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Abstract. For centuries scholars have wrestled to explain the ability of mu-

sic to move and invoke our emotions. Music Theory is the attempt to ex-

plain the events that happen in a piece of music by characterizing its features
and conceptualizing them into tangible ideas that can be used as a basis for

comparison or understanding. However, once characterizations are complete,

strenuous cognitive questions as to why certain features excite certain emo-
tions or are better or worse to listen to are left unanswered. The romantic

notion of the sublime, natural power inherent in music often dominates over

the scientific characterization of sound. While the physical properties of pitch
and the desire for modulation provide a strong argument for the development

of a twelve-tone system, many questions as to why certain elements are pre-
ferred remain unanswered. In this paper, I bring forth some recent findings

in the connection of music theory and word theory published by Clampitt,

Domı́nguez, and Noll [2] that provide a surprisingly refined model for certain
generated musical scales and suggest a natural mathematical relation giving

preference for the Ionian Mode. Specifically I will focus on the notions of re-

fined Christoffel duality, while highlighting other important connections along
the way.
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1. Introduction

Since the mid-seventeenth century Western Art Music has been overwhelmingly
centered around the major scale, or the Ionian Diatonic Mode. This collection of
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pitch-relations builds up the basic melodic and harmonic material of composition
before the 20th century. While the minor scale plays a very strong role in com-
position before the 20th century, and the Dorian and Lydian scales have become
increasingly used as the central material of a composition since the late 19th cen-
tury, these scales remain in an underprivileged role, often positioned, theorized,
and heard by their relations to the major scale. However, this preference is not
universal. On a global scale, one finds that the pentatonic (five-note) scale holds a
more dominant position than the diatonic (seven-note), as best seen in Indonesian
Gamelan or West African string music.

In studying these scales mathematically, we adopt the equal-tempered system of
tuning. This means we are only going to worry about scales in the 12-tone Western
system with equal spacings between the notes as represented on a modern piano.

In this paper I am going to overview some key mathematical properties of these
most commonly used scales, introduce some basic word theory, highlighting the
relationship of Christoffel words and interval relations within scales, introducing
the concept of a dual word and its music-theoretical importance, and a class of
morphisms which generates these words.

2. Overview of the Scale and mathematical analogue

While the relation between word theory and the musical scale is a relatively new
field of study, Algebra and Set theory have been used to study the properties of
a strict mathematical representation of scales by the likes of David Lewin, John
Clough, and Gerald Myerson for decades.

Definition 2.1. A pitch is a single sound at a distinguishable frequency. For
example A = 440mz. The equivalence classes given by, a ∼ b determined by
corresponding note names on the piano, or by octave frequency relation (a ∼ b iff
a/b = 2j for some j ∈ Z), are called pitch classes.

This equal spacing of pitch in the equal-tempered system allows for a natural
bijection between the notes on a piano within an octave to the integers modulo 12.
We give this bijection by sending the equivalence class of C to 0, C] to 1, . . .B
to 11 as demonstrated in figure 1. The transposition, inversion, and the interval
functions on Z12 are the most relevant in understanding the musical notion of a
scale.

Definition 2.2. Transposition by n, or translation by n, is the function Tn : Z12 →
Z12 given by Tn(x) ≡ x+ n (mod 12).

Definition 2.3. For each n ∈ Z12, we have an Inversion, In, which is the bijective
function In : Z12 → Z12 given by In(x) ≡ (−x+ n) (mod 12).

Definition 2.4. The interval function is the function Int : Z12 × Z12 → Z12 such
that Int(x, y) ≡ x− y (mod 12).

Definition 2.5. In the most general way, in music, a scale is just a collection of
pitches. Therefore we consider a scale to be any subset S of Z12.

Remark 2.6. We consider two scales S1 and S2 to be of the same type if S1 = Tn(S2)
for some n ∈ Z12. For example, the F major scale and C major scales are both of
the major type and are transpositions of each other. Often, the “type” is denoted
by the a qualification of major, minor, or a mode name.
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Definition 2.7. We further loosely define a scale mode by the “starting point” of
a scale. We often denote the starting point simply with the letter it begins on, as
in the “C” or “F” given in 2.6. Rigorously, the mode is a unique ordering of the
scale-steps within a scale. For example, both the C-major scale and the A minor
scale is the have the same collection of pitches, however the C-major scale has an
interval pattern 2 − 2 − 1 − 2 − 2 − 2 − 1 while the a-minor scale has an interval
pattern 2 − 1 − 2 − 2 − 1 − 2 − 2. We call the Major scale the Ionian mode and
the minor scale the Aeolian mode after the church name precedent. An important
mode to note for this paper is the Lydian mode, which has a scale step pattern of
2− 2− 2− 1− 2− 2− 1.

Examples 2.8. Here our some clarifying examples:
The C-Major Scale

(2.9) {0, 2, 4, 5, 7, 9, 11}

This has a scale step pattern 2−2−1−2−2−2−1 as does any major scale. Note
that we do include the distance from the last note to the first note of the scale as
our last step-interval.
The F -Major Scale

(2.10) {5, 7, 9, 10, 0, 2, 3}

This also has a scale step pattern 2− 2− 1− 2− 2− 2− 1.
The a-minor Scale

(2.11) {9, 11, 0, 2, 4, 5, 7}

Figure 1. (Image from Fiore’s REU talks [1]) Z12 in a clock-
represenation with the natural bijection to the note names
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This has a scale step pattern 2− 1− 2− 2− 1− 2− 2, while having the same pitch
material as the C major scale.
The Pentatonic Scale

(2.12) {0, 2, 4, 7, 9}

The Pentatonic has scale step pattern 2− 2− 3− 2− 3
The Tetractys

(2.13) {0, 2, 7}

Scale Step Pattern: 2− 5− 5
The Octatonic

(2.14) {0, 1, 3, 4, 6, 7, 9, 10}

Scale Step Pattern: 1− 2− 1− 2− 1− 2− 1− 2
The Chromatic

(2.15) {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

Scale Step Pattern: 1− 1− 1− 1− 1− 1− 1− 1− 1− 1− 1− 1

Remark 2.16. Note in the classification of modes, interval classes are preserved,
but the ordering of interval relations is not. For example {9, 11, 0, 2, 4, 5, 7} is the
aeolian diatonic mode or the “minor” scale and is different from the Major Scale.

