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Introduction

The purpose of this paper is to demonstrate that the index of a vector field on
a smooth manifold is an intrinsic invariant of the manifold. The paper is divided
into three sections. The first section introduces the Inverse Function Theorem and
provides the proof for the Implicit Function Theorem, laying the foundation for our
discussion. In the second section we will introduce the concept of a vector field,
degree, and the index of a vector field. We will also prove that the index of a
vector field is invariant under diffeomorphism. In the last section we will prove and
highlight the fact that the index of a vector field on a manifold is independent of
the choice of vector field or the embedding of the manifold, demonstrating that the
vector field index is an invariant of a smooth manifold.

The primary source for this paper was John W. Milnor’s book, Topology from
the Differentiable Viewpoint.

1. The Inverse Function Theorem and The Implicit Function Theorem

Definition 1.1. Given the open sets U ⊂ Rk and V ⊂ Rl, we say that a mapping
f : U → V is smooth if all the partial derivatives ∂nf/∂xi1 . . . ∂xin exist and are
continuous.

Definition 1.2. A subset M ⊂ Rn is called a smooth manifold of dimension m if
each x ∈M has a neighborhood W ∩M that is diffeomorphic to an open subset U
of the euclidean space Rm.

Any particular diffeomorphism h : U → W ∩M is called a parametrization of
the region W ∩M .

We can think of h as a mapping from U to Rn, so that we can define the derivative
dhu : Rm → Rn. The tangent space of the manifold M at the point x, denoted
TMx, is the image dhu(Rm) of dhu. This construction is independent of the choice
of parametrization.

Given another manifold, N ⊂ Rl, a map f : M → N is called smooth if for
each x ∈ M there exists an open set U ⊂ Rn containing x and a smooth mapping
F : V → Rl which coincides with f throughout V ∩M .

The map dFx maps TMx into TNf(x). We call the restriction dFx|TMx : TMx →
TNf(x) the derivative of f at the point x and denote it by dfx. This definition does
not depend on the choice of F . Furthermore, dFx(v) belongs to TNy. Therefore,
dfx(v) = dFx(v) for all v ∈ TMx.

Theorem 1.3 (Inverse Function Theorem). Let f : Rk → Rk be a smooth map. If
the derivative dfx : Rk → Rk is nonsingular then f maps any sufficently small open
set U about x diffeomorphically onto an open set f(U).
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Definition 1.4. For two arbitrary manifolds M and N , a regular point of the
smooth map f : M → N is a point x ∈ M such that dfx has the largest possible
rank. a regular value will be a point y ∈ N such that f−1(y) contains only regular
points.

Theorem 1.5 (Implicit Function Theorem). If the map f : M → N is smooth
and maps between manifolds of dimension m and n respectively with m ≥ n, and
if y ∈ N is a regular value, then the set f−1(y) ⊂ M is a smooth manifold of
dimension m− n.

Proof. first let x ∈ f−1(y). Because y is a regular value, we know that the derivative
dfx will map the the tangent space, TMx, of M at the point x onto the tangent
space, TNy, of N at the point f(x) or y. This means that the rank of dfx will be
n and thus its null space will be an m− n dimensional vector space.

Now if the manifold M is a subset of Rk, then choose a a linear map L : Rk →
Rm−n which is nonsingular on the null space of the derivative dfx. This subspace
is a subset of the tanget space TMx which in turn is a subspace of Rk. Now define
a new map

(1.6) F : M → N × Rm−n

by F (z) = (f(z), L(z)), for some z in M . The derivative of F is then given by the
formula

(1.7) dFx(v) = (dfx(v), L(v))

Clearly dFx will be nonsingular. Thus by the inverse function theorem, F maps
some neighborhood U around x diffeomorphically onto a neighborhood V of (y, L(x)).
Under the map F , f−1(y) corresponds to y × Rm−n. More specifically, F maps
f−1(y) ∩ U diffeomorphically onto (y × Rm−n) ∩ V . Therefore f−1(y) must be a
smooth manifold of dimension m− n. �

2. The Index of a Vector Field

Definition 2.1. Given an open set U of Rn, a vector field v is a vector valued
function v : U → Rn.

