THE REPRESENTATIONS OF THE SYMMETRIC GROUP

JE-OK CHOI

Abstract. Young tableau is a combinatorial object which provides a convenient way to describe the group representations of the symmetric group, S_n. In this paper, we prove several facts about the symmetric group, group representations, and Young tableaux. We then present the construction of Specht modules which are irreducible representations of S_n.

CONTENTS

1. The Symmetric Group, S_n

Definitions

1.1. The symmetric group, S_Ω, is a group of all bijections from Ω to itself under function composition. The elements $\pi \in S_\Omega$ are called permutations.

In particular, for $\Omega = \{1, 2, 3, \ldots , n\}$, S_Ω is the symmetric group of degree n, denoted by S_n.

Example 1.2. $\sigma \in S_7$ given by

\[
\begin{array}{cccccccc}
i & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\sigma(i) & 2 & 5 & 6 & 4 & 7 & 3 & 1 \\
\end{array}
\]

is a permutation.

Definition 1.3. A cycle is a string of integers which represents the element of S_n that cyclically permutes these integers. The cycle $(a_1 \ a_2 \ a_3 \ldots \ a_m)$ is the permutation which sends a_i to a_{i+1} for $1 \leq i \leq m-1$ and sends a_m to a_1.

Proposition 1.4. Every permutation in S_n can be written as a product of disjoint cycles.

Proof. Consider $\pi \in S_n$. Given $i \in \{1, 2, 3, \ldots , n\}$, the elements of the sequence $i, \pi(i), \pi^2(i), \pi^3(i), \ldots$ cannot all be distinct. Taking the first power p such that $\pi^p(i) = i$, we have the cycle $(i \ \pi(i) \ \pi^2(i) \ldots \ \pi^{p-1}(i))$. Iterate this process with an element that is not in any of the previously generated cycles until each element of $\{1, 2, 3, \ldots , n\}$ belongs to exactly one of the cycles generated. Then, π is the product of the generated cycles. \qed

Definition 1.5. If $\pi \in S_n$ is the product of disjoint cycles of lengths n_1, n_2, \ldots , n_r such that $n_1 \leq n_2 \leq \ldots \leq n_r$, then the integers n_1, n_2, \ldots , n_r are called the cycle type of π.

For instance, σ in Example 1.2. can be expressed as $\sigma = (4)(3\ 6)(1\ 2\ 5\ 7)$ and its cycle type is $1, 2, 4$. A 1-cycle of a permutation, such as (4) of σ, is called a fixed point and usually omitted from the cycle notation. Another way to represent the cycle type is as a partition:

\[1\]

Date: August 25, 2010.
Definition 1.6. A partition of \(n \) is a sequence \(\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_l) \) where the \(\lambda_i \) are weakly decreasing and \(\sum_{i=1}^{l} \lambda_i = n \). If \(\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_l) \) is a partition of \(n \), we write \(\lambda \vdash n \).

\(\sigma \) corresponds to the partition \(\lambda = (4, 2, 1) \).

Definitions 1.7. In any group \(G \), elements \(g \) and \(h \) are conjugates if \(g = khk^{-1} \) for some \(k \in G \). The set of all elements conjugate to a given \(g \) is called the conjugacy class of \(g \) and is denoted by \(K_g \).

Proposition 1.8. Conjugacy is an equivalence relation. Thus, the distinct conjugacy classes partition \(G \).

Proof. Let \(a \sim b \) if \(a \) and \(b \) are conjugates. Since \(a = \epsilon a \epsilon^{-1} \) where \(\epsilon \) is the identity element of \(G \), \(a \sim a \) for all \(a \in G \), and conjugacy is reflexive. Suppose \(a \sim b \). Then, \(a = khk^{-1} \Leftrightarrow b = (k^{-1})a(k^{-1})^{-1} \). Hence, \(b \sim a \), and conjugacy is symmetric. If \(a \sim b \) and \(b \sim c \), \(a = khk^{-1} = k(lc^{-1})k^{-1} = (kl)c(kl)^{-1} \) for some \(k, l \in G \), and \(a \sim c \). Thus, conjugacy is transitive. \(\square \)

Proposition 1.9. In \(S_n \), two permutations are in the same conjugacy class if and only if they have the same cycle type. Thus, there is a natural one-to-one correspondence between partitions of \(n \) and conjugacy classes of \(S_n \).

Proof. Consider \(\pi = (a_1 a_2 \ldots a_l)(a_m a_{m+1} \ldots a_n) \in S_n \). For \(\sigma \in S_n \),

\[
\sigma \pi \sigma^{-1} = (\sigma(a_1) \sigma(a_2) \ldots \sigma(a_l)) \cdot (\sigma(a_m) \sigma(a_{m+1}) \ldots \sigma(a_n)).
\]

Hence, conjugation does not change the cycle type. \(\square \)

Definition 1.10. A 2-cycle is called a transposition.

Proposition 1.11. Every element of \(S_n \) can be written as a product of transpositions.