Example 2.17. {6, 8, 10, 1, 3} = T6({0, 2, 4, 7, 9}) is the pentatonic scale. The
two scales are of the same type but not the same key, as we can call the first
the F]-pentatonic and the latter the C-pentatonic. However, the ordered scale
{2, 4, 7, 9, 0} presents a different mode of the C-pentatonic scale. This transposition
demonstrates an important property of the pentatonic scale: that the pentatonic
scale is the complement of the major scale in Z12. In this specific case it is the
complement of the C-Major scale.

Definition 2.18. The scale interval is the number of steps between two notes
within a scale. Our older notion of interval in Z12 is called the chromatic interval.
For example, in the C-Major scale the scale interval between 0 and 7 is five as there
are five elements in the scale 0, 2, 4, 5, 7 between them, while the chromatic interval
is 7− 0 = 7.

2.1. Properties of Scales and Generation of The Major Scale.

Definition 2.19. A scale is said to be generated if it can be obtained by an iterated
application of Tn to some x ∈ Z12 for a fixed n ∈ Z12.

Example 2.20. The C-Major Scale in Example 1.7 is generated by applying T7 to 5
seven times. Similarly, the important pentatonic and tetractys scales are generated
by the transposition five times and three times respectively, while the chromatic
scale, or all of Z12 is generated by T7 as 7 is relatively prime to 12, therefore it is
a generator of the cyclic group.

Note that we do not require Tn of the final note to be the initial note in the
definition of generated.

Remark 2.21. The Octatonic scale cannot be generated.
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Proof. The Octatonic scale has eight elements, so we can immediately eliminate the
possibility of generation by any Tn such that n is not relatively prime to 12. This
is because if n is not relatively prime to 12, then < n >≤ 12

2 = 6, as well as any
translation < n > +i, which is precisely the same as continuously applying Tn(i).
So our only other options of generators in the twelve tone system are T1, T5, T7, and
T11. Now we know that T1 and T11 generate the chromatic by adding half-steps,
so any 8-note generation using either of them will not contain any whole steps.
Since the Octatonic has 4 whole steps, then it cannot be generated in this fashion.
Similarly, we know T5 or T7 applied 7 times generates the major scale. If we add
any note to this major scale, we will get a string of at least two consecutive half-
steps, as there are no steps in this scale of length 3 or greater. As the Octatonic has
no consecutive half-steps, then T5 or T7 cannot generate the Octatonic. Therefore
there are no possible generators in the 12-tone system for the Octatonic. �

Definition 2.22. A scale is well-formed if each generating interval spans the same
number of scale steps, including the return to origin interval.

Example 2.23. The Major Scale is well-formed. Consider the C-Major Scale
{0,2,4,5,7,9,11}. Between n and T7(n) = 7 + n (mod 12) there are 5 scale steps.
Here the return to origin is B = 11 to F = 5, which also contains 5 scale steps.

Definition 2.24. A scale satisfies the Myhill Property if each scale interval comes
in two chromatic step sizes.

Examples 2.25.

• The Major Scale is Myhill. For the scale interval of the second, we can find
both major and minor varieties, 2− 0 = 2 and 0− 11 = 1, for the third we
get major and minor third, 4 − 0 = 4 and 5 − 2 = 3 and so forth for each
scale interval.
• The Octatonic is not Myhill because any scale interval of a third (two scale

steps) only spans 3 chromatic steps.

Myhill’s property lends itself to many interesting geometric results and seems to
single out a collection of important scales which include the diatonic collection and
pentatonic scales. One such property is Cardinality equals variety.

Definition 2.26. [6] Cardinality equals variety In the traditional diatonic scale,
each numerical interval (second, third, and so forth) appears in two sizes; the scale
includes three kinds of triads (a three-note collection); and the diatonic tetrachord
(four-note collection) has exactly four species, etc. It holds that all k-note chords
come in k species for all diatonic chords of 1− 6 notes.

Theorem 2.27. Myhill Property implies Cardinality equals Variety.

Proof in [6].
While these mathematical properties provide a possible expression of the impor-

tance and preference of these scales, progress in word theory and the remarkable
analogue it provides for the scale opens up many more possibilities to answer the
questions of why certain scales are used and desired over others.
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3. Christoffel words and their conjugates

Following the work of Clampitt-Domı́nguez-Noll [2], there have been startling
connections between the notions of Christoffel dual words and the modes of scales
and their generations.

We begin with some basic definitions of word theory.

Definition 3.1. Consider the 2-letter alphabet {a, b}. A word in this alphabet is
a sequence of a’s and b’s.

We denote the free monoid on the set {a, b} by {a, b}∗. Elements of {a, b}∗ are
the words in the alphabet {a, b}. Here, multiplication is concatenation of words,
and the unit element is the empty word.

Examples 3.2. Some examples of words include ∅, a, b, ab, aab, baaaba.

Definition 3.3. Two elements w and w′ of {a, b}∗ are conjugate if there exist
words u and v such that w = uv and w′ = vu.

Example 3.4. The words aabab, baaba, abaab, babaa, and ababa are all conjugate.