If M ⊂ Rn is a smooth m-dimensional manifold then a smooth vector field on
M is a smooth function v : M → Rn such that v(x) ∈ TMx.

Before we can begin our discussion on the vector field index, we must first in-
troduce such concepts as orientablity and the degree of a smooth mapping between
manifolds.

Definition 2.2. Let (b1, . . . bn) and (b′1, . . . , b
′
n) be two ordered bases for Rn. We

say that (b1, . . . bn) and (b′1, . . . , b
′
n) are equivalent if b′i =

∑
aijbj and det(aij) > 0.

An orientation is an equivalance class of bases. Each equivalance class determines
an orientation. If det(aij) < 0 then the basis (b1, . . . bn) determines the opposite
orientation. Thus, there will be exactly two equivalence classes, two orientations.

Definition 2.3. An oriented smooth manifold consists of a manifold M of dimen-
sion m together with a chosen orientation for each tangent space TMx which piece
together in the following way: For each point x of M there exists a neighborhood
U of M and a diffeomorphism g mapping U onto an open subset of Rm. For each
y ∈ U , dgy carries the chosen orientation for TMy into the standard orientation,
(e1, . . . , em), for Rm.
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If M has a boundary then we can identify the following vectors in the tangent
space TMx at a specific boundary point:

(1) Vectors tangent to the boundary forming the m− 1 dimensional subspace
T (∂M)x.

(2) Vectors pointing outward forming an open half space bounded by T (∂M)x
(3) Vectors pointing inward forming a complementary half space

The orientation for ∂M will be determined as follows: For each x ∈ ∂M we will
choose an oriented basis (v1, v2, . . . , vm) for TMx in such a way that v2, . . . , vm
are tangent to the boundary and that v1 is an outward pointing vector. Then
(v2, . . . , vm) determines the required orientation for ∂M at x.

Definition 2.4. Let M and N be oriented n-dimensional manifolds without bound-
ary. Consider a smooth map f : M → N . If M is compact and N is connected
then the degree of f is given by the following:

Choose a regular point x of f in M . Then, the linear isomorphism dfx : TMx →
TNf(x), between two oriented vector spaces, is defined. The ’sign’ of dfx is

sign dfx =
{

+1 if dfx preserves orientation
−1 otherwise

And for any regular value, y, in N , the degree of f is

(2.5) deg(f ; y) =
∑

x∈f−1(y)

sign dfx.

Note that this integer is a locally constant function on the set of regular values.

Definition 2.6. Given an open set U in Rm and a smooth vector field v : U → Rm
with an isolated zero z, then the function

(2.7) v̄(x) := v(x)/||v(x)||

maps a small sphere centered at z into the unit sphere. The degree of this mapping
is called the index of the vector field v at the zero z, denoted i(z).

Let v be a vector field on a manifold M ⊂ Rn and z ∈ M an isolated zero of v.
If h is a parametrization, h : U → M of a neighborhood of z ∈ M then the index
of v at z is the index of the corresponding vector field dh−1 ◦ v ◦h on U at the zero
h(z)−1.

However, in order to define the index of a vector field on a manifold in this way, we
first need to show that the index is independent of the choice of parametrization.
Corollary 2.21 will prove this fact. We first require the following lemmas and
theorems:

Lemma 2.8. Suppose that M is the boundary of a compact oriented manifold X
and that M is oriented as the boundary of X. If f : M → N extends to a smooth
map F : X → N then deg(f ; y) = 0 for every regular value y.

Proof. Suppose that y is a regular value for F , and also for f = F |M . Then F−1(y)
will be a 1-dimensional manifold by the implicit function theorem. Furthermore,
we know that since F−1(y) is a 1-dimensional manifold then it will be made up
of a union of arcs and circles. Note that the boundary points of these arcs lie on
M = ∂X. Let us denote one of these arcs as A and let the boundary of A be
∂A = a ∪ b .
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Now let us consider the orientation of A. Given an x ∈ A, let (v1, . . . , vn+1)
denote the basis defining a positive orientation for TXx where v1 is tangent to A.
Note that v1 determines the required orientation for TAx if and only if dFx carries
(v1, . . . , vn+1) into a positively oriented basis for TNy.

