bound lemma on our inequalities. In the notation of
Definition 8.1, we can rewrite the above two inequalities as

γ(n) < 128 · γ?8(
5
6
n + β).

Pick a sufficiently large m = n + c such that 5
6n + β < 5

6m. This gives us our final
inequality:

γ(m) = γ(n + c) ≤ γ(n)γ(c) ≤ γ(n) · 4c

≤ 4c · 128 · γ?8(
5
6
n + β)

≤ 4c · 128 · γ?8(
5
6
m).

By the Upper Bound Lemma, we have γ(n) ≤ exp(ni) for some i < 1, proving our
claim. ¤

Finally, we prove the main result of the second half of the paper. Since the growth
rate of G is both superpolynomial (Corollary 6.11) and subexponential (Proposition
8.9), it follows directly that:

Corollary 8.12. The First Grigorchuk group G has intermediate growth.

9. Proof of Upper and Lower Bound Lemmas

We will now prove Lemmas 6.4 and 7.8 using analytic methods.

Proposition. (Lower Bound Lemma). Let f : N → R+ be a strictly increasing
function such that limn→∞ f(n) = ∞. If f & fm for some m > 1, then f(n) &
exp(nν) for some ν > 0.

Proof. Suppose f satisfies f & fm. Then for some C, α > 0, we have f(n) ≥
C · fm(αn). Without loss of generality, we suppose that f(e) ≥ e. We will need
this later in the proof.

We begin by extending f to the positive real line by letting f(x) = f(bxc). Let
g : R+ → R be defined as g(n) = ln(f(n)). The function g is a monotone increasing
function which satisfies

g(n) ≥ c + m · g(αn)(9.1)
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where c = ln C.
We can show that α < 1. Suppose for contradiction that α ≥ 1. Then, Equation

9.1 gives us:

−c ≥ m · g(αn)− g(n) > m · g(n)− g(n) = (m− 1)g(n) →∞
as n →∞. This is a contradiction. So α < 1, which means that for any k ∈ N we
have 0 < αk < 1.

We can now reiterate the inequality in Equation 9.1 to get:

g(n) ≥ c + m · g(αn)

≥ c + m(c + m · g(α2n)
...

≥ c(1 + m + . . . + mk−1) + mk · g(αkn),

where αkn < n.
We need to consider the cases where c ≥ 0 and c < 0. Suppose c ≥ 0. We take

k to be bln n− 1/ ln( 1
a )c. By change of bases for logarithms, we have

g(αkn) = ln f(αkn) ≥ ln f(e) ≥ ln e = 1.

This means that

g(n) ≥ mk ≥ m((ln n−1)/ ln(1/α))−1

= m−1 · (mln nm−1)1/ ln(1/α))

= m(1/ ln α)−1 · (mln n)1/ ln(1/α))

= m(1/ ln α)−1 · (nln m)1/ ln(1/α)).

For the case where c < 0, note that g(n) ≥ mk(g(αkn) + c). We take k to be
b(ln n) + c− 1/ ln( 1

a )c. Repeating the same process as above, we obtain

g(αkn) + c = ln(αkn) + c ≥ ln(e)− c + c = 1

and

g(n) ≥ mk ≥ mc/ ln α · (nln m)1/ ln(1/α)).

In both cases, we have f(n) = exp(g(n)) ≥ exp(A · nν) for some A, ν > 0, which
proves the claim. ¤

Proposition. (Upper Bound Lemma). Let f : N → R+ be a strictly increasing
function such that limn→∞ f(n) = ∞. If f(n) ≤ Cf?k(αn) for some k ≥ 2 and
0 < α < 1, then f(n) . exp(nβ) for some β < 1.

Proof. Suppose f(n) ≤ Cf?k(αn) for some k ≥ 2 and 0 < α < 1. We will prove
using induction on n that f(n) ≤ A · nν for some A > 0 and 0 < ν < 1.

We begin by choosing ν. Notice that as ν → 1 we have k(α
k )ν → α. This means

that we can pick ν such that k(α
k )ν < 1.

For n = 0, we can find A > 0 such that

f(0) ≤ A · exp(0) = A.(9.2)
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Suppose the induction statement holds for all n′ < n. By our initial assumption,
we have

f(n) ≤ Cf?k(αn) ≤ C
∑

(n1,...,nk)

f(n1) . . . f(nk)

where n1 + . . . + nk ≤ αn. Note that the number of terms in this summation is at
most (αn)k and each ni < n. Let g(n) = ln f(n). For each term in our summation
we have (by inductive hypothesis) that:

ln(f(n1) . . . f(nk)) ≤ g(n1) + . . . + g(nk)

≤ A(nν
1 + . . . nν

k)

≤ A · k
(αn

k

)ν

≤ A · nν ·
(
k

(α

k

)ν)

By our choice of ν, we can write k(α
k )ν = 1− ε for some ε > 0. It follows that

g(n) = ln f(n) ≤ c + ln(αn)k + A · nν · (1− ε)

≤ (c + k ln α + k ln n) + A · nν · (1− ε).

For any A, given a sufficiently large n, we have k ln n < Aε · nν . This means that
we can pick A such that

(c + k ln α + k ln n) + A · nν · (1− ε) ≤ A · nν(9.3)

Finally, we can choose a large A to satisfy both Equations 9.2 and 9.3. This proves
the inductive step. ¤
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