Note that these words are just rotations of each other. This is the case for all
conjugates in the free monoid{a, b}∗.

Lemma 3.5. Two elements w and w′ in the free monoid {a, b}∗ are conjugate if
and only if they are conjugate in the free group on the set {a, b}.

Note that in the free group < a, b > is the set of all reduced words on the alphabet
{a, b, a−1, b−1} and the inverse of any word is constructed by taking reverse spelling
and inverting each element. For example, (aab)−1 = b−1a−1a−1.

Proof.
(1) (All conjugates in the free monoid are conjugates in the free group.) Let

w and w′ be words in {a, b}. First, suppose they are conjugate in the free
monoid. Then w is some rotation of w′, which is equivalent to saying that
w = uv and w′ = vu. Since v ∈ {a, b}∗ then v ∈< a, b >. Consider
vwv−1 = vuvv−1 = w′, so w and w′ are conjugate in the free group.

(2) (There are no other conjugates in the free group that are also elements of the
free monoid.) Now if we are to act on a word w = w1 . . . wn by conjugation,
we will show that in order for the resulting word to be an element of the
free monoid {a, b}∗ the element g ∈< a, b > of the free group must be of
the form v = wi . . . wn or u−1 = (w1 . . . wi)−1 (neglecting any complete
repetitions of the word w or of w−1). It is clear from the first part that any
g such v or u−1 will result in a conjugate if we then factor w = uv. Suppose
now there is some h ∈< a, b > that is not of the form h = wi . . . wn, but
hwh−1 is an element of the free monoid. Then there exists some hi 6= wn−i

or hi
−1 6= wi. In the first case, if hi ∈ {a−1, b−1}, then the resultant

word hwh−1 = w′ will have w′i = hi and therefore w′ /∈ {a, b}∗. So then
hi ∈ {a, b} and therefore h−1

i ∈ {a−1, b−1} and since h 6= v for some v a
suffix of w, then h−1

i will not cancel with wn−i and therefore h−1
i = w′i+n+1

(Assuming hi is the first element which varies from a possible v) and again
it follows that w′ /∈ {a, b}∗. A similar argument holds for h /∈ u−1.

�
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Conjugation on Lydian Result Mode Name

b ◦ aaabaab ◦ b−1 baaabaa Phrygian

ab ◦ aaabaab ◦ b−1a−1 abaaaba Dorian

aab ◦ aaabaab ◦ b−1a−1a−1 aabaaab Ionian

baab ◦ aabaaab ◦ b−1a−1a−1b−1 baabaaa Locrian

abaab ◦ aabaaab ◦ b−1a−1a−1b−1a−1 abaabaa Aeolian

aabaab ◦ aabaaab ◦ b−1a−1a−1a−1b−1a−1 aabaaba Mixolydian

aaabaab ◦ aabaaab ◦ b−1a−1a−1a−1b−1a−1a−1 aaabaab Lydian

Definition 3.6. Let p and q be relatively prime positive integers, then the Christof-
fel Word of slope p/q and length n = p + q is the lower discretization of the line
y = p

q · x and can be obtained through the equation

wi =
{
a if p · i (mod n) > p · (i− 1) (mod n)
b if p · i (mod n) < p · (i− 1) (mod n).

We will look closely at three specific Christoffel words. The Lydian word of slope
2/5, the Pentatonic word of slope 2/3 and the Tetractys word of length 2/1.

Examples 3.7.
• (Lydian) The Christoffel word of slope 2/5 is precisely aaabaab.

• (Pentatonic) The Christoffel word of slope 2/3 is precisely aabab.

• (Tetractys) The Christoffel word of slope 2/1 is precisely abb.

Recall from 2.8 that the Lydian Diatonic Mode has a scale step pattern of 2 −
2−2−1−2−2−1. Notice that this directly corresponds with the Christoffel word
we call Lydian, aaabaab, if we allow a to represent a whole step and b represents a
half step. A Similar relation holds for the Pentatonic word aabab as the pentatonic
has scale step pattern 2− 2− 3− 2− 3 and the Tetrachtys word abb with scale step
pattern 2 − 5 − 5. This relation is the main connection between word theory and
music theory.

The seven Diatonic modes are often called the Church modes from their devel-
opment and use in pre-medieval music history, though the names initially derive
from Ancient Greek scale names. The modes as we know them developed in the
medieval times and throughout pre-baroque history arguments can be made for the
preference of the Dorian and other modes. However beginning in the Baroque era
and stretching through today the Ionian has been the mode of choice.

Using the Lemma, we reach an important conclusion:

Proposition 3.8. All diatonic mode words are conjugate to the Lydian word, and
moreover any conjugate of the Lydian word in the free monoid {a, b}∗ is a diatonic
mode word.

3.1. Christoffel Dual Words.
We see that musically, Christoffel words that are dual to each other present an

important relation.
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Definition 3.9. Given a Christoffel word w of slope p
q , we define the dual Christof-

fel word w∗ of slope p∗

q∗ where p · p∗ = 1 (mod n) and q · q∗ = 1 (mod n) and
n = p+ q.

We know that these inverses exist because p and q are relatively prime and
therefore p and q are relatively prime to n = p + q. Therefore, p∗ and q∗ are
relatively prime.

Examples 3.10.
• Recall the Lydian word, aaabaab, is the Christoffel word of slope 2

5 . As
2 ·4 = 1 (mod 7) and 5 ·3 = 1 (mod 7). Its dual word, w∗ is the Christoffel
word of slope 4

3 . This gives w∗ = xyxyxyy.
• The Pentatonic Christoffel word, aabab is dual to the Christoffel word of

slope 3
2 , xyxyy.

