
A BRIEF STUDY OF DISCRETE AND FAST FOURIER

TRANSFORMS

AASHIRWAD VISWANATHAN ANAND

Abstract. This paper studies the mathematical machinery underlying the

Discrete and Fast Fourier Transforms, algorithmic processes widely used in
quantum mechanics, signal analysis, options pricing, and other diverse fields.

Beginning with the basic properties of Fourier Transform, we proceed to study

the derivation of the Discrete Fourier Transform, as well as computational
considerations that necessitate the development of a faster way to calculate

the DFT. With these considerations in mind, we study the construction of the

Fast Fourier Transform, as proposed by Cooley and Tukey [7].

Contents

1. History and Introduction 1
2. Overview of the Continuous Fourier Transform and Convolutions 2
3. The Discrete Fourier Transform (DFT) 4
4. Computational Considerations 7
5. The radix-2 Cooley-Tukey FFT Algorithm 8
References 10
6. Appendix 1 11

1. History and Introduction

The subject of Fourier Analysis is concerned primarily with the representation
of functions as sums of trigonometric functions, or, more generally, series of simpler
periodic functions. Harmonic series representations date back to Old Babylonian
mathematics (2000-1600 BC), where it was used to compute tables of astronom-
ical positions, as discovered by Otto Neugebauer [8]. While, trigonometric series
were first used by 18th Century mathematicians like d’Alembert, Euler, Bernoulli
and Gauss, their applications were known only for periodic functions of known
period. In 1807, Fourier was the first to propose that arbitrary functions could
be represented by trigonometric series, in the article Memoire sur la propagation
de le chaleur dans les corps solides. Gauss is credited with the first Fast Fourier
Transform (FFT) implementation in 1805, during an interpolation of orbital mea-
surements. However, the most commonly used FFT algorithm today is named
after J.W. Cooley, an employee of IBM, and J.W. Tukey, a statistician, who jointly
developed an implementation of the FFT for high speed computers in 1965 [1].

In this paper, we review briefly the theory of continuous Fourier transforms, but
concern ourselves mainly with Discrete Fourier Transforms (DFTs), which are of
great practical importance in the analysis of discrete signals and other data. The

1

2 AASHIRWAD VISWANATHAN ANAND

DFT in its most general form, as we shall see, is inefficient for machine compu-
tation, requiring N2 complex operations for a signal containing N samples. This
motivates the development of the Fast Fourier Transforms, a family of efficient im-
plementations of the DFT for different composites of N . In particular, we examine
the radix-2 Cooley-Tukey FFT algorithm, which reduces the number of complex
operations required to N log2(N).

2. Overview of the Continuous Fourier Transform and Convolutions

We begin with a discussion on the continuous Fourier transform and the In-
version and Convolution theorems, which are important in understanding the
relationship between the continuous Fourier transform and the DFT.

Definition 2.1. (Fourier Series) The Fourier series of a function f , piecewise
continuous on [−P, P] and having period 2P is defined as

(2.2) f(t) =

∞∑
n=−∞

cne
in πP t

where

(2.3) cn =
1

2P

∫ P

−P
f(t)e−in

π
P tdt1

The Fourier series represents the periodic function f as a sum of oscillations
with frequencies nπ

P and complex amplitudes cn. It is now possible to construct an
integral expression that represents any function f (not necessarily periodic) as a
sum of periodic functions. We define

(2.4) f̂(P, ω) =

∫ P

−P
f(t)e−iωtdt

Then, from equation (2.3), cn = 1
2P f̂(P, nπP), so that equation (2.2) may be rewrit-

ten as

(2.5) f(t) =
1

2P

∞∑
n=−∞

f̂(P, ωn)eiωnt =
1

2π

∞∑
n=−∞

f̂(P, ωn)eiωnt
π

P
, ωn =

nπ

P

Since ∆ωn = ωn+1−ωn = π
P , the expression in Equation (2.5) becomes a Riemann

sum. As P →∞, and defining

(2.6) f̂(ω) = lim
P→∞

f̂(P, ω) =

∫ ∞
−∞

f(t)e−iωtdt, ω ∈ R

the limiting process results in

(2.7) f(t) ∼ 1

2π

∫ ∞
−∞

f̂(ω)eiωtdω

1Here, and throughout the rest of this paper, i =
√
−1.