Proof. For \((a_1 a_2 \ldots a_m) \in S_n \),

\[
(a_1 a_2 \ldots a_m) = (a_1 a_m) (a_1 a_{m-1}) \cdots (a_1 a_2)
\]

Since every cycle can be written as a product of transpositions, by Proposition 1.4., every permutation can be expressed as a product of transpositions. \(\square \)

Definition 1.12. If \(\pi = \tau_1 \tau_2 \ldots \tau_k \), where the \(\tau_i \) are transpositions, then the sign of \(\pi \) is \(\text{sgn}(\pi) = (-1)^k \).

Proposition 1.13. The map \(\text{sgn} : S_n \to \{\pm 1\} \) is a well-defined homomorphism. In other words, \(\text{sgn}(\pi \sigma) = \text{sgn}(\pi) \text{sgn}(\sigma) \).

The proof of Proposition 1.13 may be found in [1].

2. Group Representations

Definitions 2.1. \(\text{Mat}_d \), the full complex matrix algebra of degree \(d \), is the set of all \(d \times d \) matrices with entries in \(\mathbb{C} \), and \(\text{GL}_d \), the complex general linear group of degree \(d \), is the group of all \(X = (x_{i,j})_{d \times d} \in \text{Mat}_d \) that are invertible with respect to multiplication.

Definition 2.2. A matrix representation of a group \(G \) is a group homomorphism \(X : G \to \text{GL}_d \).
Definition 2.3. For \(V \) a vector space, \(GL(V) \), the **general linear group** of \(V \) is the set of all invertible linear transformations of \(V \) to itself.

In this study, all vector spaces will be over \(\mathbb{C} \) and of finite dimension. Since \(GL(V) \) and \(GL_d \) are isomorphic as groups if \(\text{dim} \ V = d \), we can think of representations as group homomorphisms into the general linear group of a vector space.

Definitions 2.4. Let \(V \) be a vector space and \(G \) be a group. Then \(V \) is a **\(G \)-module** if there is a group homomorphism \(\rho : G \to GL(V) \). Equivalently, \(V \) is a **\(G \)-module** if there is an action of \(G \) on \(V \) denoted by \(gv \) for all \(g \in G \) and \(v \in V \) which satisfy:

1. \(gv \in V \)
2. \(g(cv + dw) = c(gv) + d(gw) \)
3. \((gh)v = g(hv) \)
4. \(\epsilon v = v \)

for all \(g, h \in G; \ v, w \in V; \) and \(c, d \in \mathbb{C} \).

Proof. (The Equivalence of Definitions) By letting \(gv = \rho(g)(v) \), (1) means \(\rho(g) \) is a transformation from \(V \) to itself; (2) represents that the transformation is linear; (3) says \(\rho \) is a group homomorphism; and (4) in combination with (3) means \(\rho(g) \) and \(\rho(g^{-1}) \) are inverse maps of each other and, thus, invertible. \(\square \)

When there is no confusion arises about the associated group, the prefix \(G \)- will be dropped from terms, such as shortening **\(G \)-module** to **module**.

Definition 2.5. Let \(V \) be a \(G \)-module. A **submodule** of \(V \) is a subspace \(W \) that is closed under the action of \(G \), i.e., \(w \in W \Rightarrow gw \in W \) for all \(g \in G \). We write \(W \leq V \) if \(W \) is a submodule of \(V \).

Definition 2.6. A nonzero \(G \)-module \(V \) is **reducible** if it contains a nontrivial submodule \(W \). Otherwise, \(V \) is said to be **irreducible**.

Definitions 2.7. Let \(V \) be a vector space with subspaces \(U \) and \(W \). Then \(V \) is the **direct sum** of \(U \) and \(W \), written \(V = U \oplus W \), if every \(v \in V \) can be written uniquely as a sum \(v = u + w, \ u \in U, \ w \in W \). If \(V \) is a \(G \)-module and \(U, W \) are \(G \)-submodules, then we say that \(U \) and \(W \) are **complements** of each other.

Definition 2.8. An **inner product** on a vector space \(V \) is a map \(\langle \cdot, \cdot \rangle : V \times V \to \mathbb{C} \) that satisfies:

1. \(\langle x, y \rangle = \overline{\langle y, x \rangle} \)
2. \(\langle ax, y \rangle = a \langle x, y \rangle \)
3. \(\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle \)
4. \(\langle x, x \rangle \geq 0 \) with equality only for \(x = 0 \)

for \(x, y, z \in V \) and \(a \in \mathbb{C} \).

Definition 2.9. For \(\langle \cdot, \cdot \rangle \) an inner product on a vector space \(V \) and a subspace \(W \), the **orthogonal complement** of \(W \) is \(W^\perp = \{ v \in V : \langle v, w \rangle = 0 \text{ for all } w \in W \} \).

Note that \(V = W \oplus W^\perp \).

Definition 2.10. An inner product \(\langle \cdot, \cdot \rangle \) on a vector space \(V \) is **invariant** under the action of \(G \) if \(\langle gv, gw \rangle = \langle v, w \rangle \) for all \(g \in G \) and \(v, w \in V \).
Proposition 2.11. Let V be a G-module, W a submodule, and $< \cdot, \cdot >$ an inner product on V. If $< \cdot, \cdot >$ is invariant under the action of G, then W^\perp is also a G-submodule.