• The Tetrachtys Christoffel word of slope 2
1 , abb is self-dual, as when n = 3,

2 and 1 are both inverses of themselves. So w∗ = xyy.

Note that we use the alphabet {x, y} to denote a dual word to one in the alphabet
{a, b}, however, from a word theory point of view, the alphabets are isomorphic.

The musical relationship between dual words will be illustrated in Section 3.3.

3.2. Palindromization. The relationship between Christoffel words and their
duals is further strengthened by the conception of an underlying palindrome within
these words.

Definition 3.11. A palindrome is a word w = w1 . . . wn in which wi = wn−i+1 for
1 ≤ i ≤ n.

All Christoffel words have an important composition, as will be presented in
3.18: If w is Christoffel of slope p

q , then w = aub where u is a palindrome. The
palindrome of this type is called the central palindrome.

Proposition 3.12 (Prop. 4.3 from [7]). Let w be a word. Write w = uv, where v
is the longest suffix of w that is a palindrome. Then w+ = wũ, with ũ = un . . . u1

when u = u1 . . . un, is the unique shortest palindrome having w as a prefix.

Proof. Suppose there is a shorter palindrome p such that w is a prefix than the
constructed w+ with |w+| = n + |u| where w = uv with v being the longest suffix
of w that is a palindrome. Let k = |u| So p = p1 . . . pm with n < m < n + k, and
p1 . . . pn = w1 . . . wn. Therefore m− n < k. Now since p is a palindrome, we know
that pm = w1 = u1, pm−1 = w2 = u2, . . . , pm−k−1 = wk−1 = uk−1. But then we
have pm−k = wn−(k−(m−n)) = wk = uk. However, this result contradicts v being
the longest suffix that is a palindrome, as we now arrive at one that has length at
least |v|+ 1. �

Definition 3.13. This word w+ is called the right palindromic closure of w.

Examples 3.14.
• (aba)+ = aba
• (ab)+ = aba
• (aab)+ = aabaa
• (aabab)+ = aababaa.
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Definition 3.15 (Defn. 4.5 from [3]). . Define a function Pal : {a, b}∗ → {a, b}∗
recursively as follows. For the empty word, ∅, define Pal(∅) = ∅. If w = vz ∈ {a, b}∗
for some z ∈ {a, b}, then let

(3.16) Pal(w) = Pal(vz) = (Pal(v)z)+.

The resultant word Pal(w) is called the iterated palindromic closure of w.

Examples 3.17.

• We want to calculate Pal(aab): First, we need to know Pal(a) = (a)+ = a.
Then, we’ll need to calculate Pal(aa) = (Pal(a)a)+ = (aa)+ = aa. Lastly,
we can then put together Pal(aab) = (Pal(aa)b)+ = (aab)+ = aabaa.
• Through the same process we find Pal(yxx) = yxyxy.

At this point, it is important to take a break and notice a musically historical
connection. The central palindrome of the Lydian word, and therefore a fundamen-
tal center to the creation of all the Diatonic mode words, is precisely the Guidonian
Hexachord, a six note scale characterized by its interval relations of T-T-S-T-T; or
tone, tone, semi-tone, tone, tone; or in modern terms, whole, whole, half, whole,
and whole steps. In order to learn and memorize a long and complicated piece of
music without ever having a written copy, monks assigned each step in the Guido-
nian hexachord a syllable, a predecessor of today’s solfege. As it only allowed for a
range of six notes, in order to accommodate songs with larger spans, singers would
shift among three varieties of the hexachord: the soft hexachord which began on the
note F, the hard hexachord which began on a G, and the natural hexachord which
began on C. For example, if a singer starts on F and wanted to span 8 steps up to
F’, then he would sing the first five steps of the soft hexachord, then switch to the
first step of the natural hexachord, where he would then be able to reach the desired
pitch. [8] This hexachordal system slowly evolved into the diatonic system we are
more familiar with and the ties of it as a historical ’center’ for the diatonic scales
is strong. The mathematical analogue demonstrates a similar importance to this
hexachord in its position as the central palindrome and characterizing element of
the Christoffel words which generate the diatonic mode words. Further, the choice
of starting points for the three main hexachords results in the Tetractys, or the
first three notes in a generation of T7(5). What is remarkable about this connec-
tion is that without any mathematical conception of these systems, the Guidonian
Hexachord was in prominent use by the early 11th century.

Theorem 3.18 (Thm 4.6 and Prop. 4.14 in [7]). Let v ∈ {a, b}∗. Then w =
xPal(v)y is a Christoffel word, and if w is a Christoffel word, then there exists
some v ∈ {a, b}∗ such that w = xPal(v)y.

Proof. Proof in [7] �

We call the directive word of w the word dir(w) = u such that w = Pal(u).
One can notice in our example that the directive words for the central palindromes
in the Lydian word and its dual are reverse spellings on an equivalent two-letter
alphabet. This is not a mere coincidence, as it holds for all Christoffel words w
and their duals w∗ that if dir(w) = u1u2 . . . un, then dir(w∗) = un . . . u1. [5] This
relationship of the palindromic closures of the central palindromes of Christoffel
words and their duals provides another view into the interaction between these two
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groups. However, the relationship between these words and their musical represen-
tations as step-interval patterns and the foldings of generated scales strengthens the
connection while providing another point of reference for the preference of certain
scales.

3.3. Musical Folding.
Recall that the major scale, the pentatonic, and the tetractys are all generated

scales by the transposition T7. For clarity, we will consider the C-major scale and its
similarly generated counterparts in the pentatonic and tetractys, so we will be ob-
serving the three such scales generated beginning on F = 5, {5, 0, 7}, {5, 0, 7, 2, 9},
{5, 0, 7, 2, 9, 4, 11} or in their ordered sense, {5, 7, 0}, {5, 7, 9, 0, 2}, {0, 2, 4, 5, 7, 9, 11}.
Definition 3.19. The span of a scale is the chromatic space between its highest
and lowest notes.