A BRIEF STUDY OF DISCRETE AND FAST FOURIER TRANSFORMS 3

Remark 2.8. We have so far omitted details regarding the convergence of the in-
tegrals described. The following discussion shall be a little more explicit in this
regard.

Definition 2.9. (Continuous Fourier Transform) For a function f on R, such
that

(2.10)

∫ ∞
−∞
|f(t)|dt <∞

the integral f̂(ω) =
∫
R f(t)e−iωtdt converges absolutely and is defined as the con-

tinuous Fourier transform or Fourier integral of f .

Thus, any function on a finite interval (−P, P) can be represented as a sum
of harmonic oscillations with discrete frequencies {ωn : ωn = nπ

P , n ∈ Z}, and
any function on the infinite interval (−∞,∞) can be constructed from harmonic
oscillations with a continuous frequency spectrum {ω : ω ∈ R}, with the sum
replaced by an integral.

Theorem 2.11. (Inversion Theorem) Suppose that f satisfies Equation (2.10)
and is continuous, except for a finite number of finite jumps in any finite interval,
and that f(t) = 1

2 (f(t+) + f(t−)) for all t, i.e. f is of bounded variation, then

(2.12) f(t0) = lim
A→∞

1

2π

∫ A

−A
f̂(ω)eiωt0dω

for every t0 where f has left and right derivatives.

We omit the proof of the Inversion theorem for continuous Fourier transforms in
this discussion. A rigorous treatment of the theorem is given in Vretbald [3] and
Stein and Sharkachi [5], while Brigham [1] discusses the conditions imposed on f
in the theorem, along with examples.

Definition 2.13. (Inverse Fourier Transform) The integral expression in Equa-

tion (2.12) is defined as the Inverse Fourier Transform of f̂ .

The most common applications of Fourier transforms have t representing time-
domain units and ω representing angular frequency domain units. Both t and ω

are real variables, while f(t) and f̂(ω) are complex. When oscillation frequency
v = ω

2π is used, the Fourier integral pair can be expressed in the symmetrical form

(2.14) f̂(v) =

∫ ∞
−∞

f(t)e−2πivtdv

(2.15) f(t) =

∫ ∞
−∞

f̂(v)e2πivtdv

Equation (2.14) is commonly referred to as the forward Fourier transform,
while equation (2.15) is referred to as the inverse Fourier transform. The dual
processes of forward and inverse Fourier transformations are used to simplify a
large number of operations (a partial list of these can be found in Table A.1 in
the Appendix). We concern ourselves here with convolutions, and their continuous
Fourier transforms.

4 AASHIRWAD VISWANATHAN ANAND

Definition 2.16. (Convolution) Let f and g be two functions satisfying Equation
(2.10). The convolution f ? g is defined to be the function given by the formula

(2.17) (f ? g)(t) =

∫
R
f(t− y)g(y)dy =

∫
R
f(y)g(t− y)dy, t, y ∈ R

Theorem 2.18. (Convolution Theorem) Let F be the map from the space of

functions satisfying Equation (2.10), to the space of continuous functions on R̂ that

tend to 0 at ±∞, such that F [f] = f̂ , as defined in Equation (2.6). Then

(2.19) F [f ? g] = F [f]F [g]

Proof.

F [f ? g](ω) =

∫
R

(∫
R
f(t− y)g(y)dy

)
e−iωtdt

=

∫
R

∫
R
f(t− y)g(y)e−iω(t−y+y)dtdy

=

∫
R
g(y)e−iωydy

∫
R
f(t− y)e−iω(t−y)dt

=

∫
R
g(y)e−iωydy

∫
R
f(t)e−iω(t)dt = F [f]F [g]

We assume over here that the order of integration can be changed.
�

The convolution theorem demonstrates how Fourier transformations simplify
convolutions into a multiplication problem. Using the inversion theorem, the con-
volution f ? g can be obtained from the product of the Fourier transforms of f and
g.

3. The Discrete Fourier Transform (DFT)

The Discrete Fourier Transform is an approximation of the continuous Fourier
transform for the case of discrete functions. Given a real sequence of {xn}, the
DFT expresses them as a sequence {Xk} of complex numbers, representing the
amplitude and phase of different sinusoidal components of the input ’signal’. As
with the continuous case, inversion can be used to reconstruct the original function.
However, the DFT has the additional requirement that the sequence {xn} be a
sample of a continuous function truncated over a finite interval.