Proof. Suppose $g \in G$ and $u \in W^\perp$. Then, for any $w \in W$,

$$< gu, w > = < g^{-1}gu, g^{-1}w > = < u, g^{-1}w > = 0$$

Hence, $gu \in W^\perp$, and W^\perp is a G-submodule. □

Theorem 2.12. (Maschke’s Theorem) Let G be a finite group and let V be a nonzero G-module. Then, $V = W^{(1)} \oplus W^{(2)} \oplus \ldots \oplus W^{(k)}$ where each $W^{(i)}$ is an irreducible G-submodule of V.

Proof. Induction on $d = \dim V$

- Base Case: if $d = 1$, V itself is irreducible. Hence, $V = W^{(1)}$.

- Inductive Case: For $d > 1$, assume true for $d' < d$.

 Suppose V is reducible. Then, V has a nontrivial G-submodule, W.

 Let $B = \{v_1, \ldots, v_d\}$ be a basis for V. Consider the unique inner product on V that satisfies

$$< v_i, v_j > = \delta_{i,j} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

for basis elements in B.

For any $v, w \in V$, let

$$< v, w >' = \sum_{g \in G} < gv, gw >$$

(1)

$$< v, w >' = \sum_{g \in G} < gv, gw > = \sum_{g \in G} < gw, gv > = < w, v >'$$

(2)

$$< av, w >' = \sum_{g \in G} < g(av), gw > = \sum_{g \in G} a < gv, gw > = a < v, w >'$$

(3)

$$< v + w, z > = \sum_{g \in G} < g(v + w), gz >$$

$$= \sum_{g \in G} < gv, gz > + < gw, gz >$$

$$= < v, z >' + < w, z >'$$

(4)

$$< v, v >' = \sum_{g \in G} < gv, gv > \geq 0 \text{ and } < 0, 0 >' = \sum_{g \in G} < g0, g0 > = 0$$
Hence, \(<\cdot,\cdot>’\) is an inner product on \(V\).
Moreover, since, for \(h \in G\),
\[
< hv, hw >’ = \sum_{g \in G} < ghv, ghw >
= \sum_{k \in G} < kv, kw >
= < v, w >’,
\]
\(<\cdot,\cdot>’\) is invariant under the action of \(G\).
Let \(W^\perp = \{ v \in V : < v, w >’ = 0 \text{ for all } w \in W \}\). Then, \(V = W \oplus W^\perp\), and \(W^\perp\) is a \(G\)-submodule by Proposition 2.11. Since \(W\) and \(W^\perp\) can be written as direct sums of irreducibles by the inductive hypothesis, \(V\) can be expressed as a direct sum of irreducibles.

\[\Box\]

Definition 2.13. Let \(V\) and \(W\) be \(G\)-modules. Then a \(G\)-homomorphism is a linear transformation \(\theta : V \to W\) such that
\[
\theta(gv) = g\theta(v)
\]
for all \(g \in G\) and \(v \in V\).

Definition 2.14. Let \(V\) and \(W\) be \(G\)-modules. A \(G\)-isomorphism is a \(G\)-homomorphism \(\theta : V \to W\) that is bijective. In this case, we say that \(V\) and \(W\) are \(G\)-isomorphic, or \(G\)-equivalent, denoted by \(V \cong W\). Otherwise, we say that \(V\) and \(W\) are \(G\)-inequivalent.

Proposition 2.15. Let \(\theta : V \to W\) be a \(G\)-homomorphism. Then,
1. \(\ker \theta\) is a \(G\)-submodule of \(V\)
2. \(\text{im } \theta\) is a \(G\)-submodule of \(W\)

Proof:
1. Since \(\theta(0) = 0\), \(0 \in \ker \theta\) and \(\ker \theta \neq \emptyset\), and if \(v_1, v_2 \in \ker \theta\) and \(c \in \mathbb{C}\), \(\theta(v_1 + cv_2) = \theta(v_1) + c\theta(v_2) = 0 + c0 = 0\) and \(v_1 + cv_2 \in \ker \theta\).
 Hence, \(\ker \theta\) is a subspace of \(V\). Suppose \(v \in \ker \theta\). Then, for any \(g \in G\)
 \[
 \theta(gv) = g\theta(v)
 = g0
 = 0
 \]
 Thus, \(gv \in \ker \theta\) and \(\ker \theta\) is a \(G\)-submodule of \(V\).
2. \(0 \in \text{im } \theta\) and \(\text{im } \theta \neq \emptyset\), and if \(w_1, w_2 \in W\) and \(c \in \mathbb{C}\), there exist \(v_1, v_2 \in V\) such that \(\theta(v_1) = w_1\) and \(\theta(v_2) = w_2\) and \(\theta(v_1 + cv_2) = \theta(v_1) + c\theta(v_2) = w_1 + cw_2\). Thus, \(w_1 + cw_2 \in \text{im } \theta\) and \(\text{im } \theta\) is a subspace of \(W\). Suppose \(w \in \text{im } \theta\). Then, there exists \(v \in V\) such that \(\theta(v) = w\). For any \(g \in G\), \(gw \in \text{im } \theta\) and
 \[
 \theta(gv) = g\theta(v) = gw
 \]
 Hence, \(gw \in \text{im } \theta\) and \(\text{im } \theta\) is a \(G\)-submodule of \(W\).

\[\Box\]