As the span isn’t necessarily restrained to Z12 we need to re-establish a bijection
between keys on the piano that maintains uniqueness among notes of the same
pitch class, but of a different octave. For this paper, it is sufficient to maintain that
the normal ordering refers to the lowest spoken of octave, and each higher octave
will be designated with a “ ∗ ”. For example, the distance between two notes 5∗

and 4 is (5 + 12)− 4 = 13.

Example 3.20. The span of the F -Lydian Scale (the Lydian scale which begins
on F) is the space from 5 to 5∗

Definition 3.21. We call the musical folding the unique way the ordered gener-
ation falls into the span of a scale S. That is, begin with the starting note in the
genaration, k with Tn being the generating transposition. If k + n ≤ U , where U
is the highest note in the scale, then the first step is up and we add k + n, and we
denote this by x. If k+ n > U , then we subtract U − n from k, and we denote this
step by y. We do this until we have covered all the notes in our generated scale.

This notion of a folding may seem unnecessary and peculiar in a mathematical
sense, but in a music-theoretic application it is entirely appropriate. Despite the
relation in harmonic frequency of pitches at an octave relation allowing for an almost
“unified” sound, the human ear is highly-sensitive to musical range. As we generate
pitches in a scale (take for instance with the generation of T7) the resulting notes on
a piano would not fit into an octave or even a close range. The notes comprising a
major scale if we keep translating up 7 steps would span over 3 octaves! In order to
adjust this into a more compositionally functional collection the span is contracted
by using this process of folding, so we get a collection of pitches comprising the
scale, but within a reasonable range to work with. Further, composers naturally
encorporate this concept of folding a generated scale by sequences of fifths and
fourths that occur throughout the canon of classical music.

In the both Figure 3.3 and Figure 3.3 we find an actualization of the generation
of the scale by a fifth through an ascending fifth diatonic sequence and the com-
positional decision to ’fold’ the root notes of the chords. This is apparent even in
more modern musics. For example, the bridge to The Beatles “Here Comes the
Sun” is an ascending fifth progression and elements of a folding can be heard in the
instrumentation.

Examples 3.22. Consider the Lydian scale. We know that it is generated by T7

and, specifically, the Lydian mode beginning on F spans the octave from 5 to 5∗. So
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Figure 2. In Bach’s French Suite in G, we find a precise ascending
fifth musical folding in the bass clef. The boxed notes represent the
structural notes of the harmonic progression and we see in a musical
example how after the initial leap of a fifth, the motion from A back
down to E in the second and third measures is a descent of a fourth.
The folding ends as bach leaves the octave boundaries of D when
it reaches F] in the fourth measure. However, this coincides with
the end of a sequence and the motion out of the folding coincides
with the beginning of a new and different musical section.

Figure 3. In this excerpt from Handel’s Suite in D minor, we
get another direct folding in an Ascending fifth progression. It
should be noted that the octave in which the bass is folding within
is not from F to F , but rather from A to A, as the final chord
in the second measure alludes to an A-minor tonality through the
dominant E major.

beginning on 5, we can add 5+7 = 0∗, which is still in the span, so our first element
in the folding is x. Second, as 0∗+7 = 7∗ > 5∗, then we need to subtract 12−7 = 5
from 0∗, resulting in 7, and our second element is y. Continuing this process we get
that sequence of numbers {5, 0∗, 7, 2∗, 9, 4∗, 11,6} and the corresponding sequence
of letters xyxyxyy. See Figure 4.
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We notice that the final note of the sequence is not our starting pitch, but rather
off by a half step. This is not a mistake, but rather a result of the generation. If we
re-establish our notion of a 5-th to be contained within a diatonic scale, allowing for
an approximation of the last step so that the folding remains in the same scale-set,
then the last note would indeed result in a return to the beginning.

To further generalize this approximation, we consider the last element of the
folding to be the return to origin, and denote it x if we need to travel to a higher
pitch for the return to the original note in the generation or a y if we need to travel
to a lower pitch, corresponding as we are approximating either x - a fifth up, or y
- a fourth down.

Example 3.23. Consider the Pentatonic scale, {5, 7, 9, 0∗, 2∗}. Note that in this
mode and transposition we begin on F = 5 and span to F ′ = 5∗. The corresponding
folding arrives from the first five notes generated from F with T7, so our folding
results:

T7(x) = 5 0 7 2 9
Realignment within Span 5 0∗ 7 2∗ 9

Distance to next note x+ 7 x− 5 x+ 7 x− 5 x− 4
Corresponding Folding Letter x y x y y

Notice that the return to origin from 9 to 5 is neither T7 nor T7−12. However, since
the return moves to a lower pitch, then we still denote it with y.

4. Refined Christoffel Duality

Now that we notice this relation between Christoffel words and their duals we
want to express a natural relation between the conjugates of the Christoffel words
and the conjugates of its dual, therefore incorporating all of the possible modes of
each scale.

Definition 4.1. For every word w ∈ {a, b}∗, let |w|a and |w|b be the multiplicities
of the letters a and b in w, respectively. As before, we let |w| = n be the length of
w and wk be the k-th term.

Definition 4.2 (Definition 2 of [5]). Call the function evw : {a, b} → Z given by
evw(a) = |w|b and evw(b) = −|w|a the balanced evaluation of the alphabet {a, b}
with respect to w. This induces a balanced evaluation of the word w, specifically
βw(k) = evw(wk).