Definition 3.1. (Discrete Fourier Transform) The Discrete Fourier Transform
(DFT) of a signal x may be defined by

(3.2) X(ωk) =

N−1∑
n=0

x(tn)e−iωktn , k = 0, 1, ..., N − 1

The construction of the DFT uses the important fact that the sinusoidal terms
in the DFT form an orthogonal basis of the space Cn (which may be normalized
to obtain an orthonormal basis for Cn). In the following discussion, we shall write
ωk = 2πk

NT and tn = nT , where T is the sampling interval of the signal. With these

substitutions we can write e−iωktn = e−2πi
nk
N .

A BRIEF STUDY OF DISCRETE AND FAST FOURIER TRANSFORMS 5

Theorem 3.3. Let

sk(n) = e2πi
nk
N , n = 0, 1, ..., N − 1

denote the kth DFT complex sinusoid, for k = 0, 1, ..., N − 1. Then

sk ⊥ sl, k 6= l, 0 ≤ k, l ≤ N − 1

Specifically,

< sk, sl >=

{
N, k = l

0, k 6= l

Proof. We take the inner product of two complex sinusoidal vectors sk and sl.

< sk, sl >=

N−1∑
n=0

sk(n)sl(n) =

N−1∑
n=0

e2πi
nk
N e−2πi

nl
N

=

N−1∑
n=0

e2πi
n(k−l)
N =

1− e2πi(k−l)

1− e2πi
(k−l)
N

, k 6= l

If k = l, we get from the second-to-last step that < sk, sl >=
N−1∑
n=0

e0 = N. If k 6= l,

we have < sk, sl >= 1−e2πi(k−l)

1−e2πi
(k−l)
N

. The denominator is non-zero, while the numerator

is zero, since e2πi
(k−l)
N is a primitive N th root of unity.

�

Remark 3.4. In the last step, we made use of the closed-form expression for the
sum of a geometric series

N−1∑
n=0

zn =
1− zN

1− z

Remark 3.5. When k = l, the inner product gives us < sk, sl >= N , which gives
us the norm of the DFT sinusoids ‖sk‖ =

√
N . Normalizing the DFT sinusoids, we

obtain the orthonormal set:

s̃k(n) =
e2πi

nk
N

√
N

Theorem 3.3 demonstrates that the set of vectors {sk(n) : k = 0, 1, ..., N−1, n =
0, 1, ..., N−1} are orthogonal (linearly independent) and span the space Cn, thereby
forming a basis. Given a signal x(tn) ∈ Cn, its DFT is now defined by

X(ωk) =< x, sk >=

N−1∑
n=0

x(n)sk(n), k = 0, 1, ..., N − 1

which is the expression in Equation (3.2). Substituting sk(n) = eiωktn , tn =
nT, ωk = 2πk

NT , we get a more commonly written form of the DFT:

(3.6) X(ωk) =

N−1∑
n=0

x(n)e−2πi
nk
N , k = 0, 1, ..., N − 1

6 AASHIRWAD VISWANATHAN ANAND

The inverse DFT is constructed by projecting signals x(tn) onto sk:

(3.7) Psk(x) =
< x, sk >

‖sk‖2
sk =

X(ωk)

N
sk

Since the {sk} are orthogonal and span Cn, we have

(3.8) x(tn) =

N−1∑
k=0

X(ωk)

N
sk

which is commonly written as

(3.9) x(n) =
1

N

N−1∑
k=0

X(ωk)e2πi
nk
N , n = 0, 1, ..., N − 1

Definition 3.10. (Inverse Discrete Fourier Transform) The Inverse DFT
of a frequency domain signal X(ωk) is defined by the expression given in Equation
(3.9)2

We conclude our discussion on the construction of the DFT by noting that the
DFT is proportional to <x,sk>

‖sk‖2 , which is the set of coefficients of projection onto the

sinusoidal basis set, and the inverse DFT is a reconstruction of the original signal as
a superposition of its sinusoidal projections. Like the continuous Fourier transform,
the DFT’s main utility lies in its ability to convert operations on functions in the
time domain into simpler, equivalent operations in the frequency domain. A list
of common operations and their DFTs can be found in Appendix 1. As with the
continuous case, we concern ourselves with discrete convolutions, and their DFTs.
In the following discussion, we useDFTN,k = X(k) to denote the DFT of a sequence
of length N .