Theorem 2.16. (Schur’s Lemma) Let \(V\) and \(W\) be irreducible \(G\)-modules. If \(\theta : V \to W\) is a \(G\)-homomorphism, then either
1. \(\theta\) is a \(G\)-isomorphism, or
(2) \(\theta \) is the zero map

Proof. Since \(V \) is irreducible and \(\ker \theta \) is a submodule by Proposition 2.15, \(\ker \theta = \{0\} \) or \(\ker \theta = V \). Similarly, \(\im \theta = \{0\} \) or \(\im \theta = W \). If \(\ker \theta = \{0\} \) and \(\im \theta = W \), \(\theta \) is a G-isomorphism, and if \(\ker \theta = V \) and \(\im \theta = \{0\} \), \(\theta \) is the zero map. \(\square \)

Corollary 2.17. Let \(V \) be an irreducible \(G \)-module. If \(\theta : V \to V \) is a \(G \)-homomorphism, \(\theta = cI \) for some \(c \in \mathbb{C} \), multiplication by a scalar.

Proof. Since \(\mathbb{C} \) is algebraically closed, \(\theta \) has an eigenvalue \(c \in \mathbb{C} \). Then, \(\theta - cI \) has a nonzero kernel. By Theorem 2.16, \(\theta - cI \) is the zero map. Hence, \(\theta = cI \). \(\square \)

Definition 2.18. Given a \(G \)-module \(V \), the corresponding endomorphism algebra is \(\text{End} V = \{ \theta : V \to V : \theta \text{ is a } G\text{-homomorphism} \} \)

Definition 2.19. The center of an algebra \(A \) is \(Z_A = \{ a \in A : ab = ba \text{ for all } b \in A \} \)

Let \(E_{i,j} \) be the matrix of zeros with exactly 1 one in position \((i,j) \).

Proposition 2.20. The center of \(\text{Mat}_d \) is \(Z_{\text{Mat}_d} = \{ cI_d : c \in \mathbb{C} \} \)

Proof. Suppose that \(C \in Z_{\text{Mat}_d} \). Consider \(CE_{i,i} = E_{i,i}C \)

\(CE_{i,i}(E_{i,i}C, \text{ respectively}) \) is all zeros except for the \(i \)th column(row, respectively) which is the same as that of \(C \). Hence, all off-diagonal elements must be 0.

For \(i \neq j \),

\[
C(E_{i,j} + E_{j,i}) = (E_{i,j} + E_{j,i})C
\]

Then, \(c_{i,i} = c_{j,j} \). Hence, all the diagonal elements must be equal, and \(C = cI_d \) for some \(c \in \mathbb{C} \). \(\square \)

Note that, for \(A, X \in \text{Mat}_d \) and \(B, Y \in \text{Mat}_f \),

\[
(A \oplus B)(X \oplus Y) = AB \oplus XY
\]

Theorem 2.21. Let \(V \) be a \(G \)-module such that \(V \cong m_1V^{(1)} \oplus m_2V^{(2)} \oplus \cdots \oplus m_kV^{(k)} \) where the \(V^{(i)} \) are pairwise inequivalent irreducibles and \(\dim V^{(i)} = d_i \). Then,

1. \(\dim V = m_1d_1 + m_2d_2 + \cdots + m_kd_k \)
2. \(\text{End} V \cong \bigoplus_{i=1}^{k} \text{Mat}_{m_i} \)
3. \(\dim Z_{\text{End} V} = k \).
Proof.

(1) Clear.

(2) By Theorem 2.16. and Corollary 2.17., $\theta \in \text{End} V$ maps each $V^{(i)}$ into m_i copies of $V^{(i)}$ as multiplications by scalars. Hence,

$$\text{End} V \cong \text{Mat}_{m_1} \oplus \text{Mat}_{m_2} \oplus \cdots \oplus \text{Mat}_{m_k}$$

(3) Consider $C \in \mathbb{Z}_{\text{End} V}$. Then,

$$CT = TC$$

for all $T \in \text{End} V \cong \bigoplus_{i=1}^{k} \text{Mat}_{m_i}$

where $T = \bigoplus_{i=1}^{k} M_{m_i}$ and $C = \bigoplus_{i=1}^{k} C_{m_i}$.

$$CT = \bigoplus_{i=1}^{k} C_{m_i} \left(\bigoplus_{i=1}^{k} M_{m_i} \right)$$

$$= \bigoplus_{i=1}^{k} C_{m_i} M_{m_i}$$

Similarly, $TC = \bigoplus_{i=1}^{k} M_{m_i} C_{m_i}$. Hence,

$$C_{m_i} M_{m_i} = M_{m_i} C_{m_i}$$

for all $M_{m_i} \in \text{Mat}_{m_i}$.

By Proposition 2.20., $C_{m_i} = c_i I_{m_i}$ for some $c_i \in \mathbb{C}$. Thus,

$$C = \bigoplus_{i=1}^{k} c_i I_{m_i}$$

and $\dim \mathbb{Z}_{\text{End} V} = k$.

\[\square\]

Proposition 2.22. Let V and W be G-modules with V irreducible. Then, $\dim \text{Hom}(V, W)$ is the multiplicity of V in W.