Definition 4.3. Call the balanced accumulation of w the map αw : {0, 1, . . . , |w| −
1} → Z of partial sums of the sequence (βw(1), . . . , βw(|w| − 1), namely αw(k) :=∑k

l=1 βw(l).

Definition 4.4. A word w is well-formed if there exists an integermw ∈ {0, . . . , |w|−
1} such that {αw(0) +mw, . . . , αw(|w| − 1) +mw} = {0, . . . , |w| − 1}.

Theorem 4.5 (Theorem 1 of [2]). A word w is well formed if and only if it is a
Christoffel word or conjugate thereof. It is actually a Christoffel word if and only
if its mode mw is zero.

Given well-formed word w with mode mw, Clampitt-Domı́nguez-Noll call the
affine automorphism on ZN

(4.6) fw(k) = |w|y · k −mw mod N
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88 THOMAS NOLL

Figure 7. Folding of the arithmetic sequence of fifths into the octave

registers of the Lydian and Ionian modes.

several instances of the upward-fifth by downward fourths. In the scale foldings we
use the two letter alphabet {x, y} with x denoting fifth up and y denoting fourth
down.

Figure 8 shows the authentic division, where the octave is divided in a fifth (com-
prising four steps) and a fourth (comprising three steps). The dividing tone is tradi-
tionally called confinalis. The division is indicated by a vertical line: aaba|aab and –
to be more precise – the notation u|v with u, v ∈ {a, b}∗ is an abbreviation for the
word-triple (uv, u, v). In the plagal case the finalis divides the word into a fourth and
a fifth, while the scale starts at the confinalis as its lowest tone.

Figure 8. Scale-Step Patterns (whole step = a, half step = b) and Scale

Foldings (fifth up = x, fourth down = y).

JOURNÉE ANNUELLE

Figure 4. (Figure 8 of Noll’s paper [5]) The musical folding of
each Diatonic mode displayed with their corresponding scale step
pattern. Recall a is 2 half-steps, while b is 1 half step, and x is
a Major-fifth (7 chromatic steps) up and y is a Major-fourth (5
chromatic steps) down. We will see in section 4 that this table is
an instance of Refined Christoffel Duality.

the plain affinity associated to w.

Definition 4.7. [2] Given a well-formed word w, we call the plain adjoint of w,
denoted by w�, the unique word whose associated affinity coincides with the inverse
affinity of w. In other words, the plain adjoint w� is defined by the equation:

(4.8) fw� = (fw)−1.

Examples 4.9.
(1) The following table from Noll and Domı́nguez shows the relation between

conjugates of the Lydian word and their plain adjoints.

w aaabaab aabaaba abaabaa baabaaa aabaaab abaaaba baaabaa
fw(k) 2k 2k − 2 2k − 4 2k − 6 2k − 1 2k − 3 2k − 5
fw�(k) 4k 4k − 6 4k − 5 4k − 4 4k − 3 4k − 2 4k − 1
w� xyxyxyy yyxyxyx yxyyxyx yxyxyyx yxyxyxy xyyxyxy xyxyyxy

(2) The following table shows the same relation for the Pentatonic word and
its modes. This table was calculated from 4.7 and (4.6).
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w aabab ababa babaa abaab baaba
fw(k) 2k 2k − 3 2k − 1 2k − 4 2k − 2
fw

�(k) 3k 3k − 1 3k − 2 3k − 3 3k − 4
w� xyxyy yyxyx yxyyx yxyxy xyyxy

(3) Here is the same table for the Tetractys. Recall that the Tetractys was
self-dual, or the dual word to the Tetractys word was itself.

w abb bab bba
fw(k) 2k 2k − 2 2k − 1
fw�(k) 2k 2k − 2 2k − 1
w� xyy yxy yyx

One can observe that the inverse of an affinity h(x) = ax + b is h−1(x) =
a∗x+ (b · −a∗) (mod n), when a∗ · a = 1 mod n.

Proposition 4.10. For Christoffel words, the plain adjoint w� is precisely the dual
word w∗.

Proof. One can check from the tables that for the three Christoffel words discussed
this holds. Since for a Christoffel word has mode 0, then it’s plain affinity is just,
fw(k) = |w|y · k, so it is clear that when k = 0, fw(0) = 0. Therefore the inverse
function f−1

w (0) = 0, but recalling f−1
w (x) = a∗x + (b · −a∗) (mod n) we see that

(b · −a∗) (mod n) must be zero. This is the mode of the inverse, and therefore the
plain adjoint w� of w has a mode of zero and by 4.5 must be Christoffel. �

The plain adjoints allow for correspondence with the hinted at in 4 while main-
taining Christoffel duality.

We will soon see a shorter way to calculate certain plain adjoints using special
Sturmian Morphisms.

5. Sturmian Morphisms

Christoffel words and their conjugates can naturally be extended to infinite words
(In either a two-sided or one-sided sense). The endomorphisms on these infinite
words provide a group of morphisms that allow for another generation of the dia-
tonic modes and a unique preference for the Ionian.

Definition 5.1. A Sturmian morphism is a monoid homomorphism {a, b}∗ →
{a, b}∗ which sends every Christoffel word to a conjugate of a Christoffel word.

Remark 5.2. Berstel et. al. call this a Christoffel Morphism. [7]

Remark 5.3. The set of Sturmian morphisms form a monoid under function com-
position. We denote the monoid of Sturmian morphisms by St.

Theorem 5.4. The Sturmian Morphisms are precisely the morphisms generated
by the following monoid homomorphisms from {a, b}∗ → {a, b}∗.
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Generating Sturmian Morphism a b
G a ab

G̃ a ba
D ba b

D̃ ab b
E b a

5.1. Infinite analogue. While much can be said using solely this definition of a
Sturmian morphism, they can be seen more generally as the endomorphisms on
Sturmian words, a class of infinite words that hold many “Christoffel” traits.