Definition 3.11. (Discrete Convolution) The Convolution of two signals
x(tn) and y(tn) in Cn, denoted by x ? y, is defined by

(3.12) (x ? y)(n) =

N−1∑
m=0

x(m)y(n−m)

Theorem 3.13. Discrete Convolution Theorem For any x, y ∈ Cn,

(3.14) x ? y = X · Y

where X(ωk) = DFTN,k(x(n)), Y (ωk) = DFTN,k(y(n)).

2Stoer and Bulirsch [2] provide a numerical analytic proof demonstrating how this formula is
the ’best’ reconstruction of the original waveform.

A BRIEF STUDY OF DISCRETE AND FAST FOURIER TRANSFORMS 7

Proof.

DFTN,k(x ? y) =

N−1∑
n=0

(x ? y)(n)e−2πi
nk
N

=

N−1∑
n=0

N−1∑
m=0

x(m)y(n−m)e−2πi
nk
N

=

N−1∑
m=0

x(m)

N−1∑
n=0

y(n−m)e−2πi
nk
N

The sum on the right becomes

N−1∑
n=0

y(n−m)e−2πi
nk
N =

N−1−m∑
n=−m

y(n)e−2πi
(n+m)k

N

=

N−1∑
n=0

y(n)e−2πi
mk
N

= e−2πi
mk
N

N−1∑
n=0

y(n)

= e−2πi
mk
N Y (k)

Therefore, we have

DFTN,k(x ? y) =

(
N−1∑
m=0

x(m)e−2πi
mk
N

)
Y (k) = X(k) · Y (k)

�

This theorem is of great practical importance as it forms the basis of a large body
of FFT theory. The Fast Fourier Transform provides a fast method of computing
the DFT, and consequently a ’fast convolution’ when Theorem (3.13) is applied.

4. Computational Considerations

We recall the definition of the DFT of a sequence x(tn), from Equation (3.2):

(4.1) X(k) =

N−1∑
n=0

x(n)e−iωktn , k = 0, 1, ..., N − 1

where we have replaced ωk by k and tn by n for convenience of notation. Let

WN = e
−2πi
N

Then Equation (4.1) can be written as

8 AASHIRWAD VISWANATHAN ANAND

X(0) = x(0)W 0
N + x(1)W 0

N + x(2)W 0
N + . . .+ x(N − 1)W 0

N

X(1) = x(0)W 0
N + x(1)W 2

N + x(2)W 3
N + . . .+ x(N − 1)WN−1

N

...

X(N − 2) = x(0)W 0
N + x(1)WN−2

N + x(2)W
2(N−2)
N + . . .+ x(N − 1)W

(N−1)(N−2)
N

X(N − 1) = x(0)W 0
N + x(1)WN−1

N + x(2)W
2(N−1)
N + . . .+ x(N − 1)W

(N−1)(N−1)
N

This system of equations is more conveniently represented in the matrix form below:

(4.2)
X(0)
X(1)
. . .

X(N − 2)
X(N − 1)

 =


W 0
N W 0

N W 0
N . . . W 0

N

W 0
N W 1

N W 2
N . . . WN−1

N

. . .
. . .

. . .
.

W 0
N WN−2

N W
2(N−2)
N . . . W

(N−1)(N−2)
N

W 0
N WN−1

N W
2(N−1)
N . . . W

(N−1)(N−1)
N




x(0)
x(1)
. . .

x(N − 2)
x(N − 1)


or more compactly as

(4.3) X(k) = Wnk
N x(n)

To comprehend the size and complexity of the computational task at hand, it
is essential to examine Equation (4.3). Here, WN and x(n) possibly are complex
quantities. Each row in the matrix WN has N elements, each of which has to be
multiplied by its corresponding N elements in the column matrix x(n), giving us
N multiplications per row of WN. Furthermore, the matrix multiplication involves
N − 1 additions in every row of WN, one following every multiplication. Since
there are N rows in WN, the required matrix computation involves N2 complex
multiplications and N(N−1) complex additions to be performed. For large N , DFT
computations require large quantities of time, even with high speed computers. The
reduction of machine time involved in the computation of the DFT is the primary
motivation behind the development of the family of algorithms that are known as
Fast Fourier Transforms, which efficiently implement the DFT for highly composite
transform lengths N . We proceed to examine the construction of the Cooley-Tukey
FFT Algorithm, and the order of computations required in its implementation.