Proof. Let m be the multiplicity of V in W. By Theorem 2.16. and Corollary 2.17., $\theta \in \text{Hom}(V, W)$ maps V into m copies of V in W as multiplications by scalars. Hence,

$$\dim \text{Hom}(V, W) = m$$

\[\square\]

Definition 2.23. For a group $G = \{g_1, g_2, \ldots, g_n\}$, the corresponding **group algebra** of G is a G-module

$$\mathbb{C}[G] = \{c_1 g_1 + c_2 g_2 + \cdots + c_n g_n : c_i \in \mathbb{C} \text{ for all } i\}$$

Proposition 2.24. Let G be a finite group and suppose $\mathbb{C}[G] = \bigoplus_{i=1}^{k} m_i V^{(i)}$ where the $V^{(i)}$ form a complete list of pairwise inequivalent irreducible G-modules. Then,

$$\text{number of } V^{(i)} = k = \text{number of conjugacy classes of } G$$
Proof. For \(v \in \mathbb{C}[G] \), let the map \(\phi_v : \mathbb{C}[G] \to \mathbb{C}[G] \) be right multiplication by \(v \).

In other words,
\[
\phi_v(w) = wv \quad \text{for all } w \in \mathbb{C}[G]
\]

Since \(\phi_v(gw) = (gw)v = g(wv) = g\phi_v(w) \), \(\phi_v \in \text{End} \mathbb{C}[G] \).

Claim: \(\mathbb{C}[G] \cong \text{End} \mathbb{C}[G] \).

Consider \(\psi : \mathbb{C}[G] \to \text{End} \mathbb{C}[G] \) such that \(\psi(v) = \phi_v \).

If \(\psi(v) = \phi_v \) is the zero map, then
\[
0 = \phi_v(\epsilon) = \epsilon v = v.
\]

Hence, \(\psi \) is injective.

Suppose \(\theta \in \text{End} \mathbb{C}[G] \) and let \(v = \theta(\epsilon) \in \mathbb{C}[G] \). For any \(g \in G \),
\[
\theta(g) = \theta(g\epsilon) = g\theta(\epsilon) = gv = \phi_v(g)
\]

Since \(\theta \) and \(\phi_v \) agree on a basis \(G \), \(\theta = \phi_v \) and \(\psi \) is surjective. Thus, \(\psi \) is an anti-isomorphism, and \(\mathbb{C}[G] \cong \text{End} \mathbb{C}[G] \).

By (3) of Theorem 2.21, \(k = \dim Z_{\text{End} \mathbb{C}[G]} = \dim Z_{\mathbb{C}[G]} \).

Consider \(z = c_1g_1 + c_2g_2 + \cdots + c_ng_n \in Z_{\mathbb{C}[G]} \).

For all \(h \in G \), \(zh = hz \iff z = hzh^{-1} \iff \)
\[
c_1g_1 + c_2g_2 + \cdots + c_ng_n = c_1h_{g_1}h^{-1} + c_2h_{g_2}h^{-1} + \cdots + c_nh_{g_n}h^{-1}
\]

Since \(h_{g_i}h^{-1} \) runs over the conjugacy class of \(g_i \), all elements of each conjugacy class have the same coefficient. If \(G \) has \(l \) conjugacy classes \(K_1, \ldots, K_l \), let
\[
z_i = \sum_{g \in K_i} g \quad \text{for } i = 1, \ldots, l.
\]

Then, any \(z \in Z_{\mathbb{C}[G]} \) can be written as
\[
z = \sum_{i=1}^{l} d_iz_i.
\]

Hence,
\[
\text{number of conjugacy classes} = \dim Z_{\mathbb{C}[G]} = k = \text{number of } V^{(i)}.
\]

3. Young Tableaux

Definition 3.1. Suppose \(\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_l) \vdash n \). The **Young diagram**, or **shape**, of \(\lambda \) is a collection of boxes arranged in \(l \) left-justified rows with row \(i \) containing \(\lambda_i \) boxes for \(1 \leq i \leq l \).

Example 3.2. \[
\begin{array}{ccc}
\hline
& & \\
& & \\
\hline
\end{array}
\]
is the Young diagram of \(\lambda = (4, 2, 1) \).

Definition 3.3. Suppose \(\lambda \vdash n \). **Young tableau of shape** \(\lambda \) is an array \(t \) obtained by filling the boxes of the Young diagram of \(\lambda \) with the numbers \(1, 2, \ldots, n \) bijectively.

Let \(t_{i,j} \) stand for the entry of \(t \) in the position \((i, j) \) and \(sh \ t \) denote the shape of \(t \).
Example 3.4. $t = \begin{array}{ccc} 2 & 5 & 6 \\ 7 & 3 & 1 \\ 4 & & \\ \end{array}$ is a Young tableau of $\lambda = (4, 2, 1)$, and $t_{1,3} = 6$.

$\pi \in S_n$ acts on a tableau $t = (t_{i,j})$ of $\lambda \vdash n$ as follows:

$$\pi t = (\pi t_{i,j}) \text{ where } \pi t_{i,j} = \pi(t_{i,j})$$

Definitions 3.5. Two λ-tableaux t_1 and t_2 are row equivalent, $t_1 \sim t_2$, if corresponding rows of the two tableaux contain the same elements. A tabloid of shape λ, or λ-tabloid, is then $\{t\} = \{t_1 : t_1 \sim t\}$ where $sh t = \lambda$.