Let v1(x) denote the unit vector tangent to A at x which determines a positive
orientation for TAx. Now, note that this v1 points outward at one boundary point
of A, say a, and inwards at the point b. This follows from the three types of vectors
that were defined to be in the tangent space of a manifold with boundary at a
boundary point. Therefore this means that

(2.9) sign dfa = −1, sign dfb = +1

and

(2.10) sign dfa + sign dfb = 0.

Thus if we add up over all arcs like A then we prove that deg(f ; y) = 0.
Now to generalize this result, we must consider the case in which y is a regular

value for f but not for F . Since the function deg(f ; y) is locally constant on the set
of regular values of f this means that it will be constant within some neighborhood
U of y. Therefore, all we have to do is choose a regular value for F in U , say y0,
and observe that deg(f ; y) = deg(f ; y0) = 0. �

Lemma 2.11. Given a smooth homotopy F : [0, 1]×M → N between two mappings
f(x) = F (0, x), g(x) = F (1, x), the degree deg(g; y) is equal to deg(f ; y) for any
common regular value y

Proof. If we consider the manifold [0, 1]×M then its boundary will consist of 1×M
and 0×M . Note that, as in the previous theorem, these two boundary components
will have opposite orientations. Thus, the degree of F |∂([0, 1]×M) is equal to

(2.12) deg(g; y)− deg(f ; y)

which by the previous theorem must be equal to zero. �

Theorem 2.13. Any orientation preserving diffeomorphism f of Rn is smoothly
isotopic to the identity.

Proof. Let us first assume that f(0) = 0. Now consider the derivative of f . recall
that the derivative of f at a point x, dfx : Rn → Rn is defined by the formula

dfx(h) = lim
t→0

(f(x+ th))− f(x))/t

Thus, at x = 0 the derivative will be

(2.14) df0(h) = lim
t→0

f(th)/t

We will define an isotopy F : Rn × [0, 1]→ Rn in the following way:

(2.15) F (h, t) = f(th)/t for 0 < t ≤ 1,

(2.16) F (h, 0) = df0(h)

Now we must show that F is smooth. Therefore, in order to demonstrate this, let
us write f in the following manner;

(2.17) f(h) = h1g1(h) + . . .+ hngn(h),
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where g1, . . . , gn are smooth functions. When we substitute the equation above for
f into our definiton of F (h, t) we obtain

(2.18) F (h, t) = h1g1(th) + . . .+ hngn(th)

for all values of t. This construction demonstrates that F is smooth everywhere,
even as t → 0. Thus, we have shown that f is smoothly isotopic to the linear
mapping df0 and by the connectedness of GL+(n,R), df0 is isotopic to the identity.

�

Definition 2.19. Consider the diffeomorphism f : M → N with a vector field v on
M and v′ on N . These vector fields are said to correspond under f if the derivative
dfx carries v(x) into v′(f(x)) for each x ∈ M . Thus, the following relation will be
defined:

(2.20) v′ = df ◦ v ◦ f−1.

Corollary 2.21. Assuming that the vector field v on U corresponds to the vector
field v′ = df ◦ v ◦ f−1 on U ′ under a diffeomorphism f : U → U ′, then the index of
v at an isolated zero z is equal to the index of v′ at f(z).

Proof. If we consider the case where f preserves orientation, then the corollary is a
quick consequence of Theorem 2.20. Now let us consider the case in which f does
not preserve orientation. Let ρ denote a reflection which reverses orientation. We
will define

(2.22) v′ = ρ ◦ v ◦ ρ−1

such that the function v̄′(x) = v′(x)/||v′(x)|| satisfies

(2.23) v̄′ = ρ ◦ v̄ ◦ ρ−1

on the ε sphere. Thus, by combining the two equations above, it is clear to see that
the degree of v̄′ equals the degree of v̄. This completes the proof. �

This corollary demonstrates that the index of a vector field is invariant under a
diffeomorphism. This allows us to define the index of a vector field on a manifold
in the desired way.

3. The Index of a Vector Field as an Invariant

Now let us consider the index of a vector field on a manifold with boundary and
with isolated zeros which points outward along the boundary.

Definition 3.1. Let X ⊂ Rm be a compact m-manifold with boundary. The Gauss
mapping is:

(3.2) g : ∂X → Sm−1

which assigns to each x ∈ ∂X the unit normal outward vector at the point x.