5. The radix-2 Cooley-Tukey FFT Algorithm

When the transform length is of arbitrary integer composite size, i.e. N = N1N2,
the Cooley-Tukey algorithm recursively rewrites the DFT in terms of smaller DFTs
of sizes N1 and N2, so as to reduce the computation time. The two basic approaches
towards implementation of Cooley-Tukey FFT are decimation in time (DIT), and
to compute the Inverse DFT, decimation in frequency (DIF)3. The choice between
DIT and DIF is made depending on the relative sizes of N1 and N2. The following
discussion presents a radix-2 DIT FFT, in which a DFT of size N is split into two

3DIF is also known as the Sande-Tukey FFT algorithm.

A BRIEF STUDY OF DISCRETE AND FAST FOURIER TRANSFORMS 9

DFTs of size N
2 at each stage of the recursion. We assume that N = 2γ , where γ

is an integer.4

We recall the definition of the DFT, as in Equation (3.2):

(5.1) X(ωk) =

N−1∑
n=0

x(n)Wnk
N , k = 0, 1, ..., N − 1

where WN = e
−2πi
N . When N = 2γ , n and k can be represented in binary form as

(5.2) n = 2γ−1nγ−1 + 2γ−2nγ−2 + . . .+ n0

k = 2γ−1kγ−1 + 2γ−2kγ−2 + . . .+ k0

Rewriting Equation (5.1) we get

(5.3) X(kγ−1, kγ−2, . . . , k0) =

1∑
n0=0

1∑
n1=0

. . .

1∑
nγ−1=0

x(nγ−1, nγ−2, . . . , n0)W p
N

where

(5.4) p = (2γ−1kγ−1 + 2γ−2kγ−2 + . . .+ k0)(2γ−1nγ−1 + 2γ−2nγ−2 + . . .+ n0)

Since W a+b
N = W a

NW
b
N , we rewrite W p

N as

(5.5)

W p
N = W

(2γ−1kγ−1+2γ−2kγ−2+...+k0)(2
γ−1nγ−1)

N W
(2γ−1kγ−1+2γ−2kγ−2+...+k0)(2

γ−2nγ−2)
N

× . . .×W (2γ−1kγ−1+2γ−2kγ−2+...+k0)n0

N

Now consider the first term of Equation (5.5)

W
(2γ−1kγ−1+2γ−2kγ−2+...+k0)(2

γ−1nγ−1)
N = W

2γ(2γ−2kγ−1nγ−1)
N W

2γ(2γ−3kγ−2nγ−1)
N

× . . .×W 2γ(k1nγ−1)
N W

2γ−1(k0nγ−1)
N

= W
2γ−1(k0nγ−1)
N

since

(5.6) W 2γ

N = WN
N = e−2πi = 1

Similarly, the second term of Equation (5.5) yields

W
(2γ−1kγ−1+2γ−2kγ−2+...+k0)(2

γ−2nγ−2)
N = W

2γ(2γ−3kγ−1nγ−2)
N W

2γ(2γ−4kγ−2nγ−2)
N

× . . .×W 2γ−1(k1nγ−2)
N W

2γ−2(k0nγ−2)
N

= W
2γ−2(2k1+k0)(nγ−1)
N

As we proceed through the terms of Equation (5.5), we add another factor which
does not cancel by the condition W 2γ

N = 1. This process continues until we reach
the last term in which there is no cancellation.

Using these relationships, Equation (5.3) can be rewritten as

4Since applications usually are free to choose their sample lengths, this is not a major con-

straint, and analogous techniques still work for the general case.

10 AASHIRWAD VISWANATHAN ANAND

X(kγ−1, kγ−2, . . . , k0) =

1∑
n0=0

1∑
n1=0

. . .