If $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_l) \vdash n$, then the number of tableaux in a λ-tabloid is

$$\lambda_1!\lambda_2!\ldots\lambda_l! \overset{def}{=} \lambda!.$$
Hence, the number of λ-tabloids is $n!/\lambda!$.

Example 3.6. For $s = \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ \end{array}$, we have $\{s\} = \begin{array}{cccc} 1 & 2 & 4 & 3 \\ 3 & 4 & 1 & 2 \\ 2 & 1 & 4 & 3 \\ \end{array}$ and $\begin{array}{cc} 1 & 2 \\ 3 & 4 \\ \end{array} \overset{def}{=} \begin{array}{cc} 1 & 2 \\ 3 & 4 \\ \end{array}$

Definition 3.7. Suppose $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_l)$ and $\mu = (\mu_1, \mu_2, \ldots, \mu_m)$ are partitions of n. Then λ dominates μ, written $\lambda \succeq \mu$, if $\lambda_1 + \lambda_2 + \ldots + \lambda_l \geq \mu_1 + \mu_2 + \ldots + \mu_m$ for all $i \geq 1$. If $i > l$ (i.e., $i > m$, respectively), then we take λ_i (i.e., μ_i, respectively) to be zero.

Lemma 3.8. (Dominance Lemma for Partitions) Let t^λ and s^μ be tableaux of shapes λ and μ, respectively. If for each index i, the elements of row i in s^μ are all in different columns of t^λ, then $\lambda \succeq \mu$.

Proof. Since the elements of row 1 in s^μ are all in different columns of t^λ, we can sort the entries in each column of t^λ so that the elements of row 1 in s^μ all occur in the first row of $t^\lambda_{(1)}$. Then, since the elements of row 2 in s^μ are also all in different columns of t^λ and, thus, $t^\lambda_{(1)}$, we can re-sort the entries in each column of $t^\lambda_{(1)}$ so that the elements of rows 1 and 2 in s^μ all occur in the first two rows of $t^\lambda_{(2)}$.

Inductively, the elements of rows 1, 2, \ldots, i in s^μ all occur in the first i rows of $t^\lambda_{(i)}$. Thus,

$$\lambda_1 + \lambda_2 + \ldots + \lambda_i = \text{number of elements in the first } i \text{ rows of } t^\lambda_{(i)}$$

$$\geq \text{number of elements in the first } i \text{ rows of } s^\mu$$

$$= \mu_1 + \mu_2 + \ldots + \mu_i \hspace{1cm} \square$$

Definition 3.9. Suppose $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_l)$ and $\mu = (\mu_1, \mu_2, \ldots, \mu_m)$ are partitions of n. Then $\lambda > \mu$ in lexicographic order if, for some index i,

$$\lambda_j = \mu_j \text{ for } j < i \text{ and } \lambda_i > \mu_i$$

Proposition 3.10. If $\lambda, \mu \vdash n$ with $\lambda \succeq \mu$, then $\lambda \geq \mu$.

Proof. Suppose $\lambda \neq \mu$. Let i be the first index where they differ. Then, $\sum_{j=1}^{i-1} \lambda_j = \sum_{j=1}^{i-1} \mu_j$ and $\sum_{j=1}^{i} \lambda_j > \sum_{j=1}^{i} \mu_j$. Hence, $\lambda_i > \mu_i$. \square
4. REPRESENTATIONS OF THE SYMMETRIC GROUP

Definition 4.1. Suppose \(\lambda \vdash n \). Let \(M^\lambda = \mathbb{C}\{\{t_1\}, \ldots, \{t_k\}\} \), where \(\{t_1\}, \ldots, \{t_k\} \) is a complete list of \(\lambda \)-tabloids. Then \(M^\lambda \) is called the permutation module corresponding to \(\lambda \).

\(M^\lambda \) is indeed an \(S_n \)-module by letting \(\pi \{t\} = \{\pi t\} \) for \(\pi \in S_n \) and \(t \) a \(\lambda \)-tableau.

In addition, \(\dim M^\lambda = n!/\lambda ! \), the number of \(\lambda \)-tabloids.

Definition 4.2. Any \(G \)-module \(M \) is cyclic if there is a \(v \in M \) such that \(M = CGv \) where \(Gv = \{gv : g \in G\} \). In this case, we say that \(M \) is generated by \(v \).

Proposition 4.3. If \(\lambda \vdash n \), then \(M^\lambda \) is cyclic, generated by any given \(\lambda \)-tabloid.

Definition 4.4. Suppose that the tableau \(t \) has rows \(R_1, R_2, \ldots, R_l \) and columns \(C_1, C_2, \ldots, C_k \). Then,

\[
R_t = S_{R_1} \times S_{R_2} \times \ldots \times S_{R_l}
\]

and

\[
C_t = S_{C_1} \times S_{C_2} \times \ldots \times S_{C_k}
\]

are the row-stabilizer and column-stabilizer of \(t \), respectively.

Example 4.5. For \(t \) in Example 3.4., \(R_t = S_{\{2,4,5,6\}} \times S_{\{3,7\}} \times S_{\{1\}} \) and \(C_t = S_{\{1,2,7\}} \times S_{\{3,5\}} \times S_{\{6\}} \times S_{\{4\}} \).