Remark 5.5. Any endomorphism f : {a, b}∗ → {a, b}∗ defines a function f̄ :
{infinite words in alphabet {a,b}} → {infinite words in alphabet {a,b}} by defin-
ing f̄(w) to be the infinite word obtained from w by replacing a by f(a) and b by
f(b).

Definition 5.6. [5] Let w denote an infinite word over the alphabet {a, b}. For
any n ∈ N, let Factorsn(w) ⊂ {a, b} denote the set of finite words which occur
as factors of length n within the infinite word w. The infinite word w is called a
Sturmian word, if the cardinality |Factorsn(w)| is equal to n+ 1 for every n > 0.

Example 5.7. Consider an infinite repetition of the Lydian word, aaabaab ◦
aaabaab◦. . . . For n = 1 there are two factor words, a and b, and thus |Factors1(w)| =
2. For n = 2, there are three possible factor words, aa, ab, and ba, and thus
|Factors2(w)| = 3. Check now for n = 5, the possible factor words are aaaba,
aabaa, abaab, baaba, abaaa, and baaab and therefore |Factors5(w)| = 6. For
n = 8, there are factor words, aaabaaba, aabaabaa, abaabaaa, baabaaab, aabaaaba,
abaaabaa, baaabaab, baaabaab. There are only 8 solutions, so this infinite repetition
does not yield a Sturmian word.

Thus, we see from the example that a word comprised of constant infinite repe-
titions will not be Sturmian.

Example 5.8. The sequence arising from the substitution map is a Sturmian Word.
That is start a sequence on 0 and map every 0→ 01, and 1→ 0, leaving a sequence.

(5.9) 0→ 01→ 010→ 01001→ 01001010→ 0100101001001→ . . . .

The resulting infinite chain 0100101001001... is a Sturmian word. Take note that
this, like all Sturmian words, was generated by a Sturmian morphism on {0, 1}∗.

Example 5.10. [5] All Sturmian words can be explicitly written as mechanical
words with irrational slope. Given two real numbers α such that 0 ≤ α ≤ 1 and
ρ ∈ R, a translation, we define the lower mechanical word of slope α and intercept
ρ as

(5.11) s(n) := b(n+ 1)α+ ρc − bnα+ ρc

Lemma 5.12 (Lemma 4.1 in Berthé et. al. [3]). A morphism f : {a, b}∗ → {a, b}∗
is Sturmian if and only if f̄ maps Sturmian words to Sturmian words.
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5.2. Generation of Scales. Recall from Theorem 5.4 that the monoid St of Stur-
mian morphisms is generated by G, G̃,D, D̃, and E. An important sub-monoid of
this, St0 is the monoid generated by G, G̃,D, D̃ (note the absence of E). It is called
the collection of special Sturmian Morphisms [4], and these play a distinguished role
in the Divider Incidence Theorem, as we now explain.

In the conjugacy class of a Christoffel word of length n, there are n − 1 words
that can be obtained as images f(ab) = f(a)(b) = f(a)f(b) of the initial word ab
where f ∈ St0. [5] Noll separates this word f(ab) into factors giving us a divided
word (f(a)|f(b)). The following table gives the six possible diatonic words which
can be obtained through special Sturmian Morphisms on this divided word.

Mode Sturmian Representation on (ab)
Ionian GGD(ab) = GGD(a)(b) = (aaba)|(aab)
Dorian GG̃D(ab) = GG̃D(a)(b) = (abaa)|(aba)
Phrygian G̃G̃D(ab) = G̃G̃D(a)(b) = (baaa)|(baa)
Lydian GGD̃(ab) = GGD̃(a)(b) = (aaab)|(aab)
Mixolydian GG̃D̃(ab) = GG̃D̃(a)(b) = (aaba)|(aba)
Aeolian G̃G̃D̃(ab) = G̃G̃D̃(a)(b) = (abaa)|(baa)

One should notice that there is one conjugate missing from this list, and that is
the Locrian, represented by baabaaa. This is the only conjugate which cannot be
generated by f(ab) with f ∈ St0 and therefore is what Noll calls a “bad conjugate.”
This surprisingly coincides with the historical exclusion of this scale, which was not
used in the medieval chant where these scales initially appeared.

Though there are no common names for the pentatonic in Western Art Music,
there have been instances of the scale corresponding to aabab being called the Major
Pentatonic Scale and the scale corresponding to baaba the Minor Pentatonic Scale,
mostly due to their relation to corresponding Diatonic scales. However, I will choose
to call our previously stated Pentatonic scale aabab Mode I, ababa Mode II and so
forth.

Mode Sturmian Representation on (ab)
Mode I GD̃(ab) = (aab)|(ab)
Mode II G̃D̃(ab) = (aba)|(ba)
Mode IV GD(ab) = (aba)|(ab)
Mode V G̃D(ab) = (baa)|(ba)

As in the case with the Diatonic, we are left with one “bad conjugate” or a scale
which cannot be generated by special Sturmian Morphisms applied to ab and that
is Mode III or babaa.

Proposition 5.13 (Prop. 5 and 6 in [2]). If w = f(ab) where f ∈ 〈G,D〉 or
f ∈ 〈G, D̃〉 then the plain adjoint, w� = frev(ab) where frev is the application of
special Sturmian generators in reverse order.