1∑
nγ−1=0

x(nγ−1, nγ−2, . . . , n0)

×W 2γ−1(k0nγ−1)
N ×W 2γ−2(2k1+k0)(nγ−1)

N × . . .

×W (2γ−1kγ−1+w
γ−2kγ−2+...+k0)n0

N

Performing each of the summations separately and labeling the intermediate results,
we obtain

x1(k0, nγ−2, . . . , n0) =

1∑
nγ−1=0

x0(nγ−1, nγ−2, . . . , n0)W
2γ−1(k0nγ−1)
N

x2(k0, k1, nγ−3, . . . , n0) =

1∑
nγ−2=0

x1(k0, nγ−2, . . . , n0)W
2γ−2(2k1+k0)(nγ−1)
N

...

xγ(k0, k1, . . . , kγ−1) =

1∑
n0=0

xγ−1(k0, k1, . . . , n0)W (2γ−1kγ−1+w
γ−2kγ−2+...+k0n0

X(kγ−1, kγ−2, . . . , k0) = xγ(k0, k1, . . . , kγ−1)

This set of recursive equations represents the FFT as proposed by Cooley and
Tukey for N = 2γ . The direct evaluation of the DFT for an input sequence of length
N requires N2 multiplications, as shown above. In the radix-2 FFT algorithm,
there are γ summations, each representing N equations. Of these N equations,
each contains two complex multiplications. However, one of these multiplications
is always with unity, and so it may be skipped. Since we have γ summations
representing N equations, each having one complex multiplication, this gives us
Nγ = N log2(N) operations, a considerable improvement from the direct evaluation
of the DFT.

6. Acknowledgments

It is a pleasure to thank my mentors, Yan Zhang and Jessica Lin, for guiding
me through the study of Fourier transforms and and for helping me develop my
understanding through both examples and theory.

References

[1] E. Oran Brigham. The Fast Fourier Transform. Prentice-Hall, Inc, 1974.

[2] J. Stoer and R. Bulirsch. Introduction to Numerical Analysis. Springer-Verlag New York, Inc.

1993.
[3] Anders Vretbald. Fourier Analysis and its Applications. Springer-Verlag New York, Inc. 2003.

[4] Henri J. Nussbaumer. Fast Fourier Transform and convolution algorithms. Springer-Verlag

New York, Inc. 1982.
[5] Elias M. Stein and Rami Sharkachi. Fourier Analysis: an introduction. Princeton University

Press, 2003.

A BRIEF STUDY OF DISCRETE AND FAST FOURIER TRANSFORMS 11

[6] Julius O. Smith. Mathematics of the Discrete Fourier Transform (DFT) with Audio Applica-

tions. W3K Publishing, 2007.

[7] J.W. Cooley and J.W. Tukey. An algorithm for the machine calculation of complex Fourier
series. Math. Computat., vol. 19, pp. 297-301, 1965.

[8] Otto Neugebauer. The Exact Sciences in Antiquity. Dover Publications, 1969.

7. Appendix 1

In the following table, x⇐⇒ X shall denote that X and x are Fourier transform
pairs, i.e. X is the Fourier transform of x, which can be retrieved from X via the
inverse Fourier transform.

Table A.1

Fourier Transform Property Discrete Fourier Transform
x(t) + y(t)⇐⇒ X(ω) + Y (ω) Linearity x(tn) + y(tn)⇐⇒ X(ωk) + Y (ωk)

X(t)⇐⇒ x(ω) Symmetry 1
NX(tn)⇐⇒ x(−ωk)

x(t− t0)⇐⇒ X(ω)e−2πiωt0 Time Shifting x(tn − tm)⇐⇒ X(ωk)e−2πi
mk
N

x(t)e−2πiω0t ⇐⇒ X(ω − ω0) Frequency Shifting x(tn)e−2πi
km
N ⇐⇒ X(ωk − ωm)

xe(t)⇐⇒ Re(ω) Even Functions xe(tn)⇐⇒ Re(ωk)

xo(t)⇐⇒ iIo(ω) Odd Functions xo(tn)⇐⇒ iIo(ωk)

x(t) ? y(t)⇐⇒ X(ω)Y (ω) Odd Functions x(tn) ? y(tn)⇐⇒ X(ωk)Y (ωk)