Given a subset \(H \subseteq S_n \), let \(H^+ = \sum_{\pi \in H} \pi \) and \(H^- = \sum_{\pi \in H} sgn(\pi)\pi \) be elements of \(\mathbb{C}[S_n] \). If \(H = \{\pi\} \), then we denote \(H^- \) by \(\pi^- \).

For a tableau \(t \), let \(\kappa_t = C_t^- = \sum_{\pi \in C_t} sgn(\pi) \pi \). Note that if \(t \) has columns \(C_1, C_2, \ldots, C_k \), then \(\kappa_t = \kappa_{C_1} \kappa_{C_2} \ldots \kappa_{C_k} \).

Definition 4.6. If \(t \) is a tableau, then the associated polytabloid is \(e_t = \kappa_t\{t\} \).

Example 4.7. For \(s \) in Example 3.6,

\[
\kappa_s = \kappa_{C_1} \kappa_{C_2} = (\epsilon - (1,3))(\epsilon - (2,4))
\]

Thus,

\[
e_t = \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} - \begin{vmatrix} 3 & 2 \\ 1 & 4 \end{vmatrix} - \begin{vmatrix} 1 & 4 \\ 3 & 2 \end{vmatrix} + \begin{vmatrix} 3 & 4 \\ 1 & 2 \end{vmatrix}
\]

Lemma 4.8. Let \(t \) be a tableau and \(\pi \) be a permutation. Then,

\(1 \) \(R_{\pi t} = \pi R_t \pi^{-1} \)
\(2 \) \(C_{\pi t} = \pi C_t \pi^{-1} \)
\(3 \) \(\kappa_{\pi t} = \pi \kappa_t \pi^{-1} \)
\(4 \) \(e_{\pi t} = \pi e_t \)

Proof.

(1)

\[
\sigma \in R_{\pi t} \iff \sigma\{\pi t\} = \{\pi t\}
\]

\[
\iff \pi^{-1}\sigma\{t\} = \{t\}
\]

\[
\iff \pi^{-1}\sigma \in R_t
\]

\[
\iff \sigma \in \pi R_t \pi^{-1}
\]
(2) and (3) can be shown analogously to (1).

(4) \[e_{\pi t} = \kappa_{\pi t} \{ \pi t \} = \pi \kappa_{t} \pi^{-1} \{ \pi t \} = \pi \kappa_{t} \{ t \} = \pi e_{t} \]

□

Definition 4.9. For a partition \(\lambda \vdash n \), the corresponding Specht module, \(S^{\lambda} \), is the submodule of \(M^{\lambda} \) spanned by the polytabloids \(e_{t} \), where \(\text{sh} \ t = \lambda \).

Proposition 4.10. The \(S^{\lambda} \) are cyclic modules generated by any given polytabloid.

Given any two \(\lambda \)-tabloids \(t_{i}, t_{j} \) in the basis of \(M^{\lambda} \), let their inner product be

\[< \{ t_{i} \}, \{ t_{j} \} > = \delta_{\{ t_{i} \}, \{ t_{j} \}} = \begin{cases} 1 & \text{if } \{ t_{i} \} = \{ t_{j} \} \\ 0 & \text{otherwise} \end{cases} \]

and extend by linearity in the first variable and conjugate linearity in the second to obtain an inner product on \(M^{\lambda} \).

Lemma 4.11. **(Sign Lemma)** Let \(H \leq S_{n} \) be a subgroup.

(1) If \(\pi \in H \), then \(\pi H^{-} = H^{-} \pi = \text{sgn}(\pi) H^{-} \)

(2) For any \(u, v \in M^{\lambda} \),

\[< H^{-} u, v > = < u, H^{-} v > \]

(3) If the transposition \((b c) \in H \), then we can factor

\[H^{-} = k(\epsilon - (b c)) \]

where \(k \in \mathbb{C}[S_{n}] \).

(4) If \(t \) is a tableau with \(b, c \) in the same row of \(t \) and \((b c) \in H \), then

\[H^{-} \{ t \} = 0 \]

Proof.

(1)

\[
\pi H^{-} = \sum_{\sigma \in H} \text{sgn}(\sigma) \pi \sigma
\]

\[
= \sum_{\sigma \in H} \text{sgn}(\sigma) \pi \sigma
\]

\[
= \sum_{\tau \in H} \text{sgn}(\pi^{-1} \tau) \tau
\]

(by letting \(\tau = \pi \sigma \))

\[
= \sum_{\tau \in H} \text{sgn}(\pi^{-1}) \text{sgn}(\tau) \tau
\]

\[
= \text{sgn}(\pi^{-1}) \sum_{\tau \in H} \text{sgn}(\tau) \tau
\]

\[
= \text{sgn}(\pi) H^{-}
\]

\(H^{-} \pi = \text{sgn}(\pi) H^{-} \) can be proven analogously.
Corollary 4.12. Let \(t \) be a \(\lambda \)-tableau and \(s \) be a \(\mu \)-tableau, where \(\lambda, \mu \vdash n \). If \(\kappa_t\{s\} \neq 0 \), then \(\lambda \geq \mu \). Moreover, if \(\lambda = \mu \), then \(\kappa_t\{s\} = \pm e_t \)

Proof. Suppose \(b \) and \(c \) are two elements in the same row of \(s \). If they are in the same column of \(t \), then \((bc) \in C_t \) and \(\kappa_t\{s\} = 0 \) by (4) of Sign Lemma. Hence, the elements in each row of \(s \) are all in different columns in \(t \), and \(\lambda \geq \mu \) by Dominance Lemma.