Theorem 3.3. For X ⊂ Rm, a compact m-manifold with boundary, If v : X → Rm
is a smooth vector field with isolated zeros, and if v points out of X along the
boundary, then the index sum, denoted

∑
i(zi), is equal to the degree of the gauss

mapping from ∂X to Sm−1.
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Proof. To prove this statement let us consider removing an ε ball around each
isolated zero. We therefore obtain a new manifold with boundary which includes the
original boundary of X and also the boundaries of the ε-balls which were removed.
Now, once the zeros have been removed, the function v̄(x) = v(x)/||v(x)|| is well
defined on what is left of the manifold X. Therefore, if we consider v̄ : X −⋃
zi
{Bε(zi)} → Sm−1 as an extension of a map ∂X

∐⋃
zi
{∂Bε(zi)} → Sm−1,

where {Bε(zi)} denote the ε balls removed around each zero, then by Lemma 2.8
we note that the sum of the degrees of v̄ restricted to this new boundary will be zero.
Furthermore, because v̄ points outward, we know that v̄|∂X will be homotopic to
the Gauss mapping g. Therefore, the degree of v̄|∂X will be the same as the degree
of g. Since the sum of the degrees of v̄ must add up to zero, deg(g) must cancel
out with the sum of the degrees on all the other boundary components. This sum
is equal to the negative index sum of v̄ at all the various isolated zeroes. This is
because we are computing the degree of the same map only we are changing the
orientation of the spheres. Thus, deg(g)−

∑
i(zi) = 0 and deg(g) =

∑
i(zi). �

One important consequence of this theorem is that the index of a vector field
does not depend on the choice of the vector field. As long as the vector field points
outward along the boundary the result will be the same. This brings us closer to
our goal of showing that the index of a vector field is an intrinsic invariant of a
smooth manifold.

We now want to show that the results of this theorem are also true for the case of
a vector field with non-degenerate zeros on a compact manifold without boundary
and embedded into any finite dimensional euclidean space.

Definition 3.4. Given an open set, U of Rm and a vector field w : U → Rm such
that dwz : Rm → Rm, then the vector field w is said to be nondegenerate at the
the zero z if dwz is nonsingular.

Lemma 3.5. The index of w at a nondegenerate zero is equal to the sign of the
determinant of dvz.

Proof. Let us first think of w as a diffeomorphism from some convex neighborhood
U of z which maps into Rn. If w preserves orientation then by Theorem 2.13,
w|U can be smoothly deformed into the identity, without introducing new isolated
zeros. Thus the index will simply be equal to +1. If w reverses, then in a similar
demonstration as that of Lemma 3.6, we can show that w can be smoothly deformed
into a reflection. Thus, the index of w will be -1 in this case. �

We must now generalize this result to a manifold of a dimension that does not
agree with the dimension of the space into which the manifold is embbeded. There-
fore, let us consider the case of an n-dimensional manifold M ⊂ Rk with a vector
field v : M → Rk. Note that at a zero z we also have the map dvz : TMz → Rk.
In order to ensure that we can calculate the index of the vector field v the same
way we did in the previous lemma, we must show that dvz is in fact defined by the
mapping dvz : TMz → TMz which will allow us to calculate its determinant. The
following lemma will prove this fact.

Lemma 3.6. Given the vector field v : M → Rk, The map dvz can be considered
as a linear transformation from TMz to itself. If this linear transformation has
determinant 6= 0 then z is a nondegenerate zero of v with index equal to +1 or -1
according to the sign of the determinant of dvz.
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Proof. See Milnor [1], page 37 �

We now have the necessary tools to demonstrate that the index of a vector field is
an intrinsic invariant of the manifold. Let’s consider the following: given a compact
manifold M ⊂ Rk without boundary and of dimension less than k, we will let Nε
denote the closed ε-neighborhood of M which can be defined more specifically as
the set of all x in Rk such that ||x− y|| ≤ ε for some y in M . It follows from Sard’s
Theorem and the Implicit Function Theorem that, for a sufficiently small ε, Nε is
a smooth manifold with boundary.

Theorem 3.7. For any vector field v on M with only nondegenerate zeros, the
index sum is equal to the degree of the Gauss mapping g : ∂Nε → Sk−1.