While the proof of this proposition would be much too exhaustive for this paper
and need a lot more background material it can be demonstrated in Section 3.2 of
[7] that every Christoffel word can be constructed from a generation f(ab) such that
f ∈ {G, D̃} and every such generation yields a Christoffel word. Further Clampitt,
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Domı́nguez, and Noll show in [9] that in the case of Christoffel Dual words this holds.
Further in [2] they extend this formula to incorporate any conjugates generated by
f ∈ {G,D} as well. However, it does not always hold for any conjugate and their
respective plain-adjoint but only in these special cases.

Example 5.14.
• We have that the Ionian word w = aabaaab = GGD(ab). Its plain adjoint

is w� = yx|yxyxy = DGG(xy).
• If w = GGD̃(ab) = aaabaab then w� = D̃GG(xy) = xy|xyxyy.
• If w = GD̃(ab) = aabab then w� = D̃G(xy) = xy|xyy.
• If w = GD(ab) = abaab then w� = DG(xy) = yx|yxy.

We see that these examples all match our previously attained dual words.
The possible importance of the generation of these scales lies in the natural di-

vider of the generation of special Sturmian morphisms. We see that each Christoffel
conjugate has an adjoint and the adjoint represents an important conceptual fold-
ing of the scale, though it does not give any indication of a reason for preference.
However, we notice that only a select number of scales qualifies for the ‘nice’ result
of Proposition 5.13. Still, in the diatonic sense, there is no apparent reason why
the Lydian is not as popular as the Ionian. Scholars have often struggled with why
the Ionian has been preferred over the Lydian, as the Lydian is the scale in which
the generation and the scale both begin on the same note. Further the Christoffel
nature of the Lydian would also lend itself to this preference. However, the concept
of the divider incidence of these begins to once again point towards the Ionian.

Definition 5.15. The final tone of the first factor and the initial tone of the second
factor of the divided word is called the divider. In our example of the F-Ionian mode
in 4, G is the divider for both the scale and its folding and is shown clearly in Figure
5.2.
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b, E(b) = a, which turns the listed special Sturmian morphisms into associated general
ones, whose incidence matrices have determinant −1. This property algebraically
reflects the musical markedness of the plagal modes with respect to the authentic
ones. The Hypo-Locrian scale-pattern turns out to be amorphous.

Hypo-Ionian DDG(a|b) = DD(a|ab) = D(ba|bab) = bba|bbab
Hypo-Dorian DD̃G(a|b) = DD̃(a|ab) = D(ab|abb) = bab|babb
Hypo-Phrygian D̃D̃G(a|b) = D̃D̃(a|ab) = D̃(ab|abb) = abb|abbb
Hypo-Lydian DDG̃(a|b) = DD(a|ba) = D(ba|bba) = bba|bbba
Hypo-Mixolydian DD̃G̃(a|b) = DD̃(a|ba) = D(ab|bab) = bab|bbab
Hypo-Aeolian D̃D̃G̃(a|b) = D̃D̃(a|ba) = D̃(ab|bab) = abb|babb

The intermediate words in these generation processes of length 3 and 5 have a clear
musical meaning as structural and pentatonic modes (see Subsection 1.2).

3.2. The Ionian Mode, Standardicity and Divider Incidence. — Those mu-
sic theorists which are attracted by the fifth-generatedness of the diatonic scale as
a possible source of explanatory power, are puzzled by the fact, that music history
“chose” the Ionian mode for modern tonality rather than Lydian, where the finalis
coincides with the origin of the generation. It is therefore interesting to inspect the
Ionian mode from the view point of word theory. Figure 11 portraits the scale-step
pattern and the scale folding of this mode.

Figure 11. Portrait of the authentic Ionian mode

The following properties are shared by all authentic modes: The scale folding by
fifth up and fourth down fills the width of an augmented prime. The augmented prime
is divided in whole step up and half step down. The scale step-pattern by whole step
up and half step up fills the height of an octave. The octave is divided in fifth up and
fourth up.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2008

Figure 5. (Figure 11 from Noll [5]) The Ionian mode and its folding

Clampitt-Domı́nguez-Noll call this case, when the divider is the same for both the
folding and the scale, divider incidence. Another interesting result demonstrated in
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Figure 4 is that of the positioning of the divider within the scale. Notice that the
distance between F and G in the folding is one whole step, or a distance relation of
a, and the distance from G to the final note of the generation F] is −b or one half
step down. Similarly in the scale, the difference between C and G is a fifth up or x
and the distance between G and C above is a fourth up, or −y. This relation also
holds for the Pentatonic Mode IV. Considering the scale this mode on 0, 2, 5, 7, 9
with 7 = G the dividing tone. The folding again has a dividing tone of G and if
we extend the folding 5, 0, 7, 2, 9,4. Again the scale goes up a major fifth x to the
divider and up a fourth after the divider, −y, while the folding goes up a whole
step a from the beginning to the divider and down a minor third or −b to the final
note of the generation. We see in both of these cases this ‘Ionian’ mode which is
generated by 〈G,D〉 produces this unique result.

6. Conclusion

The special properties of scales generated by the perfect fifth seem to provide
a mathematical foundation for why the collections of pitches which constitute the
Tetractys, the Pentatonic, and the Ionian may lend themselves to preference. While
the word theory representations of scales in Christoffel words and their conjugates
provide an astoundingly apt classification of these chords, it does not yet seem
to point towards a preferred mode, other than the natural Christoffel word itself.
However, when this divider incidence is introduced we find a uniqueness in the
Ionian mode, which can now be considered in a possible natural cause for the
preference which coincides with history. Further the embedding of the Guidonian
hexachord and it’s placement within the scale may lend itself to argument for
preference and is satisfied by its role as the central palindrome in the Christoffel
words which generate the diatonic mode. A possible test for the validity of the
assertion of importance of divider incidence is to look through music featuring the
Pentatonic and see if a similar preference arises in this Mode IV which shares the
divider incidence property.
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