If \(\lambda = \mu \), then \(\{s\} = \pi\{t\} \) for some \(\pi \in C_t \). Then, by (4) of Sign Lemma,

\[
\kappa_t\{s\} = \kappa_t\pi\{t\} = sgn(\pi)\kappa_t\{t\} = \pm e_t
\]

\(\square \)

Corollary 4.13. If \(u \in M^\mu \) and \(\text{sh} t = \mu \), then \(\kappa_t u \) is a multiple of \(e_t \).

Proof. Let \(u = \sum_{i \in I} c_i s_i \) where \(c_i \in \mathbb{C} \) and \(s_i \) are \(\mu \)-tableaux. By Corollary 4.12., \(\kappa_t u = \sum_{i \in J} \pm c_i e_t = (\sum_{j \in J} \pm e_t) e_t \) for some \(J \subseteq I \).

\(\square \)

Theorem 4.14. (Submodule Theorem) Let \(U \) be a submodule of \(M^\mu \). Then,

\[
U \supseteq S^\mu \quad \text{or} \quad U \subseteq S^\mu^\perp
\]

Thus, \(S^\mu \) is irreducible.

Proof. For \(u \in U \) and a \(\mu \)-tableau \(t \), \(\kappa_t u = c e_t \) for some \(c \in \mathbb{C} \) by Corollary 4.13.. Suppose that there exists a \(u \) and \(t \) such that \(c \neq 0 \). Then, since \(U \) is a submodule, \(c e_t = \kappa_t u \in U \). Hence, \(e_t \in U \) and \(S^\mu \subseteq U \) since \(S^\mu \) is cyclic.

Otherwise, \(\kappa_t u = 0 \) for all \(u \in U \) and all \(\mu \)-tableau \(t \). Then, by (2) of Sign Lemma,

\[
< u, e_t >=< u, \kappa_t\{t\} >=< \kappa_t u, \{t\} >=< 0, \{t\} >= 0.
\]

Since \(e_t \) span \(S^\mu \), \(u \in S^\mu^\perp \) and \(U \subseteq S^\mu^\perp \).

\(\square \)

Proposition 4.15. If \(\theta \in \text{Hom}(S^\lambda, M^\mu) \) is nonzero, then \(\lambda \geq \mu \). Moreover, if \(\lambda = \mu \), then \(\theta \) is multiplication by a scalar.
Proof. Since $\theta \neq 0$, there exists a basis element $e_t \in S^\lambda$ such that $\theta(e_t) \neq 0$. Because $M^\lambda = S^\lambda \oplus S^\lambda_\perp$, we can extend θ to an element of $\text{Hom}(M^\lambda, M^\mu)$ by letting $\theta(S^\lambda_\perp) = \{0\}$. Then,

$$0 \neq \theta(e_t) = \theta(\kappa_t\{t\}) = \kappa_t\theta(\{t\}) = \kappa_t\left(\sum_i c_i\{s_i\}\right)$$

where $c_i \in \mathbb{C}$ and s_i are μ-tableaux. Hence, by Corollary 4.12, $\lambda \supseteq \mu$.

If $\lambda = \mu$, $\theta(e_t) = ce_t$ for some $c \in \mathbb{C}$ by Corollary 4.12. For any permutation π,

$$\theta(e_{\pi t}) = \theta(\pi e_t) = \pi\theta(e_t) = \pi(ce_t) = c\pi e_t$$

Thus, θ is multiplication by c.

Theorem 4.16. The S^λ for $\lambda \vdash n$ form a complete list of irreducible S_n-modules.

Proof. Since the number of irreducible modules equals the number of conjugacy classes of S_n by Proposition 2.24, it suffices to show that they are pairwise inequivalent. Suppose $S^\lambda \cong S^\mu$. Then, there exists a nonzero $\theta \in \text{Hom}(S^\lambda, M^\mu)$ since $S^\lambda \subseteq M^\mu$. Thus, by Proposition 4.15, $\lambda \supseteq \mu$. Analogously, $\lambda \subseteq \mu$. Hence, $\lambda = \mu$.

Corollary 4.17. The permutation modules decompose as

$$M^\mu = \bigoplus_{\lambda \supseteq \mu} m_{\lambda\mu} S^\lambda$$

where the diagonal multiplicity $m_{\mu\mu} = 1$.

Proof. If S^λ appears in M^μ with nonzero multiplicity, then there exists a nonzero $\theta \in \text{Hom}(S^\lambda, M^\mu)$ and $\lambda \supseteq \mu$ by Proposition 4.15. If $\lambda = \mu$, then $m_{\mu\mu} = \dim \text{Hom}(S^\mu, M^\mu) = 1$ by Propositions 2.22 and 4.15.

Acknowledgments. I sincerely thank my mentor, Saravanan Thiyagarajan, for his guidance and assistance.

References