Proof. Let us consider a point x on the ε-neighborhood of M, Nε. Now let r(x) be
the closest point to x in M . For ε sufficiently small, r will be a continuous function
and r(x) will be unique. This implies that x− r(x) is perpendicular to the tangent
space TMr(x). We will consider the square distance function

φ(x) = ||x− r(x)||2

computing the gradient of this function gives,

grad φ = 2(x− r(x))

Thus for any point x on the boundary, ∂Nε, of Nε, the unit normal vector pointing
outward is given by the function

(3.8) g(x) = grad φ/||grad φ|| = (x− r(x))/ε.

Now we extend the vector field v on M to a vector on Nε

(3.9) w(x) := (x− r(x)) + v(r(x))

Note that the dot product between g(x) and w(x) yields ε. This means that the
projection of w onto the unit normal vector g will be positive, implying that w(x)
will also point outwards along the boundary. Since the two summands that make
up w, (x−r(x)) and v(r(x)), are mutually orthogonal, this means that w will vanish
only at the zeros of v. Thus, w and v have the same zeros.

Now we use Lemmas 3.5 and 3.6 to compute the indices of v and w at a zero
z ∈ M . Using Lemma 3.5, we can compute the index of w by calculating the
determinant of dwz. Likewise, Lemma 3.6 allows us to compute the index of v on M
using the same technique of calculating the determinant of the linear transformation
dvz. Therefore, note that when we compute the derivative of w we obtain:

dwz(h) = dvz(h) ∀h ∈ TMz

dwz(h) = h ∀h ∈ TM⊥z .
This means that the determinant of dwz is equal to the determinant dvz. Thus,
the index of w at the zero z is equal to the index of v at the z.

Since w points outward along the boundary of Ne, we know by Theorem 3.3 that
the index of w and v, since they are the same, is equal to the degree of the Gauss
mapping g. This completes the proof. �

The proof works by thickening the manifoldM into a new k-dimensional manifold
with boundary, Nε. We then extend the vector field v on M to a new vector field w
on Nε. Note that in the proof, w was explicitly constructed in order to demonstrate
three crucial steps that together would prove the desired result. The first step was
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to show that the vector field w points outward along the boundary of Nε. This was
done by calculating the projection of w onto the outward normal vector g. The
second step was to demonstrate that the vector field w on Nε had the same zeros as
the vector field v on the manifold M . The third and last step was to demonstrate
that the indices of v and w agreed at some zero. By Lemmas 3.5 and 3.6 we knew
that the indices of v and w could be explicitly computed and the construction of w
demonstrated that these indices were in fact equal.

The most important result of this theorem is that the index of a vector field does
not depend on the choice of the vector field on M . Furthermore, the index of a
vector field does not depend on the way in which M is embedded.

4. Concluding Remarks

Interestingly, we can also conclude that two very different Gauss mappings can
have the same degree. If, for instance, we have two manifolds, M embedded in
Rk1 and N embedded in Rk2 , and there exists a diffeomorphism, f : M → N ,
then the degree of the Gauss mapping ∂N1ε → Sk1−1 is equal to the degree of
∂N2ε → Sk2−1. We know by Corollary 2.21 that the index of a vector field is
invariant under diffeomorphism and by Theorem 3.11 that the index of the vector
fields on M and N are equal to the degrees of their respective Gauss mappings.
Let’s consider a simple example:

Example 4.1. TakeM = S1 embedded in R2. The boundary of the ε neighborhood
of S1 is just the disjoint union of two circles. Therefore, the Gauss mapping is given
by ∂Nε = S1

∐
S1 → S1. Now consider the same circle yet this time embedded in

R3. The boundary ofNε is now a torus. The Gauss mapping is ∂Nε = S1×S1 → S2.
Even though these are two completely different mappings, they have the same
degree, zero.

Together, the results in this paper show that index number is really an intrinsic
invariant of a smooth manifold: We showed in Theorem 3.11 that the index does
not depend on the choice of the vector field or on the embedding of the manifold and
in Corollary 2.21 we showed that it is a diffeomorphism invariant. By the Poincare-
Hopf Theorem, we can show that this invariant is equal to the Euler characteristic